A Novel Ratiometric Photoelectrochemical Biosensor Based on Front and Back Illumination for Sensitive and Accurate Glutathione Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Apparatus
2.3. Preparation of Initial Sols for F127-TiO2
2.4. Preparation of mTiO2 Thin Films
2.5. Fabrication of mTiO2/Ag2S
2.6. Photoelectrochemical Measurements
3. Results and Discussion
3.1. Characterization of the Materials
3.2. PEC Performance
3.3. PEC Ratio Sensing Mechanism of GSH
3.4. Optimization of Experimental Conditions
3.5. Assay Performance of the PEC Sensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalinina, E.; Chernov, N.; Novichkova, M. P-304—Glutathione in redox regulation of the development of cancer cell resistance. Free Radic. Biol. Med. 2018, 120, S137. [Google Scholar]
- Liu, C.; Chen, Y.; Huang, H.; Duan, X.; Dong, L. Improved anaerobic digestion under ammonia stress by regulating microbiome and enzyme to enhance VFAs bioconversion: The new role of glutathione. Chem. Eng. J. 2022, 433, 134562. [Google Scholar] [CrossRef]
- Jiang, R.; Zhang, H.; Liu, Q.; Yang, X.; He, L.; Yuan, L.; Cheng, D. De novo design of near-infrared fluorescent agents activated by peroxynitrite and glutathione-responsive imaging for diabetic liver disease. Adv. Healthc. Mater. 2024, 13, 2302466. [Google Scholar] [CrossRef]
- Wang, T.; Wang, Z.; Hao, J.; Zhao, J.; Guo, J.; Gao, Z.; Song, Y.-Y. Improved sensitivity and selectivity of glutathione detection through target-driven electron donor generation in photoelectrochemical electrodes. Anal. Chem. 2023, 95, 13242–13249. [Google Scholar] [CrossRef]
- Zhang, W.; Quan, Y.; Ma, X.; Zeng, L.; Li, J.; Chen, S.; Su, M.; Hong, L.; Li, P.; Wang, H.; et al. Synergistic effect of glutathione and IgG4 in immune evasion and the implication for cancer immunotherapy. Redox Biol. 2023, 60, 102608. [Google Scholar] [CrossRef]
- Brundu, S.; Nencioni, L.; Celestino, I.; Coluccio, P.; Palamara, A.T.; Magnani, M.; Fraternale, A. Validation of a reversed-phase high performance liquid chromatography method for the simultaneous analysis of cysteine and reduced glutathione in mouse organs. Oxid. Med. Cell. Longev. 2016, 2016, 1746985. [Google Scholar] [CrossRef]
- Liu, D.; Bai, X.; Sun, J.; Zhao, D.; Hong, C.; Jia, N. Hollow In2O3/In2S3 nanocolumn-assisted molecularly imprinted photoelectrochemical sensor for glutathione detection. Sens. Actuators B 2022, 359, 131542. [Google Scholar] [CrossRef]
- Sun, X.; Guo, F.; Ye, Q.; Zhou, J.; Han, J.; Guo, R. Fluorescent sensing of glutathione and related bio-applications. Biosensors 2023, 13, 16. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Gupta, M.K.; Yadav, H.P.; Narayan, R.J.; Pandey, P.C. Aggregation-resistant, turn-on-off fluorometric sensing of glutathione and nickel (II) using vancomycin-conjugated gold nanoparticles. Biosensors 2024, 14, 49. [Google Scholar] [CrossRef]
- Song, C.; Ding, W.; Zhao, W.; Liu, H.; Wang, J.; Yao, Y.; Yao, C. High peroxidase-like activity realized by facile synthesis of FeS2 nanoparticles for sensitive colorimetric detection of H2O2 and glutathione. Biosens. Bioelectron. 2020, 151, 111983. [Google Scholar] [CrossRef]
