L-Lactate Electrochemical Biosensor Based on an Integrated Supramolecular Architecture of Multiwalled Carbon Nanotubes Functionalized with Avidin and a Recombinant Biotinylated Lactate Oxidase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Recombinant bLOx Production
2.2.1. Expression Vectors
2.2.2. Protein Expression and In Vivo Biotinylation
2.2.3. Protein Purification and Activity Analysis
2.3. Procedure and Apparatus
2.4. Preparation of GCE/MWCNT-Av/bLOx as Working Electrode
2.4.1. Non-Covalent Functionalization of MWCNTs with Avidin
2.4.2. Construction of the Biosensor (GCE/MWCNT-Av/bLOx)
2.5. Determination of L-Lactate in Real Samples
3. Results and Discussion
3.1. Recombinant bLOx Production
3.2. Molecular Recognition of GCE/MWCNT-Av towards bLOx
3.3. Optimization of the Preparation of GCE/MWCNT-Av/bLOx
3.4. Analytical Performance of GCE/MWCNT-Av/bLOx for L-Lactate Biosensing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eivazzadeh-Keihan, R.; Noruzi, E.B.; Chidar, E.; Jafari, M.; Davoodi, F.; Kashtiaray, A.; Gorab, M.G.; Hashemi, S.M.; Javanshir, S.; Cohan, R.A.; et al. Applications of carbon-based conductive nanomaterials in biosensors. Chem. Eng. J. 2022, 442, 136183. [Google Scholar] [CrossRef]
- Mondal, J.; Man An, J.; Surwase, S.S.; Chakraborty, K.; Sutradhar, S.C.; Hwang, J.; Lee, J.; Lee, Y.-K. Carbon Nanotube and Its Derived Nanomaterials Based High Performance Biosensing Platform. Biosensors 2022, 12, 731. [Google Scholar] [CrossRef] [PubMed]
- Safari, M.; Moghaddam, A.; Moghaddam, A.S.; Absalan, M.; Kruppke, B.; Ruckdäschel, H.; Khonakdar, H.A. Carbon-based biosensors from graphene family to carbon dots: A viewpoint in cancer detection. Talanta 2023, 258, 124399. [Google Scholar] [PubMed]
- Nag, A.; Alahi, M.E.E.; Mukhopadhyay, S.C.; Liu, Z. Multi-Walled Carbon Nanotubes-Based Sensors for Strain Sensing Applications. Sensors 2021, 21, 1261. [Google Scholar] [CrossRef] [PubMed]
- Rathinavel, S.; Priyadharshini, K.; Panda, D. A review on carbon nanotubes: An overview of synthesis, properties, functionalization, characterization, and the application. Mater. Sci. Eng. B 2021, 268, 115095. [Google Scholar] [CrossRef]
- Dai, B.; Zhou, R.; Ping, J.; Ying, Y.; Xie, L. Recent advances in carbon nanotube-based biosensors for biomolecular detection. Trends Anal. Chem. 2022, 154, 116658. [Google Scholar]
- Naqvi, S.T.R.; Rasheed, T.; Hussain, D.; Najam ul Haq, M.; Majeed, S.; Shafi, S.; Ahmed, N.; Nawaz, R. Modification strategies for improving the solubility/dispersion of carbon nanotubes. J. Mol. Liq. 2020, 297, 111919. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Paukov, M.; Burdanova, M.G. Nanotube functionalization: Investigation, methods and demonstrated applications. Materials 2022, 15, 5386. [Google Scholar] [CrossRef]
- Alosime, E.M. A review on surface functionalization of carbon nanotubes: Methods and applications. Nanoscale Res. Lett. 2023, 18, 12. [Google Scholar] [CrossRef]
- Ortiz, E.; Gallay, P.; Galicia, L.; Eguílaz, M.; Rivas, G. Nanoarchitectures based on multi-walled carbon nanotubes non-covalently functionalized with Concanavalin A: A new building-block with supramolecular recognition properties for the development of electrochemical biosensors. Sens. Actuators B Chem. 2019, 292, 254–262. [Google Scholar]
