Kiwi 4.0: In Vivo Real-Time Monitoring to Improve Water Use Efficiency in Yellow Flesh Actinidia chinensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plants and Irrigation
2.1.1. First Year (2019)
2.1.2. Second Year (2022)
2.2. OECT Sensor Device: Bioristor Preparation and Insertion in Trees
2.3. Measuring the Electric Activity of the Plants Using OECT
2.4. Physiological Measurements
3. Results
3.1. Trial of 2019
3.2. Trial of 2022
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raza, A.; Razzaq, A.; Mehmood, S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants 2019, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of Food Security and Nutrition in the World 2023; FAO: Rome, Italy; IFAD: Rome, Italy; UNICEF: New York, NY, USA; WFP: Rome, Italy; WHO: Geneva, Switzerland, 2023; ISBN 978-92-5-137226-5. [Google Scholar]
- Rajak, P.; Ganguly, A.; Adhikary, S.; Bhattacharya, S. Internet of Things and Smart Sensors in Agriculture: Scopes and Challenges. J. Agric. Food Res. 2023, 14, 100776. [Google Scholar] [CrossRef]
- Xu, J.; Gu, B.; Tian, G. Review of Agricultural IoT Technology. Artif. Intell. Agric. 2022, 6, 10–22. [Google Scholar] [CrossRef]
- Denaxa, N.-K.; Tsafouros, A.; Ntanos, E.; Kosta, A.; Roussos, P.A. Mitigation of High Solar Irradiance and Heat Stress in Kiwifruit during Summer via the Use of Alleviating Products with Different Modes of Action—Part 2 Effects on Fruit Quality, Organoleptic, and Phytochemical Properties at Harvest and after Storage. Agriculture 2023, 13, 701. [Google Scholar] [CrossRef]
- Savian, F.; Martini, M.; Ermacora, P.; Paulus, S.; Mahlein, A.-K. Prediction of the Kiwifruit Decline Syndrome in Diseased Orchards by Remote Sensing. Remote Sens. 2020, 12, 2194. [Google Scholar] [CrossRef]
- Gurbuz, I.; Ozkan, G.; Er, S. Exploring Kiwi Fruit Producers’ Climate Change Perceptions. Appl. Fruit Sci. 2024, 1–9. [Google Scholar] [CrossRef]
- Fishman, S.; Génard, M. A Biophysical Model of Fruit Growth: Simulation of Seasonal and Diurnal Dynamics of Mass. Plant Cell Environ. 1998, 21, 739–752. [Google Scholar] [CrossRef]
- Ferguson, A.r. Kiwifruit: A Botanical Review. In Horticultural Reviews; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1984; pp. 1–64. ISBN 978-1-118-06079-7. [Google Scholar]
- Dichio, B.; Montanaro, G.; Sofo, A.; Xiloyannis, C. Stem and Whole-Plant Hydraulics in Olive (Olea europaea) and Kiwifruit (Actinidia deliciosa). Trees 2013, 27, 183–191. [Google Scholar] [CrossRef]
- Lang, A. Xylem, Phloem and Transpiration Flows in Developing Apple Fruits. J. Exp. Bot. 1990, 41, 645–651. [Google Scholar] [CrossRef]
- Morandi, B.; Manfrini, L.; Losciale, P.; Zibordi, M.; Corelli Grappadelli, L. Changes in Vascular and Transpiration Flows Affect the Seasonal and Daily Growth of Kiwifruit (Actinidia deliciosa) Berry. Ann. Bot. 2010, 105, 913–923. [Google Scholar] [CrossRef]
- Greenspan, M.D.; Shackel, K.A.; Matthews, M.A. Developmental Changes in the Diurnal Water Budget of the Grape Berry Exposed to Water Deficits. Plant Cell Environ. 1994, 17, 811–820. [Google Scholar] [CrossRef]
- Morandi, B.; Manfrini, L.; Zibordi, M.; Corelli-Grappadelli, L.; Losciale, P. From Fruit Anatomical Features to Fruit Growth Strategy: Is There a Relationship? Acta Hortic. 2016, 1130, 185–192. [Google Scholar] [CrossRef]
