Double-Sided Tape in Microfluidics: A Cost-Effective Method in Device Fabrication
Abstract
:1. Advancements in Microfluidics: Revolutionizing Diagnostics
2. Microfluidic Device Fabrication
2.1. Material Selection: Properties, Techniques, and Applications
2.2. Conventional Fabrication: From Photolithography to Soft Lithography and Beyond
2.3. Advancements in Rapid Fabrication Methods
2.4. Bonding Techniques for Microfluidic Channel Sealing
3. Double-Sided Tape: A Versatile and Cost-Effective Approach for Microfluidic Channel Fabrication and Bonding
3.1. Applications of Using Double-Sided Tape
3.1.1. Advanced Research Double-Sided Tape for Microfluidic Device Fabrication/Bonding
3.1.2. 3M Double-Sided Tape for Microfluidic Device Fabrication/Bonding
3.1.3. Other Double-Sided Tape Brands for Microfluidic Device Fabrication/Bonding
3.2. Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niculescu, A.G.; Chircov, C.; Birca, A.C.; Grumezescu, A.M. Fabrication and Applications of Microfluidic Devices: A Review. Int. J. Mol. Sci. 2021, 22, 2011. [Google Scholar] [CrossRef]
- Fiorini, G.S.; Chiu, D.T. Disposable microfluidic devices: Fabrication, function, and application. BioTechniques 2005, 38, 3. [Google Scholar] [CrossRef] [PubMed]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef]
- Convery, N.; Gadegaard, N. 30 years of microfluidics. Micro Nano Eng. 2019, 2, 76–91. [Google Scholar] [CrossRef]
- What Is the History of Microfluidics? Available online: https://www.fluigent.com/resources-support/expertise/expertise-reviews/what-is-microfluidics/what-is-the-history-of-microfluidics/ (accessed on 8 January 2024).
- Kumar, A.; Parihar, A.; Panda, U.; Parihar, D.S. Microfluidics-Based Point-of-Care Testing (POCT) Devices in Dealing with Waves of COVID-19 Pandemic: The Emerging Solution. ACS Appl. Bio Mater. 2022, 5, 2046–2068. [Google Scholar] [CrossRef]
- Jamiruddin, M.R.; Meghla, B.A.; Islam, D.Z.; Tisha, T.A.; Khandker, S.S.; Khondoker, M.U.; Haq, M.A.; Adnan, N.; Haque, M. Microfluidics Technology in SARS-CoV-2 Diagnosis and Beyond: A Systematic Review. Life 2022, 12, 5. [Google Scholar] [CrossRef] [PubMed]
- Berkenbrock, J.A.; Grecco-Machado, R.; Achenbach, S. Microfluidic devices for the detection of viruses: Aspects of emergency fabrication during the COVID-19 pandemic and other outbreaks. Proc. Math. Phys. Eng. Sci. 2020, 476, 20200398. [Google Scholar] [CrossRef]
- Global Microfluidics Market Size, Share & Growth Report. 2030. Available online: https://www.marketsandmarkets.com/Market-Reports/microfluidics-market-1305.html (accessed on 8 January 2024).
- Microfluidics Market by Product, Application, End User & Region—Global Forecast to 2026. Available online: https://www.marketsandmarkets.com/Market-Reports/microfluidics-market-1305.html (accessed on 8 January 2024).
- Sia, S.K.; Kricka, L.J. Microfluidics and point-of-care testing. Lab Chip 2008, 8, 1982–1983. [Google Scholar] [CrossRef]
- Future of Medicine: Lab-on-a-Chip Devices Starting to Make an Impact. Available online: https://www.nhlbi.nih.gov/news/2021/future-medicine-lab-chip-devices-starting-make-impact (accessed on 8 January 2024).
- Yang, S.M.; Lv, S.; Zhang, W.; Cui, Y. Microfluidic Point-of-Care (POC) Devices in Early Diagnosis: A Review of Opportunities and Challenges. Sensors 2022, 22, 1620. [Google Scholar] [CrossRef]
- Microvalve. Available online: https://en.wikipedia.org/wiki/Microvalve (accessed on 8 January 2024).
- Micropump. Available online: https://en.wikipedia.org/wiki/Micropump (accessed on 8 January 2024).
- Microfluidics: A General Overview of Microfluidics. Available online: https://www.elveflow.com/microfluidic-reviews/general-microfluidics/a-general-overview-of-microfluidics/#:~:text=Microfluidic%20devices%20exploit%20the%20physical,the%20global%20fees%20of%20applications (accessed on 8 January 2024).
- Definitions. Available online: https://www.ufluidix.com/resources/definitions/ (accessed on 8 January 2024).