- López Mujica, M.; Rubianes, M.D.; Rivas, G. A multipurpose biocapture nanoplatform based on multiwalled-carbon nanotubes non-covalently functionalized with avidin: Analytical applications for the non-amplified and label-free impedimetric quantification of BRCA1. Sens. Actuators B Chem. 2022, 357, 131304. [Google Scholar] [CrossRef]
- López Mujica, M.; Tamborelli, A.; Espinosa, C.; Vaschetti, V.; Bollo, S.; Dalmasso, P.; Rivas, G. Two birds with one stone: Integrating exfoliation and immunoaffinity properties in multi-walled carbon nanotubes by non-covalent functionalization with human immunoglobulin G. Microchim. Acta 2023, 190, 73. [Google Scholar] [CrossRef] [PubMed]
- Tamborelli, A.; López Mujica, M.; Sanchez-Velasco, O.A.; Hormazábal-Campos, C.; Pérez, E.G.; Gutierrez-Cutino, M.; Venegas-Yazigi, D.; Dalmasso, P.; Rivas, G.; Hermosilla-Ibáñez, P. A new strategy to build electrochemical enzymatic biosensors using a nanohybrid material based on carbon nanotubes and a rationally designed schiff base containing boronic acid. Talanta 2024, 270, 125520. [Google Scholar] [CrossRef] [PubMed]
- López Mujica, M.; Tamborelli, A.; Dalmasso, P.; Rivas, G. Label-Free Electrochemical Sensing Using Glassy Carbon Electrodes Modified with Multiwalled-Carbon Nanotubes Non-Covalently Functionalized with Human Immunoglobulin G. Chemosensors 2024, 12, 4. [Google Scholar] [CrossRef]
- Rattu, G.; Khansili, N.; Maurya, V.K.; Krishna, P.M. Lactate detection sensors for food, clinical and biological applications: A review. Environ. Chem. Lett. 2021, 19, 1135–1152. [Google Scholar] [CrossRef]
- Biagi, S.; Ghimenti, S.; Onor, M.; Bramanti, E. Simultaneous determination of lactate and pyruvate in human sweat using re-versed-phase high-performance liquid chromatography: A noninvasive approach. Biomed. Chromatogr. 2012, 26, 1408–1415. [Google Scholar] [CrossRef]
- Pereira, S.A.P.; Mota, F.A.R.; Çay, I.; Passos, M.L.C.; Araujo, A.R.T.S.; Saraiva, M.L.M.F.S. Automatic fluorometric lactate deter-mination in human plasma samples. New J. Chem. 2020, 44, 543–548. [Google Scholar] [CrossRef]
- Rattu, G.; Krishna, P.M. Enzyme-free colorimetric nanosensor for the rapid detection of lactic acid in food quality analysis. J. Agric. Food Res. 2022, 7, 100268. [Google Scholar] [CrossRef]
- Martínez-Periñán, E.; Gutiérrez-Sánchez, C.; García-Mendiola, T.; Lorenzo, E. Electrochemiluminescence Biosensors Using Screen-Printed Electrodes. Biosensors 2020, 10, 118. [Google Scholar] [CrossRef]
- Ren, J.; Dean Sherry, A.; Malloy, C.R. Noninvasive monitoring of lactate dynamics in human forearm muscle after exhaustive exercise by 1H-magnetic resonance spectroscopy at 7 tesla. Magn. Reson. Med. 2013, 70, 610–619. [Google Scholar] [CrossRef]
- Kucherenko, I.S.; Topolnikova, Y.V.; Soldatkin, O.O. Advances in the biosensors for lactate and pyruvate detection for medical applications: A review. Trends Anal. Chem. 2019, 110, 160–172. [Google Scholar] [CrossRef]
- García-Guzmán, J.J.; Sierra-Padilla, A.; Palacios-Santander, J.M.; Fernández-Alba, J.J.; Macías, C.G.; Cubillana-Aguilera, L. What Is Left for Real-Life Lactate Monitoring? Current Advances in Electrochemical Lactate (Bio)Sensors for Agrifood and Biomedical Applications. Biosensors 2022, 12, 919. [Google Scholar] [CrossRef] [PubMed]
- Duncan, J.; Wallis, J.; Azari, M. Purification and properties of Aerococcus viridans lactate oxidase. Biochem. Biophys. Res. Commun. 1989, 164, 919–926. [Google Scholar] [CrossRef] [PubMed]
