Microbial Biofilms: Features of Formation and Potential for Use in Bioelectrochemical Devices
Abstract
:1. Introduction
2. Structure and Features of Biofilm Formation
- Biofilm growth is caused by the expression of agglutins (glycoproteins that coat the bacterial cell wall), such as in the case of Candida albicans biofilm formation [25] or expression of fimbriae. Unlike flagella and pili, there are approximately 1000 fimbriae per bacterial cell, such as with Klebsiella pneumoniae [26].
- A bacterial cell formed as a result of division separates from the surface and can either attach to a newly formed bio-layer or initiate colonization of other areas of the surface [27].
3. Features of Biofilm Formation on Surfaces with Different Architectures and Functionalization
3.1. Formation of Biofilms on the Surface of Plastics and Metals
3.2. The Effect of Surface Functionalization on Biofilm Formation
4. Modification of Biofilms to Increase the Efficiency of Bioelectrochemical Devices
4.1. Genetic Modification of the Direct Transfer Pathway in Electroactive Biofilms
4.2. Modification of Indirect Electron Transfer in Electroactive Biofilms
4.3. Other Methods of Forming and Stimulating the Growth of Electroactive Biofilms
5. Biofilms as Recognition Elements of Biosensors
5.1. BOD Biosensors
5.2. Biosensors for the Determination of Heavy Metal Ions
5.3. Biosensors for the Determination of Pesticides
5.4. Biosensors for the Determination of Antibiotics
5.5. Biosensors for the Determination of other Pollutants
5.6. Biosensors for the Determination of Volatile Fatty Acids (VFAs)
6. MFC Based on Microbial Biofilms
6.1. Selection of Microorganisms and Characteristics of Biofilms
6.2. MFC Substrates
6.3. Electron Transfer in MFCs Based on Biofilms
6.4. Operational Conditions of MFCs
6.5. MFC Design
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BOD | Biochemical oxygen demand |
MFC | Microbial fuel cell |
EPS | Extracellular polymeric substances |
EET | Extracellular electron transfer |
EAB | Electroactive biofilm |
QS | Quorum sensing |
CNT | Carbon nanotubes |
SEM | Scanning electron microscopy |
VFA | Volatile fatty acids |
References
- Costerton, J.W.; Geesey, G.G.; Cheng, K.-J. How Bacteria Stick. Sci. Am. 1978, 238, 86–95. [Google Scholar] [CrossRef]
- Arlyapov, V.A.; Yudina, N.Y.; Asulyan, L.D.; Kamanina, O.A.; Alferov, S.V.; Shumsky, A.N.; Machulin, A.V.; Alferov, V.A.; Reshetilov, A.N. Registration of BOD Using Paracoccus yeei Bacteria Isolated from Activated Sludge. 3 Biotech 2020, 10, 207. [Google Scholar] [CrossRef]
- Kharkova, A.S.; Arlyapov, V.A.; Turovskaya, A.D.; Shvets, V.I.; Reshetilov, A.N. A Mediator Microbial Biosensor for Assaying General Toxicity. Enzym. Microb. Technol. 2020, 132, 109435. [Google Scholar] [CrossRef]
- Flemming, H.-C.; Wuertz, S. Bacteria and Archaea on Earth and Their Abundance in Biofilms. Nat. Rev. Microbiol. 2019, 17, 247–260. [Google Scholar] [CrossRef]
- Kochetkova, T.V.; Toshchakov, S.V.; Zayulina, K.S.; Elcheninov, A.G.; Zavarzina, D.G.; Lavrushin, V.Y.; Bonch-Osmolovskaya, E.A.; Kublanov, I.V. Hot in Cold: Microbial Life in the Hottest Springs in Permafrost. Microorganisms 2020, 8, 1308. [Google Scholar] [CrossRef]
- Pandit, A.; Adholeya, A.; Cahill, D.; Brau, L.; Kochar, M. Microbial Biofilms in Nature: Unlocking Their Potential for Agricultural Applications. J. Appl. Microbiol. 2020, 129, 199–211. [Google Scholar] [CrossRef]
- Baldera-Moreno, Y.; Pino, V.; Farres, A.; Banerjee, A.; Gordillo, F.; Andler, R. Biotechnological Aspects and Mathematical Modeling of the Biodegradation of Plastics under Controlled Conditions. Polymers 2022, 14, 375. [Google Scholar] [CrossRef]
- Voglauer, E.M.; Zwirzitz, B.; Thalguter, S.; Selberherr, E.; Wagner, M.; Rychli, K. Biofilms in Water Hoses of a Meat Processing Environment Harbor Complex Microbial Communities. Front. Microbiol. 2022, 13, 832213. [Google Scholar] [CrossRef]
- Perelomov, L.; Sizova, O.; Gertsen, M.; Perelomova, I.; Arlyapov, V.; Atroshchenko, Y. Antibiotic Resistance in Metal-Tolerant Microorganisms from Treatment Facilities. Antibiotics 2023, 12, 1678. [Google Scholar] [CrossRef]
- Beitelshees, M.; Hill, A.; Jones, C.H.; Pfeifer, B.A. Phenotypic Variation during Biofilm Formation: Implications for Anti-Biofilm Therapeutic Design. Materials 2018, 11, 1086. [Google Scholar] [CrossRef]
- Mart’yanov, S.V.; Botchkova, E.A.; Plakunov, V.K.; Gannesen, A.V. The Impact of Norepinephrine on Mono-Species and Dual-Species Staphylococcal Biofilms. Microorganisms 2021, 9, 820. [Google Scholar] [CrossRef]
- Hemdan, B.A.; El-Liethy, M.A.; El-Taweel, G.E. Quantitative and Physiological Behavior Techniques to Investigate the Evolution of Monospecies Biofilm of Pathogenic Bacteria on Material Surfaces. Biologia 2023, 78, 2987–2999. [Google Scholar] [CrossRef]
- Kim, U.; Kim, J.-H.; Oh, S.-W. Review of Multi-Species Biofilm Formation from Foodborne Pathogens: Multi-Species Biofilms and Removal Methodology. Crit. Rev. Food Sci. Nutr. 2022, 62, 5783–5793. [Google Scholar] [CrossRef]
- Bernard, C.; Girardot, M.; Imbert, C. Candida Albicans Interaction with Gram-Positive Bacteria within Interkingdom Biofilms. J. Mycol. Med. 2020, 30, 100909. [Google Scholar] [CrossRef]
- Delaney, C.; Alapati, S.; Alshehri, M.; Kubalova, D.; Veena, C.L.R.; Abusrewil, S.; Short, B.; Bradshaw, D.; Brown, J.L. Investigating the Role of Candida Albicans as a Universal Substrate for Oral Bacteria Using a Transcriptomic Approach: Implications for Interkingdom Biofilm Control? APMIS 2023, 131, 601–612. [Google Scholar] [CrossRef]
- Sauer, K.; Stoodley, P.; Goeres, D.M.; Hall-Stoodley, L.; Burmølle, M.; Stewart, P.S.; Bjarnsholt, T. The Biofilm Life Cycle: Expanding the Conceptual Model of Biofilm Formation. Nat. Rev. Microbiol. 2022, 20, 608–620. [Google Scholar] [CrossRef]
- Kimkes, T.E.P.; Heinemann, M. How Bacteria Recognise and Respond to Surface Contact. FEMS Microbiol. Rev. 2020, 44, 106–122. [Google Scholar] [CrossRef]
- Valentin, J.D.P.; Straub, H.; Pietsch, F.; Lemare, M.; Ahrens, C.H.; Schreiber, F.; Webb, J.S.; Van der Mei, H.C.; Ren, Q. Role of the Flagellar Hook in the Structural Development and Antibiotic Tolerance of Pseudomonas aeruginosa Biofilms. ISME J. 2022, 16, 1176–1186. [Google Scholar] [CrossRef]
- Nakamura, S.; Minamino, T. Flagella-Driven Motility of Bacteria. Biomolecules 2019, 9, 279. [Google Scholar] [CrossRef]
- Lukaszczyk, M.; Pradhan, B.; Remaut, H. The Biosynthesis and Structures of Bacterial Pili. Bact. Cell Walls Membr. 2019, 92, 369–413. [Google Scholar]
- Zheng, S.; Bawazir, M.; Dhall, A.; Kim, H.-E.; He, L.; Heo, J.; Hwang, G. Implication of Surface Properties, Bacterial Motility, and Hydrodynamic Conditions on Bacterial Surface Sensing and Their Initial Adhesion. Front. Bioeng. Biotechnol. 2021, 9, 643722. [Google Scholar] [CrossRef]
- Jung, Y.-C.; Lee, M.-A.; Lee, K.-H. Role of Flagellin-Homologous Proteins in Biofilm Formation by Pathogenic Vibrio Species. MBio 2019, 10, 10–1128. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; Shettima, A.; Ngoshe, I.Y.; Abbas, M.I.; Bello, H.S.; Umoru, A.M.; Isyaka, T.M. Phenotypic Determination of Biofilm Formation and Acquired Resistance Profile of Clinically-Derived Bacterial Isolates. Eur. J. Biol. Biotechnol. 2020, 1. [Google Scholar] [CrossRef]
- Carabelli, A.M.; Dubern, J.-F.; Papangeli, M.; Farthing, N.E.; Sanni, O.; Heeb, S.; Hook, A.L.; Alexander, M.R.; Williams, P. Polymer-Directed Inhibition of Reversible to Irreversible Attachment Prevents Pseudomonas aeruginosa Biofilm Formation. bioRxiv 2022, 2001–2022. [Google Scholar] [CrossRef]
- Liu, C.; Xu, C.; Du, Y.; Liu, J.; Ning, Y. Role of Agglutinin-like Sequence Protein 3 (Als3) in the Structure and Antifungal Resistance of Candida Albicans Biofilms. FEMS Microbiol. Lett. 2021, 368, fnab089. [Google Scholar] [CrossRef]