- Ortiz-Gómez, I.; Rivadeneyra, A.; Salmerón, J.F.; Orbe-Payá, I.D.; Morales, D.P.; Capitán-Vallvey, L.F.; Salinas-Castillo, A. Near-field communication tag for colorimetric glutathione determination with a paper-based microfluidic device. Biosensors 2023, 13, 267. [Google Scholar] [CrossRef]
- Roy, B.G.; Rutherford, J.L.; Weaver, A.E.; Beaver, K.; Rasmussen, M. A self-powered biosensor for the detection of glutathione. Biosensors 2020, 10, 114. [Google Scholar] [CrossRef]
- Lv, Y.; Yang, L.; Mao, X.; Lu, M.; Zhao, J.; Yin, Y. Electrochemical detection of glutathione based on Hg2+-mediated strand displacement reaction strategy. Biosens. Bioelectron. 2016, 85, 664–668. [Google Scholar] [CrossRef]
- Turino, M.; Alvarez-Puebla, R.A.; Guerrini, L. Plasmonic azobenzene chemoreporter for surface-enhanced raman scattering detection of biothiols. Biosensors 2022, 12, 267. [Google Scholar] [CrossRef]
- Wang, C.; Gao, Y.; Hu, S.; Zhu, A.; Ying, Y.; Guo, X.; Wu, Y.; Wen, Y.; Yang, H. MnO2 coated Au nanoparticles advance SERS detection of cellular glutathione. Biosens. Bioelectron. 2022, 215, 114388. [Google Scholar] [CrossRef]
- Dong, X.; Xu, C.; Yang, C.; Chen, F.; Manohari, A.G.; Zhu, Z.; Zhang, W.; Wang, R.; You, D.; Chen, J. Photoelectrochemical response to glutathione in Au-decorated ZnO nanorod array. J. Mater. Chem. C 2019, 7, 5624–5629. [Google Scholar] [CrossRef]
- Tian, J.; Zhao, P.; Zhang, S.; Huo, G.; Suo, Z.; Yue, Z.; Zhang, S.; Huang, W.; Zhu, B. Platinum and iridium oxide Co-modified TiO2 nanotubes array based photoelectrochemical sensors for glutathione. Nanomaterials 2020, 10, 522. [Google Scholar] [CrossRef]
- Meng, S.; Liu, D.; Li, Y.; Dong, N.; Chen, T.; You, T. Engineering the signal transduction between CdTe and CdSe quantum dots for in situ ratiometric photoelectrochemical immunoassay of Cry1Ab protein. J. Agric. Food Chem. 2022, 70, 13583–13591. [Google Scholar] [CrossRef]
- Bu, Y.; Wang, K.; Yang, X.; Nie, G. Sensitive dual-mode sensing platform for Amyloid β detection: Combining dual Z-scheme heterojunction enhanced photoelectrochemistry analysis and dual-wavelength ratiometric electrochemiluminescence strategy. Biosens. Bioelectron. 2023, 237, 115507. [Google Scholar] [CrossRef]
- Xiang, Y.; Kong, Y.; Feng, W.; Ye, X.; Liu, Z. A ratiometric photoelectrochemical microsensor based on a small-molecule organic semiconductor for reliable in vivo analysis. Chem. Sci. 2021, 12, 12977–12984. [Google Scholar] [CrossRef]
- Dong, Y.-X.; Cao, J.-T.; Wang, B.; Ma, S.-H.; Liu, Y.-M. Spatial-resolved photoelectrochemical biosensing array based on a CdS@g-C3N4 heterojunction: A universal immunosensing platform for accurate detection. ACS Appl. Mater. Interfaces 2018, 10, 3723–3731. [Google Scholar] [CrossRef]
- Hao, Q.; Shan, X.; Lei, J.; Zang, Y.; Yang, Q.; Ju, H. A wavelength-resolved ratiometric photoelectrochemical technique: Design and sensing applications. Chem. Sci. 2016, 7, 774–780. [Google Scholar] [CrossRef]