- Scott, S.M.; Ali, Z. Fabrication Methods for Microfluidic Devices: An Overview. Micromachines 2021, 12, 319. [Google Scholar] [CrossRef]
- Nielsen, J.B.; Hanson, R.L.; Almughamsi, H.M.; Pang, C.; Fish, T.R.; Woolley, A.T. Microfluidics: Innovations in Materials and Their Fabrication and Functionalization. Anal. Chem. 2020, 92, 150–168. [Google Scholar] [CrossRef]
- Raj, M.K.; Chakraborty, S. PDMS microfluidics: A mini review. J. Appl. Polym. Sci. 2020, 137, 48958. [Google Scholar] [CrossRef]
- Friend, J.; Yeo, L. Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidics 2010, 4, 026502. [Google Scholar] [CrossRef] [PubMed]
- Walsh, D.I.; Kong, D.S.; Murthy, S.K.; Carr, P.A. Enabling Microfluidics: From Clean Rooms to Makerspaces. Trends Biotechnol. 2017, 35, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Cargou, S. Introduction to PDMS Soft-Lithography and Polymer Molding for Microfluidics. Available online: https://www.elveflow.com/microfluidic-reviews/soft-lithography-microfabrication/introduction-about-soft-lithography-and-polymer-molding-for-microfluidic/ (accessed on 8 January 2024).
- Xometry, T. Types of 3D Printer Filaments. Available online: https://www.xometry.com/resources/3d-printing/types-of-3d-printer-filaments/ (accessed on 8 January 2024).
- Cheon, J.; Kim, S. Fabrication and Demonstration of a 3D-printing/PDMS Integrated Microfluidic Device. Recent Prog. Mater. 2022, 4, 002. [Google Scholar] [CrossRef]
- Cheon, J.; Kim, S. Intermediate layer-based bonding techniques for polydimethylsiloxane/digital light processing 3D-printed microfluidic devices. J. Micromech. Microeng. 2019, 29, 095005. [Google Scholar] [CrossRef]
- Cargou, S. Different Microfluidic Fabrication Techniques. Available online: https://www.elveflow.com/microfluidic-reviews/soft-lithography-microfabrication/soft-lithography-fabrication-technics/ (accessed on 8 January 2024).
- Bedolla, M. An Overview of the Photolithography Process. Available online: https://www.platypustech.com/an-overview-of-the-photolithography-process (accessed on 8 January 2024).
- Photolithography: Patterned Surfaces. Available online: https://openwetware.org/wiki/Photolithography:Patterned_Surfaces (accessed on 8 January 2024).
- Chin, C.D.; Linder, V.; Sia, S.K. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 2012, 12, 2118–2134. [Google Scholar] [CrossRef] [PubMed]
- Kitiara Griffin, D.P. 3D printed microfluidics for bioanalysis: A review of recent advancements and applications. TrAC Trends Anal. Chem. 2023, 158, 116892. [Google Scholar] [CrossRef]
- What Is FDM (Fused Deposition Modeling) 3D Printing? Available online: https://www.hubs.com/knowledge-base/what-is-fdm-3d-printing/ (accessed on 8 January 2024).
- Ahart, M. Types of 3D Printing Technology. Available online: https://www.protolabs.com/resources/blog/types-of-3d-printing/ (accessed on 8 January 2024).
- Prior, M. The Different Types of Resins Available for 3D Printing. Available online: https://www.3dnatives.com/en/different-types-of-resins-3d-printing-281220225/ (accessed on 8 January 2024).
- FDM vs. SLA: Compare Filament and Resin 3D Printers. Available online: https://formlabs.com/blog/fdm-vs-sla-compare-types-of-3d-printers/ (accessed on 8 January 2024).
- Guide to Stereolithography (SLA) 3D Printing. Available online: https://formlabs.com/blog/ultimate-guide-to-stereolithography-sla-3d-printing/ (accessed on 8 January 2024).
- Xometry, T. All About Digital Light Process (DLP) 3D Printing. Available online: https://www.xometry.com/resources/3d-printing/digital-light-process-dlp/ (accessed on 8 January 2024).