- Pacheco, T.; Gomes, A.É.I.; Siqueira, N.M.G.; Assoni, L.; Darrieux, M.; Venter, H.; Ferraz, L.F.C. SdiA, a Quorum-Sensing Regulator, Suppresses Fimbriae Expression, Biofilm Formation, and Quorum-Sensing Signaling Molecules Production in Klebsiella pneumoniae. Front. Microbiol. 2021, 12, 597735. [Google Scholar] [CrossRef]
- Laventie, B.-J.; Sangermani, M.; Estermann, F.; Manfredi, P.; Planes, R.; Hug, I.; Jaeger, T.; Meunier, E.; Broz, P.; Jenal, U. A Surface-Induced Asymmetric Program Promotes Tissue Colonization by Pseudomonas aeruginosa. Cell Host Microbe 2019, 25, 140–152. [Google Scholar] [CrossRef]
- Li, C.; Hurley, A.; Hu, W.; Warrick, J.W.; Lozano, G.L.; Ayuso, J.M.; Pan, W.; Handelsman, J.; Beebe, D.J. Social Motility of Biofilm-like Microcolonies in a Gliding Bacterium. Nat. Commun. 2021, 12, 5700. [Google Scholar] [CrossRef]
- Flannery, A. A Study of the Presentation and Biological Effects of Biofilm Component Poly-N-Acetylglucosamine from Staphylococcus aureus and Acinetobacter baumannii Using Novel Multidisciplinary Platforms and Methods. Ph.D. Thesis, NUI Galway, Galway, Ireland, 2019. [Google Scholar]
- Wang, Y.; Bian, Z.; Wang, Y. Biofilm Formation and Inhibition Mediated by Bacterial Quorum Sensing. Appl. Microbiol. Biotechnol. 2022, 106, 6365–6381. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, S.; García-Aznar, J.M.; Gonzalo-Asensio, J. Microfluidic Devices for Studying Bacterial Taxis, Drug Testing and Biofilm Formation. Microb. Biotechnol. 2022, 15, 395–414. [Google Scholar] [CrossRef]
- Rumbaugh, K.P.; Sauer, K. Biofilm Dispersion. Nat. Rev. Microbiol. 2020, 18, 571–586. [Google Scholar] [CrossRef]
- Pinto, R.M.; Soares, F.A.; Reis, S.; Nunes, C.; Van Dijck, P. Innovative Strategies toward the Disassembly of the EPS Matrix in Bacterial Biofilms. Front. Microbiol. 2020, 11, 952. [Google Scholar] [CrossRef]
- Yamasaki, R.; Kawano, A.; Yoshioka, Y.; Ariyoshi, W. Rhamnolipids and Surfactin Inhibit the Growth or Formation of Oral Bacterial Biofilm. BMC Microbiol. 2020, 20, 358. [Google Scholar] [CrossRef]
- Le, K.Y.; Villaruz, A.E.; Zheng, Y.; He, L.; Fisher, E.L.; Nguyen, T.H.; Ho, T.V.; Yeh, A.J.; Joo, H.-S.; Cheung, G.Y.C. Role of Phenol-Soluble Modulins in Staphylococcus epidermidis Biofilm Formation and Infection of Indwelling Medical Devices. J. Mol. Biol. 2019, 431, 3015–3027. [Google Scholar] [CrossRef]
- Kirchhoff, L.; Arweiler-Harbeck, D.; Arnolds, J.; Hussain, T.; Hansen, S.; Bertram, R.; Buer, J.; Lang, S.; Steinmann, J.; Höing, B. Imaging Studies of Bacterial Biofilms on Cochlear Implants—Bioactive Glass (BAG) Inhibits Mature Biofilm. PLoS ONE 2020, 15, e0229198. [Google Scholar] [CrossRef]
- Wi, Y.M.; Patel, R. Understanding Biofilms and Novel Approaches to the Diagnosis, Prevention, and Treatment of Medical Device-Associated Infections. Infect. Dis. Clin. 2018, 32, 915–929. [Google Scholar] [CrossRef]
- Raveendra, N.; Rathnakara, S.H.; Haswani, N.; Subramaniam, V. Bacterial Biofilms on Tracheostomy Tubes. Indian J. Otolaryngol. Head Neck Surg. 2022, 74, 4995–4999. [Google Scholar] [CrossRef]
- Dargahi, Z.; Hamad, A.A.; Sheikh, A.F.; Ahmad Khosravi, N.; Samei Fard, S.; Motahar, M.; Mehr, F.J.; Abbasi, F.; Meghdadi, H.; Bakhtiyariniya, P. The Biofilm Formation and Antibiotic Resistance of Bacterial Profile from Endotracheal Tube of Patients Admitted to Intensive Care Unit in Southwest of Iran. PLoS ONE 2022, 17, e0277329. [Google Scholar] [CrossRef]
- Kurbanalieva, S.; Arlyapov, V.; Kharkova, A.; Perchikov, R.; Kamanina, O.; Melnikov, P.; Popova, N.; Machulin, A.; Tarasov, S.; Saverina, E.; et al. Electroactive Biofilms of Activated Sludge Microorganisms on a Nanostructured Surface as the Basis for a Highly Sensitive Biochemical Oxygen Demand Biosensor. Sensors 2022, 22, 6049. [Google Scholar] [CrossRef]
- Hemdan, B.A.; El-Taweel, G.E.; Naha, S.; Goswami, P. Bacterial Community Structure of Electrogenic Biofilm Developed on Modified Graphite Anode in Microbial Fuel Cell. Sci. Rep. 2023, 13, 1255. [Google Scholar] [CrossRef]
- Mironova, A.V.; Karimova, A.V.; Bogachev, M.I.; Kayumov, A.R.; Trizna, E.Y. Alterations in Antibiotic Susceptibility of Staphylococcus aureus and Klebsiella pneumoniae in Dual Species Biofilms. Int. J. Mol. Sci. 2023, 24, 8475. [Google Scholar] [CrossRef]
- Torresi, E.; Fowler, S.J.; Polesel, F.; Bester, K.; Andersen, H.R.; Smets, B.F.; Plósz, B.G.; Christensson, M. Biofilm Thickness Influences Biodiversity in Nitrifying MBBRs—Implications on Micropollutant Removal. Environ. Sci. Technol. 2016, 50, 9279–9288. [Google Scholar] [CrossRef]
- Bajire, S.K.; Sanjeeva, S.G.; Johnson, R.P.; Shastry, R.P. Growth of Microbes and Biofilm Formation on Various Materials. In Antiviral and Antimicrobial Smart Coatings; Elsevier: Amsterdam, The Netherlands, 2023; pp. 87–111. [Google Scholar]
- Bhagwat, G.; O’Connor, W.; Grainge, I.; Palanisami, T. Understanding the Fundamental Basis for Biofilm Formation on Plastic Surfaces: Role of Conditioning Films. Front. Microbiol. 2021, 12, 687118. [Google Scholar] [CrossRef]
- Yuan, H.; Qian, B.; Chen, H.; Lan, M. The Influence of Conditioning Film on Antifouling Properties of the Polyurethane Film Modified by Chondroitin Sulfate in Urine. Appl. Surf. Sci. 2017, 426, 587–596. [Google Scholar] [CrossRef]
- Cao, S.; Wang, J.; Chen, H.; Chen, D. Progress of Marine Biofouling and Antifouling Technologies. Chin. Sci. Bull. 2011, 56, 598–612. [Google Scholar] [CrossRef]
- Jacquin, J.; Cheng, J.; Odobel, C.; Pandin, C.; Conan, P.; Pujo-Pay, M.; Barbe, V.; Meistertzheim, A.-L.; Ghiglione, J.-F. Microbial Ecotoxicology of Marine Plastic Debris: A Review on Colonization and Biodegradation by the “Plastisphere”. Front. Microbiol. 2019, 10, 865. [Google Scholar] [CrossRef]
- Bowley, J.; Baker-Austin, C.; Porter, A.; Hartnell, R.; Lewis, C. Oceanic Hitchhikers—Assessing Pathogen Risks from Marine Microplastic. Trends Microbiol. 2021, 29, 107–116. [Google Scholar] [CrossRef]
- Pinto, M.; Langer, T.M.; Hüffer, T.; Hofmann, T.; Herndl, G.J. The Composition of Bacterial Communities Associated with Plastic Biofilms Differs between Different Polymers and Stages of Biofilm Succession. PLoS ONE 2019, 14, e0217165. [Google Scholar] [CrossRef]
- Agarwal, A.; Upadhyay, U.; Sreedhar, I.; Singh, S.A.; Patel, C.M. A Review on Valorization of Biomass in Heavy Metal Removal from Wastewater. J. Water Process Eng. 2020, 38, 101602. [Google Scholar] [CrossRef]
- van Hullebusch, E.D.; Zandvoort, M.H.; Lens, P.N.L. Metal Immobilisation by Biofilms: Mechanisms and Analytical Tools. Rev. Environ. Sci. Biotechnol. 2003, 2, 9–33. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Li, Y.; Li, J.; Wang, F.; Xia, S.; Zhao, J. Biofilm Alters Tetracycline and Copper Adsorption Behaviors onto Polyethylene Microplastics. Chem. Eng. J. 2020, 392, 123808. [Google Scholar] [CrossRef]
- Rossi, F.; De Philippis, R. Role of Cyanobacterial Exopolysaccharides in Phototrophic Biofilms and in Complex Microbial Mats. Life 2015, 5, 1218–1238. [Google Scholar] [CrossRef]
- Kanematsu, H.; Barry, D.M.; Ikegai, H.; Mizunoe, Y. Biofilm Control on Metallic Materials in Medical Fields from the Viewpoint of Materials Science—From the Fundamental Aspects to Evaluation. Int. Mater. Rev. 2023, 68, 247–271. [Google Scholar] [CrossRef]
- Decho, A.W. Microbial Biofilms in Intertidal Systems: An Overview. Cont. Shelf Res. 2000, 20, 1257–1273. [Google Scholar] [CrossRef]
- Crichton, R. Biological Inorganic Chemistry: A New Introduction to Molecular Structure and Function; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780128117415. [Google Scholar]
- Bretschger, O.; Cheung, A.C.M.; Mansfeld, F.; Nealson, K.H. Comparative Microbial Fuel Cell Evaluations of Shewanella Spp. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2010, 22, 883–894. [Google Scholar] [CrossRef]