- Torres-Ruiz, J.M.; Perulli, G.D.; Manfrini, L.; Zibordi, M.; Lopéz Velasco, G.; Anconelli, S.; Pierpaoli, E.; Corelli-Grappadelli, L.; Morandi, B. Time of Irrigation Affects Vine Water Relations and the Daily Patterns of Leaf Gas Exchanges and Vascular Flows to Kiwifruit (Actinidia deliciosa Chev.). Agric. Water Manag. 2016, 166, 101–110. [Google Scholar] [CrossRef]
- Gao, H.; Zhangzhong, L.; Zheng, W.; Chen, G. How Can Agricultural Water Production Be Promoted? A Review on Machine Learning for Irrigation. J. Clean. Prod. 2023, 414, 137687. [Google Scholar] [CrossRef]
- Abdelmajeed, A.Y.A.; Juszczak, R. Challenges and Limitations of Remote Sensing Applications in Northern Peatlands: Present and Future Prospects. Remote Sens. 2024, 16, 591. [Google Scholar] [CrossRef]
- Segarra, J.; Buchaillot, M.L.; Araus, J.L.; Kefauver, S.C. Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications. Agronomy 2020, 10, 641. [Google Scholar] [CrossRef]
- Dufil, G.; Bernacka-Wojcik, I.; Armada-Moreira, A.; Stavrinidou, E. Plant Bioelectronics and Biohybrids: The Growing Contribution of Organic Electronic and Carbon-Based Materials. Chem. Rev. 2022, 122, 4847–4883. [Google Scholar] [CrossRef] [PubMed]
- Lo Presti, D.; Di Tocco, J.; Massaroni, C.; Cimini, S.; De Gara, L.; Singh, S.; Raucci, A.; Manganiello, G.; Woo, S.L.; Schena, E.; et al. Current Understanding, Challenges and Perspective on Portable Systems Applied to Plant Monitoring and Precision Agriculture. Biosens. Bioelectron. 2023, 222, 115005. [Google Scholar] [CrossRef] [PubMed]
- Banerji, S.; Hõrak, H.; Torop, J.; Huynh, T.-P. Unravelling the Secrets of Plants: Emerging Wearable Sensors for Plants Signals and Physiology. Adv. Sens. Res. 2024, 3, 2300023. [Google Scholar] [CrossRef]
- Diacci, C.; Abedi, T.; Lee, J.W.; Gabrielsson, E.O.; Berggren, M.; Simon, D.T.; Niittylä, T.; Stavrinidou, E. Diurnal in Vivo Xylem Sap Glucose and Sucrose Monitoring Using Implantable Organic Electrochemical Transistor Sensors. iScience 2021, 24, 101966. [Google Scholar] [CrossRef]
- Coppedè, N.; Janni, M.; Bettelli, M.; Maida, C.L.; Gentile, F.; Villani, M.; Ruotolo, R.; Iannotta, S.; Marmiroli, N.; Marmiroli, M.; et al. An in Vivo Biosensing, Biomimetic Electrochemical Transistor with Applications in Plant Science and Precision Farming. Sci. Rep. 2017, 7, 16195. [Google Scholar] [CrossRef] [PubMed]
- Manfredi, R.; Vurro, F.; Janni, M.; Bettelli, M.; Gentile, F.; Zappettini, A.; Coppedè, N. Long-Term Stability in Electronic Properties of Textile Organic Electrochemical Transistors for Integrated Applications. Materials 2023, 16, 1861. [Google Scholar] [CrossRef] [PubMed]
- Vurro, F.; Croci, M.; Impollonia, G.; Marchetti, E.; Gracia-Romero, A.; Bettelli, M.; Araus, J.L.; Amaducci, S.; Janni, M. Field Plant Monitoring from Macro to Micro Scale: Feasibility and Validation of Combined Field Monitoring Approaches from Remote to in Vivo to Cope with Drought Stress in Tomato. Plants 2023, 12, 3851. [Google Scholar] [CrossRef] [PubMed]
- Janni, M.; Coppede, N.; Bettelli, M.; Briglia, N.; Petrozza, A.; Summerer, S.; Vurro, F.; Danzi, D.; Cellini, F.; Marmiroli, N.; et al. In Vivo Phenotyping for the Early Detection of Drought Stress in Tomato. Plant Phenomics 2019, 2019, 6168209. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Lu, M.; Wang, Y.; Wang, Y.; Liu, Z.; Chen, S. Response Mechanism of Plants to Drought Stress. Horticulturae 2021, 7, 50. [Google Scholar] [CrossRef]