- Dijkman, W.P.; de Gonzalo, G.; Mattevi, A.; Fraaije, M.W. Flavoprotein oxidases: Classification and applications. Appl. Microbiol. Biotechnol. 2013, 97, 5177–5188. [Google Scholar] [CrossRef] [PubMed]
- Przybyt, M. Lactate biosensors for food industry. Biotechnol. Food Sci. 2014, 78, 71–88. [Google Scholar]
- Meléndez, D.M.; Marti, S.; Faucitano, L.; Haley, D.B.; Schwinghamer, T.D.; Schwartzkopf-Genswein, K.S. Correlation between L-Lactate Concentrations in Beef Cattle, Obtained Using a Hand-Held Lactate Analyzer and a Lactate Assay Colorimetric Kit. Animals 2021, 11, 926. [Google Scholar] [CrossRef] [PubMed]
- Anzai, J.; Hoshi, T.; Osa, T. Avidin-Biotin Mediated Biosensors. In Biosensors and Their Applications; Yang, V.C., Ngo, T.T., Eds.; Springer: Boston, MA, USA, 2000; pp. 35–46. [Google Scholar]
- Nguyen, H.H.; Lee, S.H.; Lee, U.J.; Fermin, C.D.; Kim, M. Immobilized Enzymes in Biosensor Applications. Materials 2019, 12, 121. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.; Kaur, C.; Grover, P.; Gupta, A.; Chaudhary, V.K. Biotin-tagged proteins: Reagents for efficient ELISA-based serodiagnosis and phage display-based affinity selection. PLoS ONE 2018, 13, e0191315. [Google Scholar] [CrossRef]
- Ashraf, S.S.; Benson, R.E.; Payne, E.S.; Halbleib, C.M.; Grøn, H. A novel multi-affinity tag system to produce high levels of soluble and biotinylated proteins in Escherichia coli. Protein Expr. Purif. 2004, 33, 238–245. [Google Scholar] [CrossRef]
- Li, Y.; Sousa, R. Expression and purification of E. coli BirA biotin ligase for in vitro biotinylation. Protein Expr. Purif. 2012, 82, 162–167. [Google Scholar] [CrossRef]
- Azadmanesh, K.; Etemadzadeh, M.; Arashkia, A.; Roohvand, F.; Norouzian, D. Isolation, cloning, and expression of E. coli BirA gene for biotinylation applications. Adv. Biomed. Res. 2015, 4, 149. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, H.; Carreras-Gallo, O.; Casals-Terré, J. Mill Scale-Derived Magnetite Nanoparticles: A Novel Substrate for Lactate Oxidase-Based Biosensors. Biosensors 2023, 13, 957. [Google Scholar] [CrossRef] [PubMed]
- Ozoglu, O.; Uzunoglu, A.; Unal, M.A.; Gumustas, M.; Ozkan, S.A.; Korukluoglu, M.; Altuntas, E.G. Electrochemical detection of lactate produced by foodborne presumptive lactic acid bacteria. J. Biosci. Bioeng. 2023, 135, 313–320. [Google Scholar] [CrossRef]
- Madden, J.; Vaughan, E.; Thompson, M.; O’ Riordan, A.; Galvin, P.; Iacopino, D.; Rodrigues Teixeira, S. Electrochemical sensor for enzymatic lactate detection based on laser-scribed graphitic carbon modified with platinum, chitosan and lactate oxidase. Talanta 2022, 246, 123492. [Google Scholar] [CrossRef]
- Meng, L.; Chirtes, S.; Liu, X.; Eriksson, M.; Mak, C.W. A green route for lignin-derived graphene electrodes: A disposable platform for electrochemical biosensors. Biosens. Bioelectron. 2022, 218, 114742. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chen, Y.-C.; Riezk, A.; Ming, D.; Tsvik, L.; Sützl, L.; Holmes, A.; O’Hare, D. Rapid Measurement of Lactate in the Exhaled Breath Condensate: Biosensor Optimization and In-Human Proof of Concept. ACS Sens. 2022, 7, 3809–3816. [Google Scholar] [PubMed]
- García-Morales, R.; Zárate-Romero, A.; Wang, J.; Vazquez-Duhalt, R. Bioengineered Lactate Oxidase Mutants for Enhanced Electrochemical Performance at Acidic pH. ChemElectroChem 2023, 10, e202300296. [Google Scholar]