- Konhauser, K.O.; Fowle, D.A. Microbial-Metal Binding. In Encyclopedia of Geobiology; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 1402092113. [Google Scholar]
- Katsikogianni, M.; Missirlis, Y.F. Concise Review of Mechanisms of Bacterial Adhesion to Biomaterials and of Techniques Used in Estimating Bacteria-Material Interactions. Eur. Cell Mater. 2004, 8, 37–57. [Google Scholar] [CrossRef]
- Böl, M.; Ehret, A.E.; Bolea Albero, A.; Hellriegel, J.; Krull, R. Recent Advances in Mechanical Characterisation of Biofilm and Their Significance for Material Modelling. Crit. Rev. Biotechnol. 2013, 33, 145–171. [Google Scholar] [CrossRef]
- Oliveira, N.M.; Martinez-Garcia, E.; Xavier, J.; Durham, W.M.; Kolter, R.; Kim, W.; Foster, K.R. Biofilm Formation as a Response to Ecological Competition. PLoS Biol. 2015, 13, e1002191. [Google Scholar] [CrossRef]
- Bos, R.; Van der Mei, H.C.; Busscher, H.J. Physico-Chemistry of Initial Microbial Adhesive Interactions—Its Mechanisms and Methods for Study. FEMS Microbiol. Rev. 1999, 23, 179–230. [Google Scholar] [CrossRef]
- Xu, L.; Xu, M.; Wang, R.; Yin, Y.; Lynch, I.; Liu, S. The Crucial Role of Environmental Coronas in Determining the Biological Effects of Engineered Nanomaterials. Small 2020, 16, 2003691. [Google Scholar] [CrossRef]
- Lai, B.; Tang, X.; Li, H.; Du, Z.; Liu, X.; Zhang, Q. Power Production Enhancement with a Polyaniline Modified Anode in Microbial Fuel Cells. Biosens. Bioelectron. 2011, 28, 373–377. [Google Scholar] [CrossRef]
- Catal, T.; Li, K.; Bermek, H.; Liu, H. Electricity Production from Twelve Monosaccharides Using Microbial Fuel Cells. J. Power Sources 2008, 175, 196–200. [Google Scholar] [CrossRef]
- Busscher, H.J.; Bos, R.; Van der Mei, H.C. Initial Microbial Adhesion Is a Determinant for the Strength of Biofilm Adhesion. FEMS Microbiol. Lett. 1995, 128, 229–234. [Google Scholar] [CrossRef]
- Georgieva, N.; Bryaskova, R.; Lazarova, N.; Peshev, D.; Tzoneva, R. PVA-Based Hybrid Materials for Immobilization of Trichosporon Cutaneum R57 Efficient in Removal of Chromium Ions. C. R. Acad. Bulg. Sci. 2013, 66. [Google Scholar]
- Zhang, J.; Li, J.; Ye, D.; Zhu, X.; Liao, Q.; Zhang, B. Tubular Bamboo Charcoal for Anode in Microbial Fuel Cells. J. Power Sources 2014, 272, 277–282. [Google Scholar] [CrossRef]
- Guo, K.; Prévoteau, A.; Patil, S.A.; Rabaey, K. Engineering Electrodes for Microbial Electrocatalysis. Curr. Opin. Biotechnol. 2015, 33, 149–156. [Google Scholar] [CrossRef]
- Guimerà, X.; Dorado, A.D.; Bonsfills, A.; Gabriel, G.; Gabriel, D.; Gamisans, X. Dynamic Characterization of External and Internal Mass Transport in Heterotrophic Biofilms from Microsensors Measurements. Water Res. 2016, 102, 551–560. [Google Scholar] [CrossRef]
- Guo, K.; Freguia, S.; Dennis, P.G.; Chen, X.; Donose, B.C.; Keller, J.; Gooding, J.J.; Rabaey, K. Effects of Surface Charge and Hydrophobicity on Anodic Biofilm Formation, Community Composition, and Current Generation in Bioelectrochemical Systems. Environ. Sci. Technol. 2013, 47, 7563–7570. [Google Scholar] [CrossRef]
- Kregiel, D. Advances in Biofilm Control for Food and Beverage Industry Using Organo-Silane Technology: A Review. Food Control 2014, 40, 32–40. [Google Scholar] [CrossRef]
- Khramov, A.N.; Balbyshev, V.N.; Voevodin, N.N.; Donley, M.S. Nanostructured Sol–Gel Derived Conversion Coatings Based on Epoxy-and Amino-Silanes. Prog. Org. Coat. 2003, 47, 207–213. [Google Scholar] [CrossRef]
- Cha, S.; Park, Y.S. Plasma in Dentistry. Clin. Plasma Med. 2014, 2, 4–10. [Google Scholar] [CrossRef]
- Xiong, Z.; Cao, Y.; Lu, X.; Du, T. Plasmas in Tooth Root Canal. IEEE Trans. Plasma Sci. 2011, 39, 2968–2969. [Google Scholar] [CrossRef]
- Epifanio, M.; Inguva, S.; Kitching, M.; Mosnier, J.-P.; Marsili, E. Effects of Atmospheric Air Plasma Treatment of Graphite and Carbon Felt Electrodes on the Anodic Current from Shewanella Attached Cells. Bioelectrochemistry 2015, 106, 186–193. [Google Scholar] [CrossRef]
- Flexer, V.; Marque, M.; Donose, B.C.; Virdis, B.; Keller, J. Plasma Treatment of Electrodes Significantly Enhances the Development of Anodic Electrochemically Active Biofilms. Electrochim. Acta 2013, 108, 566–574. [Google Scholar] [CrossRef]
- He, Y.-R.; Xiao, X.; Li, W.-W.; Sheng, G.-P.; Yan, F.-F.; Yu, H.-Q.; Yuan, H.; Wu, L.-J. Enhanced Electricity Production from Microbial Fuel Cells with Plasma-Modified Carbon Paper Anode. Phys. Chem. Chem. Phys. 2012, 14, 9966–9971. [Google Scholar] [CrossRef]
- Deng, S.; Upadhyayula, V.K.K.; Smith, G.B.; Mitchell, M.C. Adsorption Equilibrium and Kinetics of Microorganisms on Single-Wall Carbon Nanotubes. IEEE Sens. J. 2008, 8, 954–962. [Google Scholar] [CrossRef]
- Perchikov, R.N.; Provotorova, D.V.; Kharkova, A.S.; Arlyapov, V.A.; Medvedeva, A.S.; Machulin, A.V.; Filonov, A.E.; Reshetilov, A.N. Bioanalytical System for Determining the Phenol Index Based on Pseudomonas Putida BS394 (PBS216) Bacteria Immobilized in a Redox-Active Biocompatible Composite Polymer “Bovine Serum Albumin–Ferrocene–Carbon Nanotubes”. Polymers 2022, 14, 5366. [Google Scholar] [CrossRef]
- Hussain, S.; Aly, A.M.; Öztop, H.F. Magneto-Bioconvection Flow of Hybrid Nanofluid in the Presence of Oxytactic Bacteria in a Lid-Driven Cavity with a Streamlined Obstacle. Int. Commun. Heat. Mass. Transf. 2022, 134, 106029. [Google Scholar] [CrossRef]
- Arlyapov, V.A.; Kharkova, A.S.; Kurbanaliyeva, S.K.; Kuznetsova, L.S.; Machulin, A.V.; Tarasov, S.E.; Melnikov, P.V.; Ponamoreva, O.N.; Alferov, V.A.; Reshetilov, A.N. Use of Biocompatible Redox-Active Polymers Based on Carbon Nanotubes and Modified Organic Matrices for Development of a Highly Sensitive BOD Biosensor. Enzym. Microb. Technol. 2021, 143, 109706. [Google Scholar] [CrossRef]
- Hou, J.; Liu, Z.; Zhang, P. A New Method for Fabrication of Graphene/Polyaniline Nanocomplex Modified Microbial Fuel Cell Anodes. J. Power Sources 2013, 224, 139–144. [Google Scholar] [CrossRef]
- Slate, A.J.; Whitehead, K.A.; Brownson, D.A.C.; Banks, C.E. Microbial Fuel Cells: An Overview of Current Technology. Renew. Sustain. Energy Rev. 2019, 101, 60–81. [Google Scholar] [CrossRef]
- Hayta, E.N.; Ertelt, M.J.; Kretschmer, M.; Lieleg, O. Bacterial Materials: Applications of Natural and Modified Biofilms. Adv. Mater. Interfaces 2021, 8, 2101024. [Google Scholar] [CrossRef]
- Martinez, C.M.; Alvarez, L.H. Application of Redox Mediators in Bioelectrochemical Systems. Biotechnol. Adv. 2018, 36, 1412–1423. [Google Scholar] [CrossRef]
- Popov, A.L.; Kim, J.R.; Dinsdale, R.M.; Esteves, S.R.; Guwy, A.J.; Premier, G.C. The Effect of Physico-Chemically Immobilized Methylene Blue and Neutral Red on the Anode of Microbial Fuel Cell. Biotechnol. Bioprocess. Eng. 2012, 17, 361–370. [Google Scholar] [CrossRef]
- El Kasmi, A.; Wallace, J.M.; Bowden, E.F.; Binet, S.M.; Linderman, R.J. Controlling Interfacial Electron-Transfer Kinetics of Cytochrome c with Mixed Self-Assembled Monolayers. J. Am. Chem. Soc. 1998, 120, 225–226. [Google Scholar] [CrossRef]
- Kiran, R.; Patil, S.A. Microbial Electroactive Biofilms. In Introduction to Biofilm Engineering; ACS Publications: Washington, DC, USA, 2019; pp. 159–186. ISBN 1947-5918. [Google Scholar]
- Jiménez Otero, F.; Chadwick, G.L.; Yates, M.D.; Mickol, R.L.; Saunders, S.H.; Glaven, S.M.; Gralnick, J.A.; Newman, D.K.; Tender, L.M.; Orphan, V.J. Evidence of a Streamlined Extracellular Electron Transfer Pathway from Biofilm Structure, Metabolic Stratification, and Long-Range Electron Transfer Parameters. Appl. Environ. Microbiol. 2021, 87, e00706-21. [Google Scholar] [CrossRef]
- Guo, T.; Wang, J.; Yu, X.; Jia, X.; Zheng, X.; Fang, Y.; Yang, Q. Improvement of Microbial Extracellular Electron Transfer via Outer Membrane Cytochromes Expression of Engineered Bacteria. Biochem. Eng. J. 2022, 187, 108636. [Google Scholar] [CrossRef]