- Nielsen, A.V.; Beauchamp, M.J.; Nordin, G.P.; Woolley, A.T. 3D Printed Microfluidics. Annu. Rev. Anal. Chem. 2020, 13, 45–65. [Google Scholar] [CrossRef]
- Sochol, R.D.; Sweet, E.; Glick, C.C.; Wu, S.-Y.; Yang, C.; Restaino, M.; Lin, L. 3D printed microfluidics and microelectronics. Microelectron. Eng. 2018, 189, 52–68. [Google Scholar] [CrossRef]
- Naghash, T.H.; Haghgoo, A.M.; Bijarchi, M.A.; Ghassemi, M.; Shafii, M.B. Performance of microball micromixers using a programmable magnetic system by applying novel movement patterns. Sens. Actuators B Chem. 2024, 406, 135403. [Google Scholar] [CrossRef]
- Kara, A.; Vassiliadou, A.; Ongoren, B.; Keeble, W.; Hing, R.; Lalatsa, A.; Serrano, D.R. Engineering 3D Printed Microfluidic Chips for the Fabrication of Nanomedicines. Pharmaceutics 2021, 13, 2134. [Google Scholar] [CrossRef] [PubMed]
- Prabhakar, P.; Sen, R.K.; Dwivedi, N.; Khan, R.; Solanki, P.R.; Srivastava, A.K.; Dhand, C. 3D-Printed Microfluidics and Potential Biomedical Applications. Front. Nanotechnol. 2021, 3, 3627–3637. [Google Scholar] [CrossRef]
- Razavi Bazaz, S.; Rouhi, O.; Raoufi, M.A.; Ejeian, F.; Asadnia, M.; Jin, D.; Ebrahimi Warkiani, M. 3D Printing of Inertial Microfluidic Devices. Sci. Rep. 2020, 10, 5929. [Google Scholar] [CrossRef]
- Neuville, A.; Renaud, L.; Luu, T.T.; Minde, M.W.; Jettestuen, E.; Vinningland, J.L.; Hiorth, A.; Dysthe, D.K. Xurography for microfluidics on a reactive solid. Lab Chip 2017, 17, 293–303. [Google Scholar] [CrossRef]
- Islam, M.; Natu, R.; Martinez-Duarte, R. A study on the limits and advantages of using a desktop cutter plotter to fabricate microfluidic networks. Microfluid. Nanofluid. 2015, 19, 973–985. [Google Scholar] [CrossRef]
- Laser Cutting—Cutting Processes. Available online: https://www.twi-global.com/technical-knowledge/job-knowledge/cutting-processes-laser-cutting-052.aspx (accessed on 8 January 2024).
- Gale, B.; Jafek, A.; Lambert, C.; Goenner, B.; Moghimifam, H.; Nze, U.; Kamarapu, S. A Review of Current Methods in Microfluidic Device Fabrication and Future Commercialization Prospects. Inventions 2018, 3, 60. [Google Scholar] [CrossRef]
- Khashayar, P.; Amoabediny, G.; Larijani, B. Rapid prototyping of microfluidic chips using laser-cut double-sided tape for electrochemical biosensors. J. Braz. Soc. Mech. Sci. Eng. 2016, 39, 1469–1477. [Google Scholar] [CrossRef]
- Nath, P.; Fung, D.; Kunde, Y.A.; Zeytun, A.; Branch, B.; Goddard, G. Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes. Lab Chip 2010, 10, 2286–2291. [Google Scholar] [CrossRef]
- Patko, D.; Mártonfalvi, Z.; Kovacs, B.; Vonderviszt, F.; Kellermayer, M.; Horvath, R. Microfluidic channels laser-cut in thin double-sided tapes: Cost-effective biocompatible fluidics in minutes from design to final integration with optical biochips. Sens. Actuators B 2014, 196, 352–356. [Google Scholar] [CrossRef]
- Martinez-Lopez, J.I.; Mojica, M.; Rodriguez, C.A.; Siller, H.R. Xurography as a Rapid Fabrication Alternative for Point-of-Care Devices: Assessment of Passive Micromixers. Sensors 2016, 16, 705. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.L.; Urbaczek, A.C.; Zeferino Ribeiro de Souza, F.; Augusto Gomes Garrido Carneiro Leao, P.; Rodrigues Perussi, J.; Carrilho, E. Rapid Fabrication of Microfluidic Devices for Biological Mimicking: A Survey of Materials and Biocompatibility. Micromachines 2021, 12, 346. [Google Scholar] [CrossRef] [PubMed]
- What Is Laser Cutting?—A Definitive Guide to the Process. Available online: https://www.twi-global.com/technical-knowledge/faqs/what-is-laser-cutting (accessed on 8 January 2024).
- Laser Cutting. Available online: https://en.wikipedia.org/wiki/Laser_cutting (accessed on 8 January 2024).
- Shahriari, S.; Patel, V.; Selvaganapathy, P.R. Xurography as a tool for fabrication of microfluidic devices. J. Micromech. Microeng. 2023, 33, 083002. [Google Scholar] [CrossRef]
- What Are the Methods Used in Microfluidics for Sealing Your Microchips? Available online: https://www.blackholelab-soft-lithography.com/bonding-techniques-in-microfluidics (accessed on 8 January 2024).
- Li, J.; Liang, C.; Zhang, H.; Liu, C. Reliable and high quality adhesive bonding for microfluidic devices. MIicro Nano Lett. 2017, 12, 90–94. [Google Scholar] [CrossRef]
- Microfluidic Bonding Technology Guide for Polymer Consumables. Available online: https://www.flowalliance.com/post/microfluidic-bonding-technology-guide-for-polymer-consumables (accessed on 8 January 2024).
