Optimizing Microfluidic Impedance Cytometry by Bypass Electrode Layout Design
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Electrode Design, Chip Fabrication, and the MIC System Setup
2.2.1. Electrode Design
2.2.2. Chip Fabrication
2.2.3. MIC System Setup
2.3. Experiment Design and Procedures
2.3.1. Comparison of Different Bypass Electrodes
2.3.2. Comparison of Different Areas of Grounding Bypass Electrode
2.3.3. Detection Capability of the Optimized Electrode Layout
2.4. Data Acquisition and Analysis Methods
3. Results and Discussion
3.1. The Comparison among No Bypass, Floating and Grounding Electrode Layout
3.1.1. Electric Field Simulation Result of Different Bypass Electrode Statuses
3.1.2. Statistical Results of Beads Detection
3.1.3. Shape Characteristics of the Event Pulse
3.2. Influence of Bypass Grounding Electrode Area
3.3. The Sensitivity of Particle Volume Detection Using GGG Layout Electrode
4. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feng, Y.; Cheng, Z.; Chai, H.; He, W.; Huang, L.; Wang, W. Neural network-enhanced real-time impedance flow cytometry for single-cell intrinsic characterization. Lab Chip 2022, 22, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Ayuso, J.M.; Virumbrales-Muñoz, M.; Lang, J.M.; Beebe, D.J. A role for microfluidic systems in precision medicine. Nat. Commun. 2022, 13, 3086. [Google Scholar] [CrossRef] [PubMed]
- Schraivogel, D.; Kuhn, T.M. High-speed fluorescence image–enabled cell sorting. Science 2022, 375, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Perry, S.; Norman, J.; Barbieri, J.; Brown, E.; Gelbard, H. Mitochondrial membrane potential probes and the proton gradient: A practical usage guide. BioTechniques 2011, 50, 98–115. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, U.; Chowdhury, P.; Subramaniam, S.; Jain, P.; Muthe, N.; Sheikh, F.; Banerjee, S.; Kumaran, V. A cartridge based Point-of-Care device for complete blood count. Sci. Rep. 2019, 9, 18583. [Google Scholar] [CrossRef]
- Rodriguez-Trujillo, R.; Castillo-Fernandez, O.; Garrido, M.; Arundell, M.; Valencia, A.; Gomila, G. High-speed particle detection in a micro-Coulter counter with two-dimensional adjustable aperture. Biosens. Bioelectron. 2008, 24, 290–296. [Google Scholar] [CrossRef]
- Simon, P.; Frankowski, M.; Bock, N.; Neukammer, J. Label-free whole blood cell differentiation based on multiple frequency AC impedance and light scattering analysis in a micro flow cytometer. Lab Chip 2016, 16, 2326–2338. [Google Scholar] [CrossRef]
- Xie, X.; Zhang, Z.; Ge, X.; Zhao, X.; Hao, L.; Cheng, Z.; Zhou, W.; Du, Y.; Wang, L.; Tian, F.; et al. Particle self-aligning, focusing, and electric impedance microcytometer device for label-free single cell morphology discrimination and yeast budding analysis. Anal. Chem. 2019, 91, 13398–13406. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Liu, X.; Yuan, Y.; Zhang, T.; Kiya, R.; Yang, Y.; Yamazaki, Y.; Kamikubo, H.; Tanaka, Y.; Li, M.; et al. Parallel impedance cytometry for real-time screening of bacterial single cells from nano- to microscale. ACS Sens. 2022, 7, 3700–3709. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, X.; Zhou, Z.; Han, Y.; Xiang, N.; Ni, Z. Microfluidic impedance cytometry for single-cell sensing: Review on electrode configurations. Talanta 2021, 233, 122571. [Google Scholar] [CrossRef]