- Li, F.; Tang, R.; Zhang, B.; Qiao, C.; Yu, H.; Liu, Q.; Zhang, J.; Shi, L.; Song, H. Systematic Full-Cycle Engineering Microbial Biofilms to Boost Electricity Production in Shewanella oneidensis. Research 2023, 6, 81. [Google Scholar] [CrossRef]
- Alviz-Gazitua, P.; Espinoza-Tofalos, A.; Formicola, F.; Guiliani, N.; Turner, R.J.; Franzetti, A.; Seeger, M. Enhanced Exoelectrogenic Activity of Cupriavidus metallidurans in Bioelectrochemical Systems through the Expression of a Constitutively Active Diguanylate Cyclase. Environments 2022, 9, 80. [Google Scholar] [CrossRef]
- Li, F.; Zhang, J.; Liu, D.; Yu, H.; Li, C.; Liu, Q.; Chen, Z.; Song, H. Engineering Extracellular Polymer Substrates Biosynthesis and Carbon Felt-Carbon Nanotube Hybrid Electrode to Promote Biofilm Electroactivity and Bioelectricity Production. Sci. Total Environ. 2023, 904, 166595. [Google Scholar] [CrossRef]
- Wang, M.; Chen, X.; Ma, Y.; Tang, Y.-Q.; Johnson, D.R.; Nie, Y.; Wu, X.-L. Type IV Pilus Shapes a ‘Bubble-Burst’ Pattern Opposing Spatial Intermixing of Two Interacting Bacterial Populations. Microbiol. Spectr. 2022, 10, e01944-21. [Google Scholar] [CrossRef]
- Szmuc, E.; Walker, D.J.F.; Kireev, D.; Akinwande, D.; Lovley, D.R.; Keitz, B.; Ellington, A. Engineering Geobacter Pili to Produce Metal: Organic Filaments. Biosens. Bioelectron. 2023, 222, 114993. [Google Scholar] [CrossRef]
- Myers, B.; Catrambone, F.; Allen, S.; Hill, P.J.; Kovacs, K.; Rawson, F.J. Engineering Nanowires in Bacteria to Elucidate Electron Transport Structural–Functional Relationships. Sci. Rep. 2023, 13, 8843. [Google Scholar] [CrossRef]
- Chen, Y.-Y.; Yang, F.-Q.; Xu, N.; Wang, X.-Q.; Xie, P.-C.; Wang, Y.-Z.; Fang, Z.; Yong, Y.-C. Engineered Cytochrome Fused Extracellular Matrix Enabled Efficient Extracellular Electron Transfer and Improved Performance of Microbial Fuel Cell. Sci. Total Environ. 2022, 830, 154806. [Google Scholar] [CrossRef]
- Hernández-Eligio, A.; Huerta-Miranda, G.A.; Martínez-Bahena, S.; Castrejón-López, D.; Miranda-Hernández, M.; Juárez, K. GSU1771 Regulates Extracellular Electron Transfer and Electroactive Biofilm Formation in Geobacter sulfurreducens: Genetic and Electrochemical Characterization. Bioelectrochemistry 2022, 145, 108101. [Google Scholar] [CrossRef]
- Simoska, O.; Cummings, D.A., Jr.; Gaffney, E.M.; Langue, C.; Primo, T.G.; Weber, C.J.; Witt, C.E.; Minteer, S.D. Enhancing the Performance of Microbial Fuel Cells via Metabolic Engineering of Escherichia coli for Phenazine Production. ACS Sustain. Chem. Eng. 2023, 11, 11855–11866. [Google Scholar] [CrossRef]
- Luo, J.; Li, X.; Zhang, J.; Feng, A.; Xia, M.; Zhou, M. Global Regulator Engineering Enhances Bioelectricity Generation in Pseudomonas aeruginosa-Inoculated MFCs. Biosens. Bioelectron. 2020, 163, 112269. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, B.; Shi, S.; Tang, R.; Qiao, C.; Li, T.; Jia, J.; Yang, M.; Si, X.; Wang, Y. Engineering Extracellular Electron Transfer to Promote Simultaneous Brewing Wastewater Treatment and Chromium Reduction. J. Hazard. Mater. 2023, 465, 133171. [Google Scholar] [CrossRef]
- Zhao, J.; Li, F.; Kong, S.; Chen, T.; Song, H.; Wang, Z. Elongated Riboflavin-Producing Shewanella oneidensis in a Hybrid Biofilm Boosts Extracellular Electron Transfer. Adv. Sci. 2023, 10, 2206622. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Zhang, Y.; Burns, K.; Zhao, N. Extracellular Electron Transfer in Electroactive Anaerobic Granular Sludge Mediated by the Phenothiazine Derivative. J. Power Sources 2022, 527, 231212. [Google Scholar] [CrossRef]
- Hu, J.; Zeng, C.; Liu, G.; Ren, Z.J.; Luo, H.; Teng, M. Carbon Dots Internalization Enhances Electroactive Biofilm Formation and Microbial Acetate Synthesis. J. Clean. Prod. 2023, 411, 137333. [Google Scholar] [CrossRef]
- Zhao, H.; Zang, Y.; Xie, B.; Zhao, T.; Cao, B.; Wu, J.; Ge, Y.; Yi, Y.; Liu, H. Instant Water Toxicity Detection Based on Magnetically-Constructed Electrochemically Active Biofilm. Biosens. Bioelectron. 2023, 242, 115745. [Google Scholar] [CrossRef]
- Zhao, F.; Chavez, M.S.; Naughton, K.L.; Niman, C.M.; Atkinson, J.T.; Gralnick, J.A.; El-Naggar, M.Y.; Boedicker, J.Q. Light-Induced Patterning of Electroactive Bacterial Biofilms. ACS Synth. Biol. 2022, 11, 2327–2338. [Google Scholar] [CrossRef]
- Jia, X.; Liu, X.; Zhu, K.; Zheng, X.; Yang, Z.; Yang, X.; Hou, Y.; Yang, Q. Lysozyme Regulates the Extracellular Polymer of Activated Sludge and Promotes the Formation of Electroactive Biofilm. Bioprocess Biosyst. Eng. 2022, 45, 1065–1074. [Google Scholar] [CrossRef]
- Shi, K.; Cheng, W.; Cheng, D.; Xue, J.; Qiao, Y.; Gao, Y.; Jiang, Q.; Wang, J. Stability Improvement and the Mechanism of a Microbial Electrolysis Cell Biocathode for Treating Wastewater Containing Sulfate by Quorum Sensing. Chem. Eng. J. 2023, 455, 140597. [Google Scholar] [CrossRef]
- Chung, T.H.; Zakaria, B.S.; Meshref, M.N.A.; Dhar, B.R. Enhancing Quorum Sensing in Biofilm Anode to Improve Biosensing of Naphthenic Acids. Biosens. Bioelectron. 2022, 210, 114275. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, J.; Liu, X.; Lin, M.; Dong, H.; Zhai, X.; Hou, Y.; Yang, Q. Bi-Directional Regulation of Electroactive Microbial Community Using Au/Antimicrobial Peptide Nanocomposite. Process Biochem. 2023, 134, 55–66. [Google Scholar] [CrossRef]
- Varshney, A.; Sharma, L.; Pandit, C.; Gupta, P.K.; Mathuriya, A.S.; Pandit, S.; Lahiri, D.; Nag, M.; Upadhye, V.J. Microbial Fuel Cell–Based Biosensors and Applications. Appl. Biochem. Biotechnol. 2023, 195, 3508–3531. [Google Scholar] [CrossRef]
- Sonawane, J.M.; Ezugwu, C.I.; Ghosh, P.C. Microbial Fuel Cell-Based Biological Oxygen Demand Sensors for Monitoring Wastewater: State-of-the-Art and Practical Applications. ACS Sens. 2020, 5, 2297–2316. [Google Scholar] [CrossRef]
- Arlyapov, V.A.; Plekhanova, Y.V.; Kamanina, O.A.; Nakamura, H.; Reshetilov, A.N. Microbial Biosensors for Rapid Determination of Biochemical Oxygen Demand: Approaches, Tendencies and Development Prospects. Biosensors 2022, 12, 842. [Google Scholar] [CrossRef]
- Karube, I.; Matsunaga, T.; Mitsuda, S.; Suzuki, S. Microbial Electrode BOD Sensors. Biotechnol. Bioeng. 1977, 19, 1535–1547. [Google Scholar] [CrossRef]
- Hikuma, M.; Suzuki, H.; Yasuda, Y.; Karube, I.; Suzuki, S. Amperometric Estimation of BOD by Using Living Immobilized Yeasts. Eur. J. Appl. Microbiol. Biotechnol. 1979, 8, 289–297. [Google Scholar] [CrossRef]
- Arlyapov, V.; Kamanin, S.; Ponamoreva, O.; Reshetilov, A. Biosensor Analyzer for BOD Index Express Control on the Basis of the Yeast Microorganisms Candida maltosa, Candida blankii, and Debaryomyces hansenii. Enzym. Microb. Technol. 2012, 50, 215–220. [Google Scholar] [CrossRef]
- Niyomdecha, S.; Limbut, W.; Numnuam, A.; Asawatreratanakul, P.; Kanatharana, P.; Thavarungkul, P. A Novel BOD Biosensor Based on Entrapped Activated Sludge in a Porous Chitosan-Albumin Cryogel Incorporated with Graphene and Methylene Blue. Sens. Actuators B Chem. 2017, 241, 473–481. [Google Scholar] [CrossRef]
- Sakaguchi, T.; Morioka, Y.; Yamasaki, M.; Iwanaga, J.; Beppu, K.; Maeda, H.; Morita, Y.; Tamiya, E. Rapid and Onsite BOD Sensing System Using Luminous Bacterial Cells-Immobilized Chip. Biosens. Bioelectron. 2007, 22, 1345–1350. [Google Scholar] [CrossRef]
- Sakaguchi, T.; Kitagawa, K.; Ando, T.; Murakami, Y.; Morita, Y.; Yamamura, A.; Yokoyama, K.; Tamiya, E. A Rapid BOD Sensing System Using Luminescent Recombinants of Escherichia coli. Biosens. Bioelectron. 2003, 19, 115–121. [Google Scholar] [CrossRef]
- Qi, X.; Wang, S.; Li, T.; Wang, X.; Jiang, Y.; Zhou, Y.; Zhou, X.; Huang, X.; Liang, P. An Electroactive Biofilm-Based Biosensor for Water Safety: Pollutants Detection and Early-Warning. Biosens. Bioelectron. 2021, 173, 112822. [Google Scholar] [CrossRef]