- Kiran, G.; Tsao, C. Recent Advances in Thermoplastic Microfluidic Bonding. Micromachines 2022, 13, 486. [Google Scholar] [CrossRef] [PubMed]
- Trinh, K.T.L.; Thai, D.A.; Lee, N.Y. Bonding Strategies for Thermoplastics Applicable for Bioanalysis and Diagnostics. Micromachines 2022, 13, 1503. [Google Scholar] [CrossRef] [PubMed]
- Sypabekova, M.; Hagemann, A.; Kleiss, J.; Morlan, C.; Kim, S. Optimizing an Optical Cavity-Based Biosensor for Enhanced Sensitivity. IEEE Sens. J. 2023, 23, 25911–25918. [Google Scholar] [CrossRef]
- Wan, A.M.; Moore, T.A.; Young, E.W. Solvent Bonding for Fabrication of PMMA and COP Microfluidic Devices. J. Visualized Exp. 2017, 119, 55175. [Google Scholar] [CrossRef] [PubMed]
- Michael, C. Biocompatible Bonding of Microfluidic Consumables. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjnm6q3k4GGAxUq5ckDHYuMDZAQFnoECBYQAQ&url=https%3A%2F%2Fwww.micronit.com%2Fdam%2Fjcr%3Aef1d6e73-0022-45e5-89ab-c953f9944bd9%2FWhitepaper%2520Biocompatible%2520bonding.pdf&usg=AOvVaw3so5-RW0JFbb3f9XNhYgDm&opi=89978449 (accessed on 8 January 2024).
- Shu Pei Ng, F.E.W.; Tay, N.B. Low Distortion Solvent Bonding of Microfluidic Chips. Procedia Eng. 2016, 141, 130–137. [Google Scholar]
- Matsuura, Y.; Takehira, M.; Joti, Y.; Ogasahara, K.; Tanaka, T.; Ono, N.; Kunishima, N.; Yutani, K. Thermodynamics of protein denaturation at temperatures over 100 °C: CutA1 mutant proteins substituted with hydrophobic and charged residues. Sci. Rep. 2015, 5, 15545. [Google Scholar] [CrossRef]
- Thompson, C.S.; Abate, A.R. Adhesive-based bonding technique for PDMS microfluidic devices. Lab Chip 2013, 13, 632–635. [Google Scholar] [CrossRef] [PubMed]
- Serra, M.; Pereiro, I.; Yamada, A.; Viovy, J.L.; Descroix, S.; Ferraro, D. A simple and low-cost chip bonding solution for high pressure, high temperature and biological applications. Lab Chip 2017, 17, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Dabaghi, M.; Tiessen, N.; Cao, Q.; Chandiramohan, A.; Saraei, N.; Kim, Y.; Gupta, T.; Selvaganapathy, P.R.; Hirota, J.A. Adhesive-Based Fabrication Technique for Culture of Lung Airway Epithelial Cells with Applications in Cell Patterning and Microfluidics. ACS Biomater. Sci. Eng. 2021, 7, 5301–5314. [Google Scholar] [CrossRef]
- The Benefits of Tape in Microfluidic Devices: Tape’s New “Role” in Health Care. Available online: https://www.adhesiveapps.com/tape-in-microfluidic-devices/ (accessed on 8 January 2024).
- Fan, Y.; Liu, S.; He, J.; Gao, K.; Zhang, Y. Rapid prototyping of flexible multilayer microfluidic devices using polyester sealing film. Microsyst. Technol. 2017, 24, 2847–2852. [Google Scholar] [CrossRef]
- Jang, I.; Carrao, D.B.; Menger, R.F.; Moraes de Oliveira, A.R.; Henry, C.S. Pump-Free Microfluidic Rapid Mixer Combined with a Paper-Based Channel. ACS Sens. 2020, 5, 2230–2238. [Google Scholar] [CrossRef]
- Carrell, C.; Kava, A.; Nguyen, M.; Menger, R.; Munshi, Z.; Call, Z.; Nussbaum, M.; Henry, C. Beyond the lateral flow assay: A review of paper-based microfluidics. Microelectron. Eng. 2019, 206, 45–54. [Google Scholar] [CrossRef]
- Martinez, A.W.; Phillips, S.T.; Whitesides, G.M. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc. Natl. Acad. Sci. USA 2008, 105, 19606–19611. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.W.; Phillips, S.T.; Nie, Z.; Cheng, C.M.; Carrilho, E.; Wiley, B.J.; Whitesides, G.M. Programmable diagnostic devices made from paper and tape. Lab Chip 2010, 10, 2499–2504. [Google Scholar] [CrossRef] [PubMed]
- Barrios, C.A. Pressure Sensitive Adhesive Tape: A Versatile Material Platform for Optical Sensors. Sensors 2020, 20, 5303. [Google Scholar] [CrossRef]
- Panraksa, Y.; Jang, I.; Carrell, C.S.; Amin, A.G.; Chailapakul, O.; Chatterjee, D.; Henry, C.S. Simple manipulation of enzyme-linked immunosorbent assay (ELISA) using an automated microfluidic interface. Anal. Methods 2022, 14, 1774–1781. [Google Scholar] [CrossRef]
- Rivet, C.; Lee, H.; Hirsch, A.; Hamilton, S.; Lu, H. Microfluidics for medical diagnostics and biosensors. Chem. Eng. Sci. 2011, 66, 1490–1507. [Google Scholar] [CrossRef]
- Kratz, S.R.A.; Eilenberger, C.; Schuller, P.; Bachmann, B.; Spitz, S.; Ertl, P.; Rothbauer, M. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems. Sci. Rep. 2019, 9, 9287. [Google Scholar] [CrossRef] [PubMed]
- 3M. Thin Bonding: Double Coated & Adhesive Transfer Tapes. Available online: https://www.3m.com/3M/en_US/bonding-and-assembly-us/double-sided-tape/thin-bonding-tape/ (accessed on 8 January 2024).