- Vurro, F.; Manfredi, R.; Bettelli, M.; Bocci, G.; Cologni, A.L.; Cornali, S.; Reggiani, R.; Marchetti, E.; Coppedè, N.; Caselli, S.; et al. In Vivo Sensing to Monitor Tomato Plants in Field Conditions and Optimize Crop Water Management. Precis. Agric. 2023, 24, 2479–2499. [Google Scholar] [CrossRef]
- Bettelli, M.; Vurro, F.; Pecori, R.; Janni, M.; Coppedè, N.; Zappettini, A.; Tessera, D. Classification and Forecasting of Water Stress in Tomato Plants Using Bioristor Data. IEEE Access 2023, 11, 34795–34807. [Google Scholar] [CrossRef]
- Vurro, F.; Marchetti, E.; Bettelli, M.; Manfrini, L.; Finco, A.; Sportolaro, C.; Coppedè, N.; Palermo, N.; Tommasini, M.G.; Zappettini, A.; et al. Application of the OECT-Based In Vivo Biosensor Bioristor in Fruit Tree Monitoring to Improve Agricultural Sustainability. Chemosensors 2023, 11, 374. [Google Scholar] [CrossRef]
- Bernards, D.A.; Malliaras, G.G. Steady-State and Transient Behavior of Organic Electrochemical Transistors. Adv. Funct. Mater. 2007, 17, 3538–3544. [Google Scholar] [CrossRef]
- McCutchan, H.; Shackel, K.A. Stem-Water Potential as a Sensitive Indicator of Water Stress in Prune Trees (Prunus domestica L. Cv. French). J. Am. Soc. Hortic. Sci. 1992, 117, 607–611. [Google Scholar] [CrossRef]
- Buono, V.; Mastroleo, M.; Lucchi, C.; D’Amato, G.; Manfrini, L.; Morandi, B. Field-Testing of a Decision Support System (DSS) to Optimize Irrigation Management of Kiwifruit in Italy: A Comparison with Current Farm Management. Acta Hortic. 2022, 1335, 355–362. [Google Scholar] [CrossRef]
- Idso, S.B. Non-Water-Stressed Baselines: A Key to Measuring and Interpreting Plant Water Stress. Agric. Meteorol. 1982, 27, 59–70. [Google Scholar] [CrossRef]
- Chikov, V.I.; Bakirova, G.G.; Batasheva, S.N.; Sergeeva, A.A. Effect of Defoliation or Excision of Growing Ax-illary Shoots on the Composition of Labeled Products of Photosynthesis in the Leaves and Xylem Sap of Kid-ney Bean. Russ J Plant Physiol 2005, 52, 459–462. [Google Scholar] [CrossRef]
- Briske, D.; Richards, J. Physiology of Plants Recovering from Defoliation. In Proceedings of the XVII International Grassland Congress, Palmerston North, New Zealand, 8–21 February 1993; pp. 85–94. [Google Scholar]
- Anderegg, W.R.L.; Wolf, A.; Arango-Velez, A.; Choat, B.; Chmura, D.J.; Jansen, S.; Kolb, T.; Li, S.; Meinzer, F.; Pita, P.; et al. Plant Water Potential Improves Prediction of Empirical Stomatal Models. PLoS ONE 2017, 12, e0185481. [Google Scholar] [CrossRef] [PubMed]
- Klein, T. The Variability of Stomatal Sensitivity to Leaf Water Potential across Tree Species Indicates a Continuum between Isohydric and Anisohydric Behaviours. Funct. Ecol. 2014, 28, 1313–1320. [Google Scholar] [CrossRef]
- Meinzer, F.C.; Woodruff, D.R.; Marias, D.E.; Smith, D.D.; McCulloh, K.A.; Howard, A.R.; Magedman, A.L. Mapping ‘Hydroscapes’ along the Iso- to Anisohydric Continuum of Stomatal Regulation of Plant Water Status. Ecol. Lett. 2016, 19, 1343–1352. [Google Scholar] [CrossRef]
- de Lima, C.Z.; Buzan, J.R.; Moore, F.C.; Baldos, U.L.C.; Huber, M.; Hertel, T.W. Heat Stress on Agricultural Workers Exacerbates Crop Impacts of Climate Change. Environ. Res. Lett. 2021, 16, 044020. [Google Scholar] [CrossRef]
- Wang, X.; Xing, Y. Evaluation of the Effects of Irrigation and Fertilization on Tomato Fruit Yield and Quality: A Principal Component Analysis. Sci. Rep. 2017, 7, 350. [Google Scholar] [CrossRef]