- Yoshida, N.; Hoashi, J.; Morita, T.; McNiven, S.J.; Nakamura, H.; Karube, I. Improvement of a Mediator-Type Biochemical Oxygen Demand Sensor for on-Site Measurement. J. Biotechnol. 2001, 88, 269–275. [Google Scholar] [CrossRef]
- Khor, B.H.; Ismail, A.K.; Ahamad, R.; Shahir, S. A Redox Mediated UME Biosensor Using Immobilized Chromobacterium Violaceum Strain R1 for Rapid Biochemical Oxygen Demand Measurement. Electrochim. Acta 2015, 176, 777–783. [Google Scholar] [CrossRef]
- Kharkova, A.; Perchikov, R.; Kurbanalieva, S.; Osina, K.; Popova, N.; Machulin, A.; Kamanina, O.; Saverina, E.; Saltanov, I.; Melenkov, S. Targeted Formation of Biofilms on the Surface of Graphite Electrodes as an Effective Approach to the Development of Biosensors for Early Warning Systems. Biosensors 2024, 14, 239. [Google Scholar] [CrossRef]
- Alhadeff, E.; Bojorge, N. Graphite-Composites Alternatives for Electrochemical Biosensor. In Metal, Ceramic and Polymeric Composites for Various Uses; IntechOpen: London, UK, 2011; ISBN 9533073535. [Google Scholar]
- Suvarnaphaet, P.; Pechprasarn, S. Graphene-Based Materials for Biosensors: A Review. Sensors 2017, 17, 2161. [Google Scholar] [CrossRef]
- Liu, C.; Li, Z.; Jiang, D.; Jia, J.; Zhang, Y.; Chai, Y.; Cheng, X.; Dong, S. Demonstration Study of Biofilm Reactor Based Rapid Biochemical Oxygen Demand Determination of Surface Water. Sens. Bio-Sens. Res. 2016, 8, 8–13. [Google Scholar] [CrossRef]
- Wang, L.; Lv, H.; Yang, Q.; Chen, Y.; Wei, J.; Chen, Y.; Peng, C.; Liu, C.; Xu, X.; Jia, J. A Universal Biofilm Reactor Sensor for the Determination of Biochemical Oxygen Demand of Different Water Areas. Molecules 2022, 27, 5046. [Google Scholar] [CrossRef]
- Busalmen, J.P.; Esteve-Núñez, A.; Berná, A.; Feliu, J.M. C-type Cytochromes Wire Electricity-producing Bacteria to Electrodes. Angew. Chem. Int. Ed. 2008, 47, 4874–4877. [Google Scholar] [CrossRef]
- Commault, A.S.; Lear, G.; Bouvier, S.; Feiler, L.; Karacs, J.; Weld, R.J. Geobacter-Dominated Biofilms Used as Amperometric BOD Sensors. Biochem. Eng. J. 2016, 109, 88–95. [Google Scholar] [CrossRef]
- Yi, Y.; Zhao, T.; Xie, B.; Zang, Y.; Liu, H. Dual Detection of Biochemical Oxygen Demand and Nitrate in Water Based on Bidirectional Shewanella loihica Electron Transfer. Bioresour. Technol. 2020, 309, 123402. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.; Lin, H.; Liu, Z.; Xu, X.; Jia, J.; Zhang, M.; Liu, C. In Situ and Self-Adaptive BOD Bioreaction Sensing System Based on Environmentally Domesticated Microbial Populations. Talanta 2023, 261, 124671. [Google Scholar] [CrossRef]
- Guo, F.; Liu, H. Impact of Heterotrophic Denitrification on BOD Detection of the Nitrate-Containing Wastewater Using Microbial Fuel Cell-Based Biosensors. Chem. Eng. J. 2020, 394, 125042. [Google Scholar] [CrossRef]
- Ma, Y.; Deng, D.; Zhan, Y.; Cao, L.; Liu, Y. A Systematic Study on Self-Powered Microbial Fuel Cell Based BOD Biosensors Running under Different Temperatures. Biochem. Eng. J. 2022, 180, 108372. [Google Scholar] [CrossRef]
- Zhang, Y.; Angelidaki, I. Submersible Microbial Fuel Cell Sensor for Monitoring Microbial Activity and BOD in Groundwater: Focusing on Impact of Anodic Biofilm on Sensor Applicability. Biotechnol. Bioeng. 2011, 108, 2339–2347. [Google Scholar] [CrossRef]
- Xiao, N.; Wu, R.; Huang, J.J.; Selvaganapathy, P.R. Anode Surface Modification Regulates Biofilm Community Population and the Performance of Micro-MFC Based Biochemical Oxygen Demand Sensor. Chem. Eng. Sci. 2020, 221, 115691. [Google Scholar] [CrossRef]
- Sim, J.; Reid, R.; Hussain, A.; Lee, H.-S. Semi-Continuous Measurement of Oxygen Demand in Wastewater Using Biofilm-Capacitance. Bioresour. Technol. Rep. 2018, 3, 231–237. [Google Scholar] [CrossRef]
- Do, M.H.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Deng, L.; Chen, Z.; Nguyen, T.V. Performance of Mediator-Less Double Chamber Microbial Fuel Cell-Based Biosensor for Measuring Biological Chemical Oxygen. J. Environ. Manag. 2020, 276, 111279. [Google Scholar] [CrossRef]
- Pasternak, G.; Greenman, J.; Ieropoulos, I. Self-Powered, Autonomous Biological Oxygen Demand Biosensor for Online Water Quality Monitoring. Sens. Actuators B Chem. 2017, 244, 815–822. [Google Scholar] [CrossRef]
- Wang, C.; Yin, L.; Wang, S.; Jin, X.; Yang, J.; Liu, H. Role Played by the Physical Structure of Carbon Anode Materials in MFC Biosensor for BOD Measurement. Sci. Total Environ. 2023, 856, 158848. [Google Scholar] [CrossRef]
- Yamashita, T.; Hasegawa, T.; Hayashida, Y.; Ninomiya, K.; Shibata, S.; Ito, K.; Mizuguchi, H.; Yokoyama, H. Energy Savings with a Biochemical Oxygen Demand (BOD)-and PH-Based Intermittent Aeration Control System Using a BOD Biosensor for Swine Wastewater Treatment. Biochem. Eng. J. 2022, 177, 108266. [Google Scholar] [CrossRef]
- Liu, L.; Huang, L.; Yu, D.; Zhang, G.; Dong, S. FeS2 Nanoparticles Decorated Carbonized Luffa cylindrica as Biofilm Substrates for Fabricating High Performance Biosensors. Talanta 2021, 232, 122416. [Google Scholar] [CrossRef]
- Xiao, N.; Wu, R.; Huang, J.J.; Selvaganapathy, P.R. Development of a Xurographically Fabricated Miniaturized Low-Cost, High-Performance Microbial Fuel Cell and Its Application for Sensing Biological Oxygen Demand. Sens. Actuators B Chem. 2020, 304, 127432. [Google Scholar] [CrossRef]
- Xiao, N.; Selvaganapathy, P.R.; Wu, R.; Huang, J.J. Influence of Wastewater Microbial Community on the Performance of Miniaturized Microbial Fuel Cell Biosensor. Bioresour. Technol. 2020, 302, 122777. [Google Scholar] [CrossRef]
- Christwardana, M.; Yoshi, L.A.; Setyonadi, I.; Maulana, M.R.; Fudholi, A. A Novel Application of Simple Submersible Yeast-Based Microbial Fuel Cells as Dissolved Oxygen Sensors in Environmental Waters. Enzym. Microb. Technol. 2021, 149, 109831. [Google Scholar] [CrossRef]
- Guo, F.; Liu, Y.; Liu, H. Hibernations of Electroactive Bacteria Provide Insights into the Flexible and Robust BOD Detection Using Microbial Fuel Cell-Based Biosensors. Sci. Total Environ. 2021, 753, 142244. [Google Scholar] [CrossRef]
- Cheng, S.; Lin, Z.; Sun, Y.; Li, H.; Ren, X. Fast and Simultaneous Detection of Dissolved BOD and Nitrite in Wastewater by Using Bioelectrode with Bidirectional Extracellular Electron Transport. Water Res. 2022, 213, 118186. [Google Scholar] [CrossRef]
- Lin, Z.; Cheng, S.; Sun, Y.; Li, H.; Jin, B. Realizing BOD Detection of Real Wastewater by Considering the Bioelectrochemical Degradability of Organic Pollutants in a Bioelectrochemical System. Chem. Eng. J. 2022, 444, 136520. [Google Scholar] [CrossRef]
- Feng, Y.; Kayode, O.; Harper, W.F., Jr. Using Microbial Fuel Cell Output Metrics and Nonlinear Modeling Techniques for Smart Biosensing. Sci. Total Environ. 2013, 449, 223–228. [Google Scholar] [CrossRef]
- Spurr, M.W.A.; Eileen, H.Y.; Scott, K.; Head, I.M. Extending the Dynamic Range of Biochemical Oxygen Demand Sensing with Multi-Stage Microbial Fuel Cells. Environ. Sci. Water Res. Technol. 2018, 4, 2029–2040. [Google Scholar] [CrossRef]
- Spurr, M.W.A.; Eileen, H.Y.; Scott, K.; Head, I.M. No Re-Calibration Required? Stability of a Bioelectrochemical Sensor for Biodegradable Organic Matter over 800 Days. Biosens. Bioelectron. 2021, 190, 113392. [Google Scholar] [CrossRef]
- Okereafor, U.; Makhatha, M.; Mekuto, L.; Uche-Okereafor, N.; Sebola, T.; Mavumengwana, V. Toxic Metal Implications on Agricultural Soils, Plants, Animals, Aquatic Life and Human Health. Int. J. Environ. Res. Public Health 2020, 17, 2204. [Google Scholar] [CrossRef]
- Witkowska, D.; Słowik, J.; Chilicka, K. Heavy Metals and Human Health: Possible Exposure Pathways and the Competition for Protein Binding Sites. Molecules 2021, 26, 6060. [Google Scholar] [CrossRef]