- Daboss, E.V.; Shcherbacheva, E.V.; Tikhonov, D.V.; Karyakin, A.A. On-body hypoxia monitor based on lactate biosensors with a tunable concentration range. J. Electroanal. Chem. 2023, 935, 117330. [Google Scholar] [CrossRef]
- Shitanda, I.; Ozone, Y.; Morishita, Y.; Matsui, H.; Loew, N.; Motosuke, M.; Mukaimoto, T.; Kobayashi, M.; Mitsuhara, T.; Sugita, Y.; et al. Air-Bubble-Insensitive Microfluidic Lactate Biosensor for Continuous Monitoring of Lactate in Sweat. ACS Sens. 2023, 8, 2368–2374. [Google Scholar] [CrossRef]
- Vokhmyanina, D.V.; Sharapova, O.E.; Buryanovataya, K.E.; Karyakin, A.A. Novel Siloxane Derivatives as Membrane Precursors for Lactate Oxidase Immobilization. Sensors 2023, 23, 4014. [Google Scholar] [CrossRef]
- Dagar, K.; Narwal, V.; Pundir, C.S. An enhanced L-lactate biosensor based on nanohybrid of chitosan, iron-nanoparticles and carboxylated multiwalled carbon nanotubes. Sens. Int. 2023, 4, 100245. [Google Scholar] [CrossRef]
- Deng, S. Application of graphene oxide nanosheet lactate biosensors in continuous assessment of athlete fitness. Alex. Eng. J. 2024, 88, 31–35. [Google Scholar] [CrossRef]
- Fernandes, E.; Ledo, A.; Gerhardt, G.A.; Barbosa, R.M. Amperometric bio-sensing of lactate and oxygen concurrently with local field potentials during Status epilepticus. Talanta 2024, 268, 125302. [Google Scholar] [CrossRef] [PubMed]
- Cull, M.G.; Schatz, P.J. Biotinylation of Proteins in Vivo and in Vitro Using Small Peptide Tags. In Applications of Chimeric Genes and Hybrid Proteins Part A: Gene Expression and Protein Purification; Thorner, J., Emr, S.D., Abelson, J.N., Eds.; Academic Press: San Diego, CA, USA, 2000; Volume 326, pp. 430–440. [Google Scholar]
- Godino, A.; Amaranto, M.; Manassero, A.; Comba, F.; Pérez, M.A.; Simonella, L.; Pernigotti, M.; Barra, J.L. His-tagged lactate oxidase production for industrial applications using fed-batch fermentation. J. Biotechnol. 2023, 363, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hiraka, K.; Kojima, K.; Tsugawa, W.; Asano, R.; Ikebukuro, K.; Sode, K. Rational engineering of Aerococcus viridans L-lactate oxidase for the mediator modification to achieve quasi-direct electron transfer type lactate sensor. Biosens. Bioelectron. 2020, 151, 111974. [Google Scholar] [CrossRef] [PubMed]
- Taurino, I.; Reiss, R.; Richter, M.; Fairhead, M.; Thöny-Meyer, L.; De Micheli, G.; Carrara, S. Comparative study of three lactate oxidases from Aerococcus viridans for biosensing applications. Electrochim. Acta 2013, 93, 72–79. [Google Scholar]
- Li, G.; Lian, J.; Xue, H.; Jiang, Y.; Wu, M.; Lin, J.; Yang, L. Enzymatic preparation of pyruvate by a whole-cell biocatalyst co- expressing L-lactate oxidase and catalase. Process Biochem. 2020, 96, 113–121. [Google Scholar] [CrossRef]
- Lactate Oxidase from Aerococcus viridans. Available online: https://www.sigmaaldrich.com/US/en/product/sigma/l9795 (accessed on 1 February 2024).
- Lactate Oxidase, Aerococcus viridans Enzyme. Available online: https://www.mybiosource.com/enzyme/lactate-oxidase-aerococcus-viridans/653757 (accessed on 1 February 2024).
- Lactate 2-Monooxygenase (Lactate oxidase), Grade I. Available online: https://custombiotech.roche.com/global/en/products/cb/lactate-2-monooxygenase-lactate-oxidase-grade-i-3114284.html (accessed on 1 February 2024).
- Lactate Oxidase from Aerococcus viridans, Recombinant. Available online: https://www.creative-enzymes.com/product/lactate-oxidase-from-aerococcus-viridans-recombinant_752.html (accessed on 1 February 2024).