- Rad, A.S.; Afshar, A.; Azadeh, M. Anti-reflection and self-cleaning meso-porous TiO2 coatings as solar systems protective layer: Investigation of effect of porosity and roughness. Opt. Mater. 2020, 107, 110027. [Google Scholar] [CrossRef]
- Yang, H.; Hu, M.; Li, Z.; Zhao, P.; Xie, L.; Song, X.; Yu, J. Donor/acceptor-induced ratiometric photoelectrochemical paper analytical device with a hollow double-hydrophilic-walls channel for microRNA quantification. Anal. Chem. 2019, 91, 14577–14585. [Google Scholar] [CrossRef]
- Zhu, L.; Yu, L.; Ye, J.; Yan, M.; Peng, Y.; Huang, J.; Yang, X. A ratiometric electrochemiluminescence strategy based on two-dimensional nanomaterial-nucleic acid interactions for biosensing and logic gates operation. Biosens. Bioelectron. 2021, 178, 113022. [Google Scholar] [CrossRef]
- Zheng, Y.-N.; Liang, W.-B.; Xiong, C.-Y.; Zhuo, Y.; Chai, Y.-Q.; Yuan, R. Universal ratiometric photoelectrochemical bioassay with target-nucleotide transduction-amplification and electron-transfer tunneling distance regulation strategies for ultrasensitive determination of microRNA in cells. Anal. Chem. 2017, 89, 9445–9451. [Google Scholar] [CrossRef]
- Guo, Z.; Wu, L.; Hu, Y.; Wang, S.; Li, X. Potential-resolved “in-electrode” type electrochemiluminescence immunoassay based on functionalized g-C3N4 nanosheet and Ru-NH2 for simultaneous determination of dual targets. Biosens. Bioelectron. 2017, 95, 27–33. [Google Scholar] [CrossRef]
- Ma, C.; Cao, Y.; Gou, X.; Zhu, J.-J. Recent progress in electrochemiluminescence sensing and imaging. Anal. Chem. 2020, 92, 431–454. [Google Scholar] [CrossRef]
- Masoumi, Z.; Tayebi, M.; Lee, B.-K. The role of doping molybdenum (Mo) and back-front side illumination in enhancing the charge separation of α-Fe2O3 nanorod photoanode for solar water splitting. Sol. Energy 2020, 205, 126–134. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, X.-P.; Xu, Q.-Y.; Nie, X.-G.; Younis, M.R.; Liu, W.-Y.; Xia, X.-H. Importance of hot spots in gold nanostructures on direct plasmon-enhanced electrochemistry. ACS Appl. Nano Mater. 2018, 1, 5805–5811. [Google Scholar] [CrossRef]
- Hong Pan, J.; In Lee, W. Selective control of cubic and hexagonal mesophases for titania and silica thin films with spin-coating. New J. Chem. 2005, 29, 841–846. [Google Scholar] [CrossRef]
- Deng, Z.-Y.; Chiang, P.-C.; Chen, K.-L.; Chen, J.-H.; Wu, C.-H. Highly sensitive and rapid responding humidity sensors based on silver catalyzed Ag2S–TiO2 quantum dots prepared by SILAR. RSC Adv. 2021, 11, 10285–10290. [Google Scholar] [CrossRef]
- Ambade, R.B.; Koh, K.H.; Ambade, S.B.; Eom, W.; Noh, S.H.; Koo, C.M.; Kim, S.H.; Han, T.H. Kinetically controlled low-temperature solution-processed mesoporous rutile TiO2 for high performance lithium-ion batteries. J. Ind. Eng. Chem. 2019, 80, 667–676. [Google Scholar] [CrossRef]