- Fu, Z.; Xi, S. The Effects of Heavy Metals on Human Metabolism. Toxicol. Mech. Methods 2020, 30, 167–176. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Alfadaly, R.A.; Elsayed, A.; Hassan, R.Y.A.; Noureldeen, A.; Darwish, H.; Gebreil, A.S. Microbial Sensing and Removal of Heavy Metals: Bioelectrochemical Detection and Removal of Chromium (vi) and Cadmium (Ii). Molecules 2021, 26, 2549. [Google Scholar] [CrossRef]
- Wang, J.; Yang, X.; Cui, M.; Liu, Y.; Li, X.; Zhang, L.; Zhan, G. A High-Sensitive and Durable Electrochemical Sensor Based on Geobacter-Dominated Biofilms for Heavy Metal Toxicity Detection. Biosens. Bioelectron. 2022, 206, 114146. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, P.; Niu, Y.; Chen, Z.; Khan, A.; Zhang, P.; Li, X. A Novel Early Warning System Based on a Sediment Microbial Fuel Cell for in Situ and Real Time Hexavalent Chromium Detection in Industrial Wastewater. Sensors 2018, 18, 642. [Google Scholar] [CrossRef]
- Yu, D.; Bai, L.; Zhai, J.; Wang, Y.; Dong, S. Toxicity Detection in Water Containing Heavy Metal Ions with a Self-Powered Microbial Fuel Cell-Based Biosensor. Talanta 2017, 168, 210–216. [Google Scholar] [CrossRef]
- Do, M.H.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Pandey, A.; Sharma, P.; Varjani, S.; Nguyen, T.A.H.; Hoang, N.B. A Dual Chamber Microbial Fuel Cell Based Biosensor for Monitoring Copper and Arsenic in Municipal Wastewater. Sci. Total Environ. 2022, 811, 152261. [Google Scholar] [CrossRef]
- Carafa, R.; Lorenzo, N.E.; Llopart, J.S.; Kumar, V.; Schuhmacher, M. Characterization of River Biofilm Responses to the Exposure with Heavy Metals Using a Novel Micro Fluorometer Biosensor. Aquat. Toxicol. 2021, 231, 105732. [Google Scholar] [CrossRef]
- Qi, X.; Liu, P.; Liang, P.; Hao, W.; Li, M.; Huang, X. Dual-Signal-Biosensor Based on Luminescent Bacteria Biofilm for Real-Time Online Alert of Cu(II) Shock. Biosens. Bioelectron. 2019, 142, 111500. [Google Scholar] [CrossRef]
- García-Mancha, N.; Monsalvo, V.M.; Puyol, D.; Rodriguez, J.J.; Mohedano, A.F. Enhanced Anaerobic Degradability of Highly Polluted Pesticides-Bearing Wastewater under Thermophilic Conditions. J. Hazard. Mater. 2017, 339, 320–329. [Google Scholar] [CrossRef]
- Stein, N.E.; Hamelers, H.V.M.; Van Straten, G.; Keesman, K.J. Effect of Toxic Components on Microbial Fuel Cell-Polarization Curves and Estimation of the Type of Toxic Inhibition. Biosensors 2012, 2, 255–268. [Google Scholar] [CrossRef]
- Chouler, J.; Di Lorenzo, M. Pesticide Detection by a Miniature Microbial Fuel Cell under Controlled Operational Disturbances. Water Sci. Technol. 2019, 79, 2231–2241. [Google Scholar] [CrossRef]
- Aiyer, K.; Mukherjee, D.; Doyle, L.E. A Weak Electricigen-Based Bioelectrochemical Sensor for Real-Time Monitoring of Chemical Pollutants in Water. ACS Appl. Bio Mater. 2023, 6, 4105–4110. [Google Scholar] [CrossRef]
- Tucci, M.; Bombelli, P.; Howe, C.J.; Vignolini, S.; Bocchi, S.; Schievano, A. A Storable Mediatorless Electrochemical Biosensor for Herbicide Detection. Microorganisms 2019, 7, 630. [Google Scholar] [CrossRef]
- Ahn, Y.; Schröder, U. Microfabricated, Continuous-Flow, Microbial Three-Electrode Cell for Potential Toxicity Detection. BioChip J. 2015, 9, 27–34. [Google Scholar] [CrossRef]
- Wu, W.; Lesnik, K.L.; Xu, S.; Wang, L.; Liu, H. Impact of Tobramycin on the Performance of Microbial Fuel Cell. Microb. Cell Fact. 2014, 13, 91. [Google Scholar] [CrossRef]
- Zeng, L.; Li, X.; Shi, Y.; Qi, Y.; Huang, D.; Tadé, M.; Wang, S.; Liu, S. FePO4 Based Single Chamber Air-Cathode Microbial Fuel Cell for Online Monitoring Levofloxacin. Biosens. Bioelectron. 2017, 91, 367–373. [Google Scholar] [CrossRef]
- Kim, M.; Hyun, M.S.; Gadd, G.M.; Kim, H.J. A Novel Biomonitoring System Using Microbial Fuel Cells. J. Environ. Monit. 2007, 9, 1323–1328. [Google Scholar] [CrossRef]
- Zhu, X.; Xiang, Q.; Chen, L.; Chen, J.; Wang, L.; Jiang, N.; Hao, X.; Zhang, H.; Wang, X.; Li, Y. Engineered Bacillus Subtilis Biofilm@ Biochar Living Materials for In-Situ Sensing and Bioremediation of Heavy Metal Ions Pollution. J. Hazard. Mater. 2024, 465, 133119. [Google Scholar] [CrossRef]
- Wang, S.-H.; Wang, J.-W.; Zhao, L.-T.; Abbas, S.Z.; Yang, Z.; Yong, Y.-C. Soil Microbial Fuel Cell Based Self-Powered Cathodic Biosensor for Sensitive Detection of Heavy Metals. Biosensors 2023, 13, 145. [Google Scholar] [CrossRef]
- Naik, S.; Jujjavarapu, S.E. Self-Powered and Reusable Microbial Fuel Cell Biosensor for Toxicity Detection in Heavy Metal Polluted Water. J. Environ. Chem. Eng. 2021, 9, 105318. [Google Scholar] [CrossRef]
- Khan, A.; Salama, E.-S.; Chen, Z.; Ni, H.; Zhao, S.; Zhou, T.; Pei, Y.; Sani, R.K.; Ling, Z.; Liu, P. A Novel Biosensor for Zinc Detection Based on Microbial Fuel Cell System. Biosens. Bioelectron. 2020, 147, 111763. [Google Scholar] [CrossRef]
- Lu, Y.; Hu, X.; Tang, L.; Peng, B.; Tang, J.; Zeng, T.; Liu, Q. Effect of CuO/ZnO/FTO Electrode Properties on the Performance of a Photo-Microbial Fuel Cell Sensor for the Detection of Heavy Metals. Chemosphere 2022, 302, 134779. [Google Scholar] [CrossRef]
- Wang, J.; Dong, B.; Shen, Z.; Zhou, Y. An Innovative Fast-Start Aerobic Anode Microbial Fuel Cell Biosensor for Copper Ion Detection. J. Environ. Chem. Eng. 2024, 12, 112876. [Google Scholar] [CrossRef]
- Attaallah, R.; Antonacci, A.; Mazzaracchio, V.; Moscone, D.; Palleschi, G.; Arduini, F.; Amine, A.; Scognamiglio, V. Carbon Black Nanoparticles to Sense Algae Oxygen Evolution for Herbicides Detection: Atrazine as a Case Study. Biosens. Bioelectron. 2020, 159, 112203. [Google Scholar] [CrossRef]
- Gao, G.; Qian, J.; Fang, D.; Yu, Y.; Zhi, J. Development of a Mediated Whole Cell-Based Electrochemical Biosensor for Joint Toxicity Assessment of Multi-Pollutants Using a Mixed Microbial Consortium. Anal. Chim. Acta 2016, 924, 21–28. [Google Scholar] [CrossRef]
- Qian, J.; Li, J.; Fang, D.; Yu, Y.; Zhi, J. A Disposable Biofilm-Modified Amperometric Biosensor for the Sensitive Determination of Pesticide Biotoxicity in Water. RSC Adv. 2014, 4, 55473–55482. [Google Scholar] [CrossRef]
- Gonzalez Olias, L.; Cameron, P.J.; Di Lorenzo, M. Effect of Electrode Properties on the Performance of a Photosynthetic Microbial Fuel Cell for Atrazine Detection. Front. Energy Res. 2019, 7, 105. [Google Scholar] [CrossRef]
- Yi, Y.; Xie, B.; Zhao, T.; Li, Z.; Stom, D.; Liu, H. Effect of External Resistance on the Sensitivity of Microbial Fuel Cell Biosensor for Detection of Different Types of Pollutants. Bioelectrochemistry 2019, 125, 71–78. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, J.; Sallach, J.B.; Hu, X.; Gao, Y. Whole-Cell Paper Strip Biosensors to Semi-Quantify Tetracycline Antibiotics in Environmental Matrices. Biosens. Bioelectron. 2020, 168, 112528. [Google Scholar] [CrossRef]
- Higuera-Llantén, S.; Alcalde-Rico, M.; Vasquez-Ponce, F.; Ibacache-Quiroga, C.; Blazquez, J.; Olivares-Pacheco, J. A Whole-cell Hypersensitive Biosensor for Beta-lactams Based on the AmpR-AmpC Regulatory Circuit from the Antarctic Pseudomonas Sp. IB20. Microb. Biotechnol. 2024, 17, e14385. [Google Scholar] [CrossRef]
- Ghanam, A.; Cecillon, S.; Mohammadi, H.; Amine, A.; Buret, F.; Haddour, N. Selective Sensing in Microbial Fuel Cell Biosensors: Insights from Toxicity-Adapted and Non-Adapted Biofilms for Pb (II) and Neomycin Sulfate Detection. Micromachines 2023, 14, 2027. [Google Scholar] [CrossRef]
- Guliy, O.I.; Evstigneeva, S.S.; Shirokov, A.A.; Bunin, V.D. Sensor System for Analysis of Biofilm Sensitivity to Ampicillin. Appl. Microbiol. Biotechnol. 2024, 108, 172. [Google Scholar] [CrossRef]