- L3000-10B Lactate Oxidase, Aerococcus viridans (LOD) CAS: 9028-72-2. Available online: https://www.usbio.net/molecular-biology/L3000-10B/lactate-oxidase-aerococcus-viridans-lod (accessed on 1 February 2024).
- Khan, A.; Winder, M.; Hossain, G. Modified graphene-based nanocomposite material for smart textile biosensor to detect lactate from human sweat. Biosens. Bioelectron. X 2022, 10, 100103. [Google Scholar] [CrossRef]
- De la Paz, E.; Saha, T.; Del Caño, R.; Seker, S.; Kshirsagar, N.; Wang, J. Non-invasive monitoring of interstitial fluid lactate through an epidermal iontophoretic device. Talanta 2023, 254, 124122. [Google Scholar] [CrossRef]
Technique | Electrode | Platform | Linear Range (mM) | Detection Limit (mM) | Ref. |
---|---|---|---|---|---|
Amperometry | SPCE | PB/Fe3O4@PDA-LOx | 0.1–4.62 | 0.32 | [33] |
Amperometry | Pt | LOx/Nafion | 50–350 | 31 | [34] |
Amperometry | LSG | Pt/CHIT/LOx | 0.2–3.0 | 0.11 | [35] |
Amperometry | SPCE | rLIG/LOx | 2–16 | 0.007 | [36] |
Amperometry | SPAuE | PEDOT:PSS-PB-LOx(com) | ND | 0.0000783 | [37] |
PEDOT:PSS-PB-LOx(exp) | 0.000465 | ||||
Amperometry | CP | PB-Av-bLOx | 0.2–2 | 0.038 | [38] |
Amperometry | SPCE | PB/LOx/PFSI | 1–100 | 1 | [39] |
Chronoamperometry | SPCE | Thionine-methanol/LOx/CHIT | 1–10 | 1 | [40] |
Amperometry | SPCE | APTMS-MAPS/LOx-PB | 0.001–1 | 0.0005 | [41] |
Amperometry | AuE | LOx/CHIT/Fe3O4NPs/cMWCNT | 0.112–0.183 | 0.0006 | [42] |
EIS | GO nanosheets | PANHS/LOx | 1–80 | 1 | [43] |
Amperometry | CFM | Pt/Nafion-LOx | 0.05–0.5 | - | [44] |
DPV | SPCE | LOx/G-PU-rGO-PB | 5–25 | 0.4 | [55] |
Amperometry | SPCE | ISF/PB-LOx | 1.0–5.0 | 0.15 | [56] |
Amperometry | GCE | MWCNT-Av/bLOx | 0.100–0.700 | 0.033 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamborelli, A.; Mujica, M.L.; Amaranto, M.; Barra, J.L.; Rivas, G.; Godino, A.; Dalmasso, P. L-Lactate Electrochemical Biosensor Based on an Integrated Supramolecular Architecture of Multiwalled Carbon Nanotubes Functionalized with Avidin and a Recombinant Biotinylated Lactate Oxidase. Biosensors 2024, 14, 196. https://doi.org/10.3390/bios14040196
Tamborelli A, Mujica ML, Amaranto M, Barra JL, Rivas G, Godino A, Dalmasso P. L-Lactate Electrochemical Biosensor Based on an Integrated Supramolecular Architecture of Multiwalled Carbon Nanotubes Functionalized with Avidin and a Recombinant Biotinylated Lactate Oxidase. Biosensors. 2024; 14(4):196. https://doi.org/10.3390/bios14040196
Chicago/Turabian StyleTamborelli, Alejandro, Michael López Mujica, Marilla Amaranto, José Luis Barra, Gustavo Rivas, Agustina Godino, and Pablo Dalmasso. 2024. "L-Lactate Electrochemical Biosensor Based on an Integrated Supramolecular Architecture of Multiwalled Carbon Nanotubes Functionalized with Avidin and a Recombinant Biotinylated Lactate Oxidase" Biosensors 14, no. 4: 196. https://doi.org/10.3390/bios14040196
APA StyleTamborelli, A., Mujica, M. L., Amaranto, M., Barra, J. L., Rivas, G., Godino, A., & Dalmasso, P. (2024). L-Lactate Electrochemical Biosensor Based on an Integrated Supramolecular Architecture of Multiwalled Carbon Nanotubes Functionalized with Avidin and a Recombinant Biotinylated Lactate Oxidase. Biosensors, 14(4), 196. https://doi.org/10.3390/bios14040196