- Fleenor, S. Adhesive Tape Types: 5 Constructions. Available online: https://www.walkertapeconverting.com/adhesive-tape-types-5-constructions/ (accessed on 8 January 2024).
- Lucas, K.; Oh, J.; Hoelzl, J.; Weissleder, R. Cellular point-of-care diagnostics using an inexpensive layer-stack microfluidic device. Lab Chip 2022, 22, 2145–2154. [Google Scholar] [CrossRef] [PubMed]
- Chambers, S. The Basics of Pressure Sensitive Adhesive Tape. Available online: https://www.strouse.com/blog/the-basics-of-pressure-sensitive-adhesive-tape (accessed on 8 January 2024).
- Ira, S. Rubber vs. Acrylic Based Adhesives. Available online: https://www.hookandloop.com/blog/rubber-vs-acrylic-based-adhesives (accessed on 8 January 2024).
- Silicone vs. Acrylic Adhesive—A Comparison. Available online: http://www.industrialrubbergoods.com/articles/silicone-acrylic-adhesive.html (accessed on 8 January 2024).
- Acrylic PMMA Chemical Compatiblity Chart. Available online: https://www.industrialspec.com/resources/acrylic-aka-pmma-chemical-compatiblity-chart/ (accessed on 8 January 2024).
- Chemical Compatibility Chart. Available online: https://jehbco.com.au/products/chemical-compatibility-chart/ (accessed on 8 January 2024).
- Yuen, P.K.; Goral, V.N. Low-cost rapid prototyping of flexible microfluidic devices using a desktop digital craft cutter. Lab Chip 2010, 10, 384–387. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Braña, Y.; Etxebarria-Elezgarai, J.; Ruiz de Larrinaga-Vicente, L.; Benito-Lopez, F.; Basabe-Desmonts, L. Modular micropumps fabricated by 3D printed technologies for polymeric microfluidic device applications. Sens. Actuators B 2021, 342, 129991. [Google Scholar] [CrossRef]
- Etxebarria-Elezgarai, J.; Alvarez-Braña, Y.; Garoz-Sanchez, R.; Benito-Lopez, F.; Basabe-Desmonts, L. Large-Volume Self-Powered Disposable Microfluidics by the Integration of Modular Polymer Micropumps with Plastic Microfluidic Cartridges. Ind. Eng. Chem. Res. 2020, 59, 22485–22491. [Google Scholar] [CrossRef]
- Hassanpour-Tamrin, S.; Sanati-Nezhad, A.; Sen, A. A simple and low-cost approach for irreversible bonding of polymethylmethacrylate and polydimethylsiloxane at room temperature for high-pressure hybrid microfluidics. Sci. Rep. 2021, 11, 4821. [Google Scholar] [CrossRef] [PubMed]
- Buzzin, A.; Iannascoli, L.; Muzi, M.; Veroli, A.; Caputo, D.; de Cesare, G.; Maiolo, L.; Maita, F.; Ricci, G. Integrated 3D Microfluidic Device for Impedance Spectroscopy in Lab-on-Chip Systems. In Proceedings of the 2019 IEEE 8th International Workshop on Advances in Sensors and Interfaces, Otranto, Italy, 13–14 June 2019; pp. 224–227. [Google Scholar] [CrossRef]
- Nascetti, A.; Mirasoli, M.; Marchegiani, E.; Zangheri, M.; Costantini, F.; Porchetta, A.; Iannascoli, L.; Lovecchio, N.; Caputo, D.; de Cesare, G.; et al. Integrated chemiluminescence-based lab-on-chip for detection of life markers in extraterrestrial environments. Biosens. Bioelectron. 2019, 123, 195–203. [Google Scholar] [CrossRef]
- Stallcop, L.E.; Alvarez-Garcia, Y.R.; Reyes-Ramos, A.M.; Ramos-Cruz, K.P.; Morgan, M.M.; Shi, Y.; Li, L.; Beebe, D.J.; Domenech, M.; Warrick, J.W. Razor-printed sticker microdevices for cell-based applications. Lab Chip 2018, 18, 451–462. [Google Scholar] [CrossRef]
- Sui, C.; Zilberberg, J.; Lee, W. Microfluidic device engineered to study the trafficking of multiple myeloma cancer cells through the sinusoidal niche of bone marrow. Sci. Rep. 2022, 12, 1439. [Google Scholar] [CrossRef]