- Li, S.; Chen, D.; Liu, Z.; Tao, S.; Zhang, T.; Chen, Y.; Bao, L.; Ma, J.; Huang, Y.; Xu, S. Directed Evolution of TetR for Constructing Sensitive and Broad-Spectrum Tetracycline Antibiotics Whole-Cell Biosensor. J. Hazard. Mater. 2023, 460, 132311. [Google Scholar] [CrossRef]
- Perelomov, L.; Rajput, V.D.; Gertsen, M.; Sizova, O.; Perelomova, I.; Kozmenko, S.; Minkina, T.; Atroshchenko, Y. Ecological Features of Trace Elements Tolerant Microbes Isolated from Sewage Sludge of Urban Wastewater Treatment Plant. Stress Biol. 2024, 4, 8. [Google Scholar] [CrossRef]
- Gertsen, M.M.; Perelomov, L.V.; Arlyapov, V.A.; Atroshchenko, Y.M.; Meshalkin, V.P.; Chistyakova, T.B.; Reverberi, A. Pietro Degradation of Oil and Petroleum Products in Water by Bioorganic Compositions Based on Humic Acids. Energies 2023, 16, 5320. [Google Scholar] [CrossRef]
- Yang, W.; Wei, X.; Fraiwan, A.; Coogan, C.G.; Lee, H.; Choi, S. Fast and Sensitive Water Quality Assessment: A ΜL-Scale Microbial Fuel Cell-Based Biosensor Integrated with an Air-Bubble Trap and Electrochemical Sensing Functionality. Sens. Actuators B Chem. 2016, 226, 191–195. [Google Scholar] [CrossRef]
- Chouler, J.; Cruz-Izquierdo, Á.; Rengaraj, S.; Scott, J.L.; Di Lorenzo, M. A Screen-Printed Paper Microbial Fuel Cell Biosensor for Detection of Toxic Compounds in Water. Biosens. Bioelectron. 2018, 102, 49–56. [Google Scholar] [CrossRef]
- Jiang, Y.; Liang, P.; Liu, P.; Wang, D.; Miao, B.; Huang, X. A Novel Microbial Fuel Cell Sensor with Biocathode Sensing Element. Biosens. Bioelectron. 2017, 94, 344–350. [Google Scholar] [CrossRef]
- Iswantini, D.; Ghozali, A.A.; Kusmana, C.; Nurhidayat, N. Evaluation of Bacterial Biofilm as Biosensor for Detecting Phenol, Catechol, and 1, 2-Dihydroxynaphthalene. HAYATI J. Biosci. 2021, 28, 262–270. [Google Scholar] [CrossRef]
- Chen, Z.; Niu, Y.; Zhao, S.; Khan, A.; Ling, Z.; Chen, Y.; Liu, P.; Li, X. A Novel Biosensor for P-Nitrophenol Based on an Aerobic Anode Microbial Fuel Cell. Biosens. Bioelectron. 2016, 85, 860–868. [Google Scholar] [CrossRef]
- Sevda, S.; Garlapati, V.K.; Naha, S.; Sharma, M.; Ray, S.G.; Sreekrishnan, T.R.; Goswami, P. Biosensing Capabilities of Bioelectrochemical Systems towards Sustainable Water Streams: Technological Implications and Future Prospects. J. Biosci. Bioeng. 2020, 129, 647–656. [Google Scholar] [CrossRef]
- Kaur, A.; Kim, J.R.; Michie, I.; Dinsdale, R.M.; Guwy, A.J.; Premier, G.C.; Centre, S.E.R. Microbial Fuel Cell Type Biosensor for Specific Volatile Fatty Acids Using Acclimated Bacterial Communities. Biosens. Bioelectron. 2013, 47, 50–55. [Google Scholar] [CrossRef]
- Jin, X.; Li, X.; Zhao, N.; Angelidaki, I.; Zhang, Y. Bio-Electrolytic Sensor for Rapid Monitoring of Volatile Fatty Acids in Anaerobic Digestion Process. Water Res. 2017, 111, 74–80. [Google Scholar] [CrossRef]
- Sun, H.; Xu, M.; Wu, S.; Dong, R.; Angelidaki, I.; Zhang, Y. Innovative Air-Cathode Bioelectrochemical Sensor for Monitoring of Total Volatile Fatty Acids during Anaerobic Digestion. Chemosphere 2021, 273, 129660. [Google Scholar] [CrossRef]
- Du, L.; Yan, Y.; Li, T.; Liu, H.; Li, N.; Wang, X. Machine Learning Enables Quantification of Multiple Toxicants with Microbial Electrochemical Sensors. ACS ES&T Eng. 2021, 2, 92–100. [Google Scholar]
- Wolska, K.I.; Grudniak, A.M.; Rudnicka, Z.; Markowska, K. Genetic Control of Bacterial Biofilms. J. Appl. Genet. 2016, 57, 225–238. [Google Scholar] [CrossRef]
- Angelaalincy, M.J.; Navanietha Krishnaraj, R.; Shakambari, G.; Ashokkumar, B.; Kathiresan, S.; Varalakshmi, P. Biofilm Engineering Approaches for Improving the Performance of Microbial Fuel Cells and Bioelectrochemical Systems. Front. Energy Res. 2018, 6, 63. [Google Scholar] [CrossRef]
- Zhuang, Z.; Yang, G.; Zhuang, L. Exopolysaccharides Matrix Affects the Process of Extracellular Electron Transfer in Electroactive Biofilm. Sci. Total Environ. 2022, 806, 150713. [Google Scholar] [CrossRef]
- Leang, C.; Malvankar, N.S.; Franks, A.E.; Nevin, K.P.; Lovley, D.R. Engineering Geobacter sulfurreducens to Produce a Highly Cohesive Conductive Matrix with Enhanced Capacity for Current Production. Energy Environ. Sci. 2013, 6, 1901–1908. [Google Scholar] [CrossRef]
- Hahne, K.; Rödel, G.; Ostermann, K. A Fluorescence-based Yeast Sensor for Monitoring Acetic Acid. Eng. Life Sci. 2021, 21, 303–313. [Google Scholar] [CrossRef]
- Gao, C.; Xu, P.; Ye, C.; Chen, X.; Liu, L. Genetic Circuit-Assisted Smart Microbial Engineering. Trends Microbiol. 2019, 27, 1011–1024. [Google Scholar] [CrossRef]
- Andriukonis, E.; Celiesiute-Germaniene, R.; Ramanavicius, S.; Viter, R.; Ramanavicius, A. From Microorganism-Based Amperometric Biosensors towards Microbial Fuel Cells. Sensors 2021, 21, 2442. [Google Scholar] [CrossRef]
- Remaggi, G.; Zaccarelli, A.; Elviri, L. 3D Printing Technologies in Biosensors Production: Recent Developments. Chemosensors 2022, 10, 65. [Google Scholar] [CrossRef]
- Lehner, B.A.E.; Schmieden, D.T.; Meyer, A.S. A Straightforward Approach for 3D Bacterial Printing. ACS Synth. Biol. 2017, 6, 1124–1130. [Google Scholar] [CrossRef]
- Dubbin, K.; Dong, Z.; Park, D.M.; Alvarado, J.; Su, J.; Wasson, E.; Robertson, C.; Jackson, J.; Bose, A.; Moya, M.L. Projection Microstereolithographic Microbial Bioprinting for Engineered Biofilms. Nano Lett. 2021, 21, 1352–1359. [Google Scholar] [CrossRef]
- Cao, Y.; Mu, H.; Liu, W.; Zhang, R.; Guo, J.; Xian, M.; Liu, H. Electricigens in the Anode of Microbial Fuel Cells: Pure Cultures versus Mixed Communities. Microb. Cell Fact. 2019, 18, 39. [Google Scholar] [CrossRef]
- Ren, J.; Li, N.; Du, M.; Zhang, Y.; Hao, C.; Hu, R. Study on the Effect of Synergy Effect between the Mixed Cultures on the Power Generation of Microbial Fuel Cells. Bioengineered 2021, 12, 844–854. [Google Scholar] [CrossRef]
- Liu, W.; Røder, H.L.; Madsen, J.S.; Bjarnsholt, T.; Sørensen, S.J.; Burmølle, M. Interspecific Bacterial Interactions Are Reflected in Multispecies Biofilm Spatial Organization. Front. Microbiol. 2016, 7, 1366. [Google Scholar] [CrossRef]
- Zhu, K.; Xu, Y.; Yang, X.; Fu, W.; Dang, W.; Yuan, J.; Wang, Z. Sludge Derived Carbon Modified Anode in Microbial Fuel Cell for Performance Improvement and Microbial Community Dynamics. Membranes 2022, 12, 120. [Google Scholar] [CrossRef]
- Schmitz, S.; Rosenbaum, M.A. Boosting Mediated Electron Transfer in Bioelectrochemical Systems with Tailored Defined Microbial Cocultures. Biotechnol. Bioeng. 2018, 115, 2183–2193. [Google Scholar] [CrossRef]
- Kumar, A.; Pandit, S.; Sharma, K.; Mathuriya, A.S.; Prasad, R. Evaluation of Bamboo Derived Biochar as Anode Catalyst in Microbial Fuel Cell for Xylan Degradation Utilizing Microbial Co-Culture. Bioresour. Technol. 2023, 390, 129857. [Google Scholar] [CrossRef]
- Li, Y.; Liu, G.; Shi, H. Expansion of Carbon Source Utilization Range of Shewanella Oneidensis for Efficient Azo Dye Wastewater Treatment through Co-Culture with Lactobacillus plantarum. Arch. Microbiol. 2023, 205, 297. [Google Scholar] [CrossRef]
- McAnulty, M.J.; Poosarla, V.G.; Kim, K.-Y.; Jasso-Chávez, R.; Logan, B.E.; Wood, T.K. Electricity from Methane by Reversing Methanogenesis. Nat. Commun. 2017, 8, 15419. [Google Scholar] [CrossRef]
- Vajravel, S.; Sirin, S.; Kosourov, S.; Allahverdiyeva, Y. Towards Sustainable Ethylene Production with Cyanobacterial Artificial Biofilms. Green. Chem. 2020, 22, 6404–6414. [Google Scholar] [CrossRef]
- Zhang, P.; Zhou, X.; Qi, R.; Gai, P.; Liu, L.; Lv, F.; Wang, S. Conductive Polymer–Exoelectrogen Hybrid Bioelectrode with Improved Biofilm Formation and Extracellular Electron Transport. Adv. Electron. Mater. 2019, 5, 1900320. [Google Scholar] [CrossRef]
- Wu, X.; Zhuang, X.; Lv, Z.; Xin, F.; Dong, W.; Li, Y.; Jia, H. Quorum Sensing Signals from Sludge Improving the Self-Assembly of Electrode Biofilms in Microbial Fuel Cells for Chloramphenicol Degradation. Environ. Sci. Water Res. Technol. 2022, 8, 2531–2544. [Google Scholar] [CrossRef]