- Liu, R.; Wang, N.; Asmare, N.; Sarioglu, A. Scaling code-multiplexed electrode networks for distributed Coulter detection in microfluidics. Biosens. Bioelectron. 2018, 120, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Sobahi, N.; Han, A. Impedance spectroscopy-based cell/particle position detection in microfluidic systems. Lab Chip 2017, 17, 1264–1269. [Google Scholar] [CrossRef] [PubMed]
- Bilican, I.; Guler, M.; Serhatlioglu, M.; Kirindi, T.; Elbuken, C. Focusing-free impedimetric differentiation of red blood cells and leukemia cells: A system optimization. Sens. Actuators B Chem. 2020, 307, 127531. [Google Scholar] [CrossRef]
- Kim, J.; Kwon, S.; Lee, J.; Kim, S.; Kim, D.; Kim, H.; Jang, N.; Wang, J.; Han, M.; Kong, S. High-throughput multi-gate microfluidic resistive pulse sensing for biological nanoparticle detection. Lab Chip 2023, 23, 1945–1953. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Gong, M.; Zhang, Z.; Dou, X.; Zhou, W.; Li, J.; Zhu, M.; Du, Y.; Xu, X. Optimization of an electrical impedance flow cytometry system and analysis of submicron particles and bacteria. Sens. Actuators B Chem. 2022, 360, 131432. [Google Scholar] [CrossRef]
- Zhu, J.; Feng, Y.; Chai, H.; Liang, F.; Cheng, Z.; Wang, W. Performance-enhanced clogging-free viscous sheath constriction impedance flow cytometry. Lab Chip 2023, 23, 2531–2539. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Shojaei-Baghini, E.; Azad, A.; Wang, C.; Sun, Y. High-throughput biophysical measurement of human red blood cells. Lab Chip 2012, 12, 2560–2567. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Berkel, C.; Green, N.; Morgan, H. Digital signal processing methods for impedance microfluidic cytometry. Microfluid. Nanofluid. 2009, 6, 179–187. [Google Scholar] [CrossRef]
- Ashley, B.; Hassan, U. Time-domain signal averaging to improve microparticles detection and enumeration accuracy in a microfluidic impedance cytometer. Biotechnol. Bioeng. 2021, 118, 4428–4440. [Google Scholar] [CrossRef]
- Daguerre, H.; Solsona, M.; Cottet, J.; Gauthier, M.; Renaud, P.; Bolopion, A. Positional dependence of particles and cells in microfluidic electrical impedance flow cytometry: Origin, challenges and opportunities. Lab Chip 2020, 20, 3665–3689. [Google Scholar] [CrossRef]
- Spencer, D.; Caselli, F.; Bisegna, P.; Morgan, H. High accuracy particle analysis using sheathless microfluidic impedance cytometry. Lab Chip 2016, 16, 2467–2473. [Google Scholar] [CrossRef] [PubMed]
- Reale, R.; Ninno, D.; Businaro, L.; Bisegna, P.; Caselli, F. Electrical measurement of cross-sectional position of particles flowing through a microchannel. Microfluid. Nanofluid. 2018, 22, 41. [Google Scholar] [CrossRef]
- Spencer, D.; Morgan, H. High-speed single-cell dielectric spectroscopy. ACS Sens. 2020, 5, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Ninno, D.; Errico, V.; Bertani, F.; Businaro, L.; Bisegna, P.; Caselli, F. Coplanar electrode microfluidic chip enabling accurate sheathless impedance cytometry. Lab Chip 2017, 17, 1158–1166. [Google Scholar] [CrossRef] [PubMed]
- Reale, R.; Ninno, D.; Businaro, L.; Bisegna, P.; Caselli, F. High-throughput electrical position detection of single flowing particles/cells with non-spherical shape. Lab Chip 2019, 19, 1818–1827. [Google Scholar] [CrossRef]