- Wang, Y.; Seidel, M. Strategy for fast manufacturing of 3D hydrodynamic focusing multilayer microfluidic chips and its application for flow-based synthesis of gold nanoparticles. Microfluid. Nanofluid. 2021, 25, 64. [Google Scholar] [CrossRef]
- Vasconez Martinez, M.G.; Reihs, E.I.; Stuetz, H.M.; Hafner, A.; Brandauer, K.; Selinger, F.; Schuller, P.; Bastus, N.; Puntes, V.; Frank, J.; et al. Using Rapid Prototyping to Develop a Cell-Based Platform with Electrical Impedance Sensor Membranes for In Vitro RPMI2650 Nasal Nanotoxicology Monitoring. Biosensors 2024, 14, 107. [Google Scholar] [CrossRef] [PubMed]
- Langer, K.; Joensson, H.N. Rapid Production and Recovery of Cell Spheroids by Automated Droplet Microfluidics. SLAS Technol. 2020, 25, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Naik, A.R.; Zhou, Y.; Dey, A.A.; Arellano, D.L.G.; Okoroanyanwu, U.; Secor, E.B.; Hersam, M.C.; Morse, J.; Rothstein, J.P.; Carter, K.R.; et al. Printed microfluidic sweat sensing platform for cortisol and glucose detection. Lab Chip 2021, 22, 156–169. [Google Scholar] [CrossRef] [PubMed]
- Shahriari, S.; Damodara, S.; Selvaganapathy, P.R. Isoelectric trapping and discrimination of histones from plasma in a microfluidic device using dehydrated isoelectric gate. Microchim Acta 2024, 191, 131. [Google Scholar] [CrossRef]
- Zamora, V.; Marx, S.; Arndt-Staufenbiel, N.; Janeczka, C.; Havlik, G.; Queisser, M.; Schröder, H. Laser-Microstructured Double-Sided Adhesive Tapes for Integration of a Disposable Biochip. In Proceedings of the Eurosensors 2017, Paris, France, 3–6 September 2017. [Google Scholar]
- Dossi, N.; Petrazzi, S.; Terzi, F.; Toniolo, R.; Bontempelli, G. Electroanalytical cells pencil drawn on PVC supports and their use for the detection in flexible microfluidic devices. Talanta 2019, 199, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Gerber, L.C.; Kim, H.; Riedel-Kruse, I.H. Microfluidic assembly kit based on laser-cut building blocks for education and fast prototyping. Biomicrofluidics 2015, 9, 064105. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Zhao, Y.; Lin, S.; Wang, B.; Yeung, C.; Cheng, X.; Wang, Z.; Cai, T.; Yu, W.; King, K.; et al. A rapid and low-cost fabrication and integration scheme to render 3D microfluidic architectures for wearable biofluid sampling, manipulation, and sensing. Lab Chip 2019, 19, 2844–2853. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Kim, S.; Kim, Y.; Song, H.; Park, C.; Kim, J. Implementation of PCB-Based PCR Chip Using Double-Sided Tape. Int. J. Control Autom. 2015, 8, 117–124. [Google Scholar] [CrossRef]
- Belova, A.M.; Basmanov, D.V.; Prusakov, K.A.; Lazarev, V.N.; Klinov, D.V. A Microfluidic Platform for the Development of a Biosensor Based on Genetically Modified Helicobacter pylori Single Cells. Biophysics 2019, 63, 735–742. [Google Scholar] [CrossRef]
- Carter, S.D.; Barbe, L.; Tenje, M.; Mestres, G. Exploring microfluidics as a tool to evaluate the biological properties of a titanium alloy under dynamic conditions. Biomater. Sci. 2020, 8, 6309–6321. [Google Scholar] [CrossRef] [PubMed]
- Dutta, G.; Regoutz, A.; Moschou, D. Enzyme-assisted glucose quantification for a painless Lab-on-PCB patch implementation. Biosens. Bioelectron. 2020, 167, 112484. [Google Scholar] [CrossRef] [PubMed]
- Grant, N.; Geiss, B.; Field, S.; Demann, A.; Chen, T.W. Design of a Hand-Held and Battery-Operated Digital Microfluidic Device Using EWOD for Lab-on-a-Chip Applications. Micromachines 2021, 12, 1065. [Google Scholar] [CrossRef] [PubMed]