- Urban, O.; Janouš, D.; Acosta, M.; Czerný, R.; Marková, I.; Navrátil, M.; Pavelka, M.; Pokorný, R.; Šprtová, M.; Zhang, R.; et al. Ecophysiological Controls over the Net Ecosystem Exchange of Mountain Spruce Stand. Comparison of the Response in Direct vs. Diffuse Solar Radiation. Glob. Change Biol. 2007, 13, 157–168. [Google Scholar] [CrossRef]
- Berger, B.; Parent, B.; Tester, M. High-Throughput Shoot Imaging to Study Drought Responses. J. Exp. Bot. 2010, 61, 3519–3528. [Google Scholar] [CrossRef]
- Pratima, P.; Sharma, N.; Sharma, D.P. Canopy Temperature and Water Relations of Kiwifruit Cultivar Allison in Response to Deficit Irrigation and in Situ Moisture Conservation. Curr. Sci. 2016, 111, 375–379. [Google Scholar] [CrossRef]
- Morandi, B.; Losciale, P.; Manfrini, L.; Pierpaoli, E.; Zibordi, M.; Corelli Grappadelli, L. Short-Period Changes in Weather Conditions Affect Xylem, but Not Phloem Flows to Young Kiwifruit (Actinidia deliciosa) Berries. Sci. Hortic. 2012, 142, 74–83. [Google Scholar] [CrossRef]
- Poblete-Echeverría, C.; Espinace, D.; Sepúlveda-Reyes, D.; Zuñiga, M.; Sanchez, M. Analysis of Crop Water Stress Index (CWSI) for Estimating Stem Water Potential in Grapevines: Comparison between Natural Reference and Baseline Approaches. Acta Hortic. 2017, 1150, 189–194. [Google Scholar] [CrossRef]
- Okello, R.C.O.; Heuvelink, E.; de Visser, P.H.B.; Struik, P.C.; Marcelis, L.F.M. What Drives Fruit Growth? Funct.-tional Plant Biol. 2015, 42, 817–827. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Peng, Y.; Yang, Q.; Wang, X.; Cui, N. Determining Optimal Deficit Irrigation and Fertilization to Increase Mango Yield, Quality, and WUE in a Dry Hot Environment Based on TOPSIS. Agric. Water Manag. 2021, 245, 106650. [Google Scholar] [CrossRef]
- Pérez-Pérez, J.G.; Robles, J.M.; Botía, P. Effects of Deficit Irrigation in Different Fruit Growth Stages on ‘Star Ruby’ Grapefruit Trees in Semi-Arid Conditions. Agric. Water Manag. 2014, 133, 44–54. [Google Scholar] [CrossRef]
- Zhong, Y.; Fei, L.; Li, Y.; Zeng, J.; Dai, Z. Response of Fruit Yield, Fruit Quality, and Water Use Efficiency to Water Deficits for Apple Trees under Surge-Root Irrigation in the Loess Plateau of China. Agric. Water Manag. 2019, 222, 221–230. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vurro, F.; Manfrini, L.; Boini, A.; Bettelli, M.; Buono, V.; Caselli, S.; Gioli, B.; Zappettini, A.; Palermo, N.; Janni, M. Kiwi 4.0: In Vivo Real-Time Monitoring to Improve Water Use Efficiency in Yellow Flesh Actinidia chinensis. Biosensors 2024, 14, 226. https://doi.org/10.3390/bios14050226
Vurro F, Manfrini L, Boini A, Bettelli M, Buono V, Caselli S, Gioli B, Zappettini A, Palermo N, Janni M. Kiwi 4.0: In Vivo Real-Time Monitoring to Improve Water Use Efficiency in Yellow Flesh Actinidia chinensis. Biosensors. 2024; 14(5):226. https://doi.org/10.3390/bios14050226
Chicago/Turabian StyleVurro, Filippo, Luigi Manfrini, Alexandra Boini, Manuele Bettelli, Vito Buono, Stefano Caselli, Beniamino Gioli, Andrea Zappettini, Nadia Palermo, and Michela Janni. 2024. "Kiwi 4.0: In Vivo Real-Time Monitoring to Improve Water Use Efficiency in Yellow Flesh Actinidia chinensis" Biosensors 14, no. 5: 226. https://doi.org/10.3390/bios14050226
APA StyleVurro, F., Manfrini, L., Boini, A., Bettelli, M., Buono, V., Caselli, S., Gioli, B., Zappettini, A., Palermo, N., & Janni, M. (2024). Kiwi 4.0: In Vivo Real-Time Monitoring to Improve Water Use Efficiency in Yellow Flesh Actinidia chinensis. Biosensors, 14(5), 226. https://doi.org/10.3390/bios14050226