- Caselli, F.; Bisegna, P. Simulation and performance analysis of a novel high-accuracy sheathless microfluidic impedance cytometer with coplanar electrode layout. Med. Eng. Phys. 2017, 48, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Liang, M.; Ai, Y. Submicron-precision particle characterization in microfluidic impedance cytometry with double differential electrodes. Lab Chip 2021, 21, 2869–2880. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q.; Feng, Y.; Zhu, J.; Huang, L.; Wang, W. Floating-electrode-enabled impedance cytometry for single-cell 3D localization. Anal. Chem. 2023, 95, 6374–6382. [Google Scholar] [CrossRef]
- Caselli, F.; Bisegna, P. A simple and robust event-detection algorithm for single-cell impedance cytometry. IEEE Trans. Biomed. Eng. 2016, 63, 415–422. [Google Scholar] [CrossRef]
- Zhou, C.; Shen, H.; Feng, H.; Yan, Z.; Ji, B.; Yuan, X.; Zhang, R.; Chang, H. Enhancing signals of microfluidic impedance cytometry through optimization of microelectrode array. Electrophoresis 2022, 43, 2156–2164. [Google Scholar] [CrossRef]
- Xie, X.; Cheng, Z.; Xu, Y.; Liu, R.; Li, Q.; Cheng, J. A sheath-less electric impedance micro-flow cytometry device for rapid label-free cell classification and viability testing. Anal. Methods 2017, 9, 1201–1212. [Google Scholar] [CrossRef]
- Zhong, J.; Tang, Q.; Liang, M.; Ai, Y. Accurate profiling of blood components in microliter with position-insensitive coplanar electrodes-based cytometry. Sens. Actuators B Chem. 2022, 367, 132068. [Google Scholar] [CrossRef]
- Caselli, F.; Ninno, D.; Reale, R.; Businaro, L.; Bisegna, P. A novel wiring scheme for standard chips enabling high-accuracy impedance cytometry. Sens. Actuators B Chem. 2018, 256, 580–589. [Google Scholar] [CrossRef]
- Kwak, S.G.; Kim, J.H. Central limit theorem: The cornerstone of modern statistics. Korean J. Anesth. Anesthesiol. 2017, 70, 144–156. [Google Scholar] [CrossRef]
- Yasaki, H.; Yasui, T.; Yanagida, T.; Kaji, N.; Kanai, M.; Nagashima, K.; Kawai, T.; Baba, Y. Substantial expansion of detectable size range in ionic current sensing through pores by using a microfluidic bridge circuit. J. Am. Chem. Soc. 2017, 139, 14137–14142. [Google Scholar] [CrossRef]
- Coulter, W. High-speed automatic blood cell counter and cell size analyser. In Proceedings of the National Electronics Conference, Chicage, IL, USA, 3 October 1956; pp. 1034–1042. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, G.; Zhang, Z.; Du, M.; Wu, D.; Zhou, J.; Hao, T.; Xie, X. Optimizing Microfluidic Impedance Cytometry by Bypass Electrode Layout Design. Biosensors 2024, 14, 204. https://doi.org/10.3390/bios14040204
Wu G, Zhang Z, Du M, Wu D, Zhou J, Hao T, Xie X. Optimizing Microfluidic Impedance Cytometry by Bypass Electrode Layout Design. Biosensors. 2024; 14(4):204. https://doi.org/10.3390/bios14040204
Chicago/Turabian StyleWu, Guangzu, Zhiwei Zhang, Manman Du, Dan Wu, Junting Zhou, Tianteng Hao, and Xinwu Xie. 2024. "Optimizing Microfluidic Impedance Cytometry by Bypass Electrode Layout Design" Biosensors 14, no. 4: 204. https://doi.org/10.3390/bios14040204
APA StyleWu, G., Zhang, Z., Du, M., Wu, D., Zhou, J., Hao, T., & Xie, X. (2024). Optimizing Microfluidic Impedance Cytometry by Bypass Electrode Layout Design. Biosensors, 14(4), 204. https://doi.org/10.3390/bios14040204