- Guner, H.; Ozgur, E.; Kokturk, G.; Celik, M.; Esen, E.; Topal, A.E.; Ayas, S.; Uludag, Y.; Elbuken, C.; Dana, A. A smartphone based surface plasmon resonance imaging (SPRi) platform for on-site biodetection. Sens. Actuators B 2017, 239, 571–577. [Google Scholar] [CrossRef]
- Ribeiro, M.; Ali, P.; Metcalfe, B.; Moschou, D.; Rocha, P.R.F. Microfluidics Integration into Low-Noise Multi-Electrode Arrays. Micromachines 2021, 12, 727. [Google Scholar] [CrossRef] [PubMed]
- Podunavac, I.; Hinić, S.; Kojić, S.; Jelenčiakova, N.; Radonić, V.; Petrović, B.; Stojanović, G. Microfluidic Approach for Measurements of pH, O2, and CO2 in Saliva. Sens. Mater. 2021, 33, 1037–1050. [Google Scholar] [CrossRef]
- Lee, J.H.; Van der Linden, C.; Diaz, F.J.; Wong, P.K. A reconfigurable microfluidic building block platform for high-throughput nonhormonal contraceptive screening. Lab Chip 2022, 22, 2531–2539. [Google Scholar] [CrossRef]
- Shin, J.; Kasama, T.; Miyake, R. Development of cellulosic material-based microchannel device capable of fluorescence immunoassay of microsamples. Anal. Bioanal. Chem. 2022, 414, 3419–3428. [Google Scholar] [CrossRef]
- Delgado, P.; Luna, C.A.; Dissanayaka, A.; Oshinowo, O.; Waggoner, J.J.; Schley, S.; Fernadez, T.; Myers, D.R. An economical in-class sticker microfluidic activity develops student expertise in microscale physics and device manufactoring. arXiv 2022. [Google Scholar] [CrossRef]
- Ragavendar, M.S.; Jayaraman, S.; Ramya, V.M.; Roy, R.; Manwani, H. Performance evaluation of low cost microfluidic chips made using a digital craft cutter for point of care applications in nucleic acid tests. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2014, 2014, 6609–6612. [Google Scholar] [CrossRef]
- Lopez-Munoz, G.A.; Estevez, M.C.; Pelaez-Gutierrez, E.C.; Homs-Corbera, A.; Garcia-Hernandez, M.C.; Imbaud, J.I.; Lechuga, L.M. A label-free nanostructured plasmonic biosensor based on Blu-ray discs with integrated microfluidics for sensitive biodetection. Biosens. Bioelectron. 2017, 96, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Singer, R.; Hirota, J.A.; Dabaghi, M. Irreversible PDMS bonding using flame activation of adhesives for fabrication of microfluidic and organ-on-chip devices. Mater. Lett. 2023, 353, 135221. [Google Scholar] [CrossRef]
- Vila, J.C.; Castro-Aguirre, N.; Lopez-Munoz, G.A.; Ferret-Minana, A.; De Chiara, F.; Ramon-Azcon, J. Disposable Polymeric Nanostructured Plasmonic Biosensors for Cell Culture Adhesion Monitoring. Front. Bioeng. Biotechnol. 2021, 9, 799325. [Google Scholar] [CrossRef] [PubMed]
- Channon, R.B.; Menger, R.F.; Wang, W.; Carrão, D.B.; Vallabhuneni, S.; Kota, A.K.; Henry, C.S. Design and application of a self-pumping microfluidic staggered herringbone mixer. Microfluid. Nanofluid. 2021, 25, 31. [Google Scholar] [CrossRef]
- Akuoko, Y.; Hanson, R.L.; Harris, D.H.; Nielsen, J.B.; Lazalde, E.; Woolley, A.T. Rapid and simple pressure-sensitive adhesive microdevice fabrication for sequence-specific capture and fluorescence detection of sepsis-related bacterial plasmid gene sequences. Anal. Bioanal. Chem. 2021, 413, 1017–1025. [Google Scholar] [CrossRef]
- Fleenor, S. Low Temperature Double-Sided Tape. Available online: https://www.walkertapeconverting.com/low-temperature-double-sided-tape/ (accessed on 8 January 2024).
- The Effects of Low Temperatures on Pressure-Sensitive Adhesives (PSAs). Available online: https://www.budnick.com/learning-center/blog/the-effects-of-low-temperatures-on-pressure-sensitive-adhesives-psas (accessed on 8 January 2024).
- Achieving the Best Bond. Available online: https://www.can-dotape.com/adhesive-tape-consultant/achieving-the-optimum-bond/ (accessed on 8 January 2024).