- Naldoni, A.; Altomare, M.; Zoppellaro, G.; Liu, N.; Kment, Š.; Zbořil, R.; Schmuki, P. Photocatalysis with reduced TiO2: From black TiO2 to cocatalyst-free hydrogen production. ACS Catal. 2019, 9, 345–364. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, Y.; Wang, H.; Bai, G.; Zhang, N.; Wang, Y.; Wei, Q. Ultrasensitive photoelectrochemical immunoassay strategy based on Bi2S3/Ag2S for the detection of the inflammation marker procalcitonin. Biosensors 2023, 13, 366. [Google Scholar] [CrossRef]
- Hu, X.; Li, Y.; Tian, J.; Yang, H.; Cui, H. Highly efficient full solar spectrum (UV-vis-NIR) photocatalytic performance of Ag2S quantum dot/TiO2 nanobelt heterostructures. J. Ind. Eng. Chem. 2017, 45, 189–196. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, W.; Xu, Y.; Sun, H.; Wang, X. Ag2S decorated TiO2 nanosheets grown on carbon fibers for photoelectrochemical protection of 304 stainless steel. Appl. Surf. Sci. 2019, 494, 841–849. [Google Scholar] [CrossRef]
- Zhang, L.; Li, P.; Feng, L.; Chen, X.; Jiang, J.; Zhang, S.; Zhang, C.; Zhang, A.; Chen, G.; Wang, H. Synergetic Ag2S and ZnS quantum dots as the sensitizer and recognition probe: A visible light-driven photoelectrochemical sensor for the “signal-on” analysis of mercury (II). J. Hazard. Mater. 2020, 387, 121715. [Google Scholar] [CrossRef]
- Chen, F.-Z.; Fu, X.-X.; Yu, X.-J.; Qiu, Y.-H.; Ren, S.-B.; Wang, Y.-C.; Han, D.-M.; Zhao, W.-W. Biological transformation of AgI on MOF-on-MOF-derived heterostructures: Toward polarity-switchable photoelectrochemical biosensors for neuron-specific Enolase. Anal. Chem. 2023, 95, 9052–9059. [Google Scholar] [CrossRef]
- Roy, S.; Ghosh, S.P.; Pradhan, D.; Sahu, P.K.; Kar, J.P. Morphological and electrical study of porous TiO2 films with various concentrations of Pluronic F-127 additive. J. Porous Mater. 2021, 28, 231–238. [Google Scholar] [CrossRef]
- Shen, Y.; Wei, Y.; Zhu, C.; Cao, J.; Han, D.-M. Ratiometric fluorescent signals-driven smartphone-based portable sensors for onsite visual detection of food contaminants. Coord. Chem. Rev. 2022, 458, 214442. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Petrescu, F.I.T.; Li, B.; Wang, L.; Zhu, H.; Li, Y. A Novel Ratiometric Photoelectrochemical Biosensor Based on Front and Back Illumination for Sensitive and Accurate Glutathione Sensing. Biosensors 2024, 14, 285. https://doi.org/10.3390/bios14060285
Huang J, Petrescu FIT, Li B, Wang L, Zhu H, Li Y. A Novel Ratiometric Photoelectrochemical Biosensor Based on Front and Back Illumination for Sensitive and Accurate Glutathione Sensing. Biosensors. 2024; 14(6):285. https://doi.org/10.3390/bios14060285
Chicago/Turabian StyleHuang, Jie, Florian Ion Tiberiu Petrescu, Bing Li, Likui Wang, Haiyan Zhu, and Ying Li. 2024. "A Novel Ratiometric Photoelectrochemical Biosensor Based on Front and Back Illumination for Sensitive and Accurate Glutathione Sensing" Biosensors 14, no. 6: 285. https://doi.org/10.3390/bios14060285
APA StyleHuang, J., Petrescu, F. I. T., Li, B., Wang, L., Zhu, H., & Li, Y. (2024). A Novel Ratiometric Photoelectrochemical Biosensor Based on Front and Back Illumination for Sensitive and Accurate Glutathione Sensing. Biosensors, 14(6), 285. https://doi.org/10.3390/bios14060285