- Spence, J.S. All About Lasers. Engrav. J. 2018, 43. [Google Scholar]
Advantages | Limitations | |
Chemical | ||
Photolithography and Etching | High resolution (nm) and repeatability | New mask per design, requires cleanroom, multi-step process |
Soft lithography | High-resolution, fast fabrication replicas | Only master copy requires cleanroom, pattern deformation over time, lower aspect ratios |
Mechanical | ||
Micromachining and Microcutting | Fast (sec), design flexibility, no cleanroom required | Lower resolution (mm), tools can wear over time, less clean surface finish |
3D Printing | Fast (min), design flexibility, capable of more complex channel profiles and paths | Lower resolution (mm). poor minimum feature size (mm), restricted to resin and filament materials |
Embossing | High throughput, design flexibility, high precision, less stress on the material than injection molding | Restricted to thermoplastic materials, expensive and costly molds |
Injection Molding | High throughput and design flexibility, high precision | Restricted to thermoplastic materials, expensive and costly molds |
Referenced Tape Types and Properties | |||||||
---|---|---|---|---|---|---|---|
Fabrication Method | |||||||
Brand | Type | Material | Thickness (µm) | Xurography | Laser Cutting | Other | Ref. |
Advanced Research | ARcare 8890 | acrylic | 12.7 | ✓ | ✓ | [50,87] | |
ARcare 8939 | acrylic | 25 | ✓ | ✓ | [88,89,90] | ||
ARcare 90106 | acrylic | 58 | ✓ | ✓ | [52,68,78,91,92,93,94,95,96] | ||
ARcare 90445 | acrylic | 28 | ✓ | ✓ | ✓ | [43,50,78,97] | |
ARcare 92712 | acrylic | 18 | ✓ | ✓ | [78,88,89,98] | ||
ARcare 94119 | silicone | 46 | ✓ | [99] | |||
ARclear 8932EE | silicone | 51 | ✓ | [100] | |||
ARseal 90880 | silicone | 46 | ✓ | ✓ | [68,78,89,90] | ||
3M | VHB F9460PC | acrylic | 50 | ✓ | [81] | ||
300LSE | acrylic | 200 | ✓ | ✓ | [101,102,103] | ||
309 | acrylic | 50 | ✓ | [104] | |||
467MP | acrylic | 58 | ✓ | [71] | |||
468MP | acrylic | 132 | ✓ | ✓ | [48,76,105,106,107,108,109,110] | ||
9088 | acrylic | 94 | ✓ | [111] | |||
9495MP | acrylic | 74 | ✓ | [104] | |||
9965 | acrylic | 18 | ✓ | [48,112,113] | |||
96042 | silicone | 102 | ✓ | [114] | |||
55257 | polyester | 12 | ✓ | [115] | |||
Montex | DX1 | polyacrylate | 70 | ✓ | [44] | ||
Nitto | D5331 | acrylic | 70 | ✓ | [116] | ||
5302A | acrylic | 60 | ✓ | [117] | |||
Tapeworld | T-#7720 | acrylic | 200 | ✓ | [104] | ||
Microfluidic Chip Shop | MCS-foil-008 | acrylic | 140 | ✓ | [118] | ||
Bio-Rad Laboratories | MSB1001 | polyester | 200 | ✓ | [70] | ||
ACE | Carpet Tape 50106 | plastic | 60 | ✓ | [73,74] | ||
Scotch | Magic | acrylic | 63.5 | ✓ | [66] | ||
Double-Sided | acrylic | 76.2 | ✓ | [66,119] | |||
MultiTask | acrylic | 58.4 | ✓ | [66] | |||
Excel Scientific | ThermalSeal RTS | silicone | 100 | ✓ | [67] | ||
Applied Biosystems | 4360954 | polyester | 150 | ✓ | [120] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, S.; Sypabekova, M.; Kim, S. Double-Sided Tape in Microfluidics: A Cost-Effective Method in Device Fabrication. Biosensors 2024, 14, 249. https://doi.org/10.3390/bios14050249
Smith S, Sypabekova M, Kim S. Double-Sided Tape in Microfluidics: A Cost-Effective Method in Device Fabrication. Biosensors. 2024; 14(5):249. https://doi.org/10.3390/bios14050249
Chicago/Turabian StyleSmith, Savanah, Marzhan Sypabekova, and Seunghyun Kim. 2024. "Double-Sided Tape in Microfluidics: A Cost-Effective Method in Device Fabrication" Biosensors 14, no. 5: 249. https://doi.org/10.3390/bios14050249
APA StyleSmith, S., Sypabekova, M., & Kim, S. (2024). Double-Sided Tape in Microfluidics: A Cost-Effective Method in Device Fabrication. Biosensors, 14(5), 249. https://doi.org/10.3390/bios14050249