- Chen, S.; Jing, X.; Tang, J.; Fang, Y.; Zhou, S. Quorum Sensing Signals Enhance the Electrochemical Activity and Energy Recovery of Mixed-Culture Electroactive Biofilms. Biosens. Bioelectron. 2017, 97, 369–376. [Google Scholar] [CrossRef]
- Sonawane, J.M.; Mahadevan, R.; Pandey, A.; Greener, J. Recent Progress in Microbial Fuel Cells Using Substrates from Diverse Sources. Heliyon 2022, 8, e12353. [Google Scholar] [CrossRef]
- Ye, Y.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Liu, Y.; Nghiem, L.D.; Zhang, X.; Wang, J. Effect of Organic Loading Rate on the Recovery of Nutrients and Energy in a Dual-Chamber Microbial Fuel Cell. Bioresour. Technol. 2019, 281, 367–373. [Google Scholar] [CrossRef]
- Deka, R.; Shreya, S.; Mourya, M.; Sirotiya, V.; Rai, A.; Khan, M.J.; Ahirwar, A.; Schoefs, B.; Bilal, M.; Saratale, G.D. A Techno-Economic Approach for Eliminating Dye Pollutants from Industrial Effluent Employing Microalgae through Microbial Fuel Cells: Barriers and Perspectives. Environ. Res. 2022, 212, 113454. [Google Scholar] [CrossRef]
- Awang, N.; Radzi, A.R.M.; Mahat, R.; Fatihhi, S.J.; Johari, A.; Abd Wahid, K.A.; Yajid, M.A.M. Microbial Fuel Cell in Industrial Wastewater: Treatment Processes and Resource Recovery. In Resource Recovery in Industrial Waste Waters; Elsevier: Amsterdam, The Netherlands, 2023; pp. 353–363. [Google Scholar]
- Liu, Y.; Feng, K.; Li, H. Rapid Conversion from Food Waste to Electricity by Combining Anaerobic Fermentation and Liquid Catalytic Fuel Cell. Appl. Energy 2019, 233, 395–402. [Google Scholar] [CrossRef]
- Kwon, G.; Kang, J.; Nam, J.-H.; Kim, Y.-O.; Jahng, D. Recovery of Ammonia through Struvite Production Using Anaerobic Digestate of Piggery Wastewater and Leachate of Sewage Sludge Ash. Environ. Technol. 2018, 39, 831–842. [Google Scholar] [CrossRef]
- Kim, B.; Jang, N.; Lee, M.; Jang, J.K.; Chang, I.S. Microbial Fuel Cell Driven Mineral Rich Wastewater Treatment Process for Circular Economy by Creating Virtuous Cycles. Bioresour. Technol. 2021, 320, 124254. [Google Scholar] [CrossRef]
- Thapa, B.S.; Pandit, S.; Patwardhan, S.B.; Tripathi, S.; Mathuriya, A.S.; Gupta, P.K.; Lal, R.B.; Tusher, T.R. Application of Microbial Fuel Cell (MFC) for Pharmaceutical Wastewater Treatment: An Overview and Future Perspectives. Sustainability 2022, 14, 8379. [Google Scholar] [CrossRef]
- Lee, H.-S.; Parameswaran, P.; Kato-Marcus, A.; Torres, C.I.; Rittmann, B.E. Evaluation of Energy-Conversion Efficiencies in Microbial Fuel Cells (MFCs) Utilizing Fermentable and Non-Fermentable Substrates. Water Res. 2008, 42, 1501–1510. [Google Scholar] [CrossRef]
- Sun, G.; Thygesen, A.; Meyer, A.S. Acetate Is a Superior Substrate for Microbial Fuel Cell Initiation Preceding Bioethanol Effluent Utilization. Appl. Microbiol. Biotechnol. 2015, 99, 4905–4915. [Google Scholar] [CrossRef]
- Su, Y.; Lu, L.; Zhou, M. Wearable Microbial Fuel Cells for Sustainable Self-Powered Electronic Skins. ACS Appl. Mater. Interfaces 2022, 14, 8664–8668. [Google Scholar] [CrossRef]
- Bratkova, S.; Alexieva, Z.; Angelov, A.; Nikolova, K.; Genova, P.; Ivanov, R.; Gerginova, M.; Peneva, N.; Beschkov, V. Efficiency of Microbial Fuel Cells Based on the Sulfate Reduction by Lactate and Glucose. Int. J. Environ. Sci. Technol. 2019, 16, 6145–6156. [Google Scholar] [CrossRef]
- Spiess, S.; Kucera, J.; Seelajaroen, H.; Sasiain, A.; Thallner, S.; Kremser, K.; Novak, D.; Guebitz, G.M.; Haberbauer, M. Impact of Carbon Felt Electrode Pretreatment on Anodic Biofilm Composition in Microbial Electrolysis Cells. Biosensors 2021, 11, 170. [Google Scholar] [CrossRef]
- Naaz, T.; Kumar, A.; Vempaty, A.; Singhal, N.; Pandit, S.; Gautam, P.; Jung, S.P. Recent Advances in Biological Approaches towards Anode Biofilm Engineering for Improvement of Extracellular Electron Transfer in Microbial Fuel Cells. Environ. Eng. Res. 2023, 28, 220666. [Google Scholar] [CrossRef]
- Yee, M.O.; Deutzmann, J.; Spormann, A.; Rotaru, A.-E. Cultivating Electroactive Microbes—From Field to Bench. Nanotechnology 2020, 31, 174003. [Google Scholar] [CrossRef]
- Kandpal, R.; Shahadat, M.; Ali, S.W.; Hu, C.; Ahammad, S.Z. Material Specific Enrichment of Electroactive Microbes on Polyaniline-Supported Anodes in a Single Chamber Multi-Anode Assembly Microbial Fuel Cell. Mater. Res. Bull. 2023, 157, 111983. [Google Scholar] [CrossRef]
- Yong, Y.; Yu, Y.; Zhang, X.; Song, H. Highly Active Bidirectional Electron Transfer by a Self-assembled Electroactive Reduced-graphene-oxide-hybridized Biofilm. Angew. Chem. Int. Ed. 2014, 53, 4480–4483. [Google Scholar] [CrossRef]
- Li, F.; Li, Y.; Sun, L.; Li, X.; Yin, C.; An, X.; Chen, X.; Tian, Y.; Song, H. Engineering Shewanella oneidensis Enables Xylose-Fed Microbial Fuel Cell. Biotechnol. Biofuels 2017, 10, 196. [Google Scholar] [CrossRef]
- Vellingiri, A.; Song, Y.E.; Munussami, G.; Kim, C.; Park, C.; Jeon, B.; Lee, S.; Kim, J.R. Overexpression of C-type Cytochrome, CymA in Shewanella oneidensis MR-1 for Enhanced Bioelectricity Generation and Cell Growth in a Microbial Fuel Cell. J. Chem. Technol. Biotechnol. 2019, 94, 2115–2122. [Google Scholar] [CrossRef]
- You, L.-X.; Liu, L.-D.; Xiao, Y.; Dai, Y.-F.; Chen, B.-L.; Jiang, Y.-X.; Zhao, F. Flavins Mediate Extracellular Electron Transfer in Gram-Positive Bacillus megaterium Strain LLD-1. Bioelectrochemistry 2018, 119, 196–202. [Google Scholar] [CrossRef]
- Ter Heijne, A.; Pereira, M.A.; Pereira, J.; Sleutels, T. Electron Storage in Electroactive Biofilms. Trends Biotechnol. 2021, 39, 34–42. [Google Scholar] [CrossRef]
- Ullah, Z.; Zeshan, S. Effect of Substrate Type and Concentration on the Performance of a Double Chamber Microbial Fuel Cell. Water Sci. Technol. 2020, 81, 1336–1344. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Q.; Huang, G.; Zhang, L.; Liu, Y. Effect of Dissolved Oxygen Concentration on Nitrogen Removal and Electricity Generation in Self PH-Buffer Microbial Fuel Cell. Int. J. Hydrogen Energy 2020, 45, 34099–34109. [Google Scholar] [CrossRef]
- Tremouli, A.; Martinos, M.; Lyberatos, G. The Effects of Salinity, PH and Temperature on the Performance of a Microbial Fuel Cell. Waste Biomass Valoriz. 2017, 8, 2037–2043. [Google Scholar] [CrossRef]
- Tang, L.; Li, X.; Zhao, Y.; Fu, F.; Ren, Y.; Wang, X. Effect of Stirring Rates in Anodic Area of Sediment Microbial Fuel Cell on Its Power Generation. Energy Sources Part A Recover. Util. Environ. Eff. 2017, 39, 23–28. [Google Scholar] [CrossRef]
- Koók, L.; Nemestóthy, N.; Bélafi-Bakó, K.; Bakonyi, P. Investigating the Specific Role of External Load on the Performance versus Stability Trade-off in Microbial Fuel Cells. Bioresour. Technol. 2020, 309, 123313. [Google Scholar] [CrossRef]
- Li, X.; Lu, Y.; Luo, H.; Liu, G.; Torres, C.I.; Zhang, R. Effect of PH on Bacterial Distributions within Cathodic Biofilm of the Microbial Fuel Cell with Maltodextrin as the Substrate. Chemosphere 2021, 265, 129088. [Google Scholar] [CrossRef]
- Xing, F.; Xi, H.; Yu, Y.; Zhou, Y. Anode Biofilm Influence on the Toxic Response of Microbial Fuel Cells under Different Operating Conditions. Sci. Total Environ. 2021, 775, 145048. [Google Scholar] [CrossRef]
- Tan, S.-M.; Ong, S.-A.; Ho, L.-N.; Wong, Y.-S.; Thung, W.-E.; Teoh, T.-P. The Reaction of Wastewater Treatment and Power Generation of Single Chamber Microbial Fuel Cell against Substrate Concentration and Anode Distributions. J. Environ. Health Sci. Eng. 2020, 18, 793–807. [Google Scholar] [CrossRef]
- Rahmani, A.R.; Navidjouy, N.; Rahimnejad, M.; Alizadeh, S.; Samarghandi, M.R.; Nematollahi, D. Effect of Different Concentrations of Substrate in Microbial Fuel Cells toward Bioenergy Recovery and Simultaneous Wastewater Treatment. Environ. Technol. 2022, 43, 1–9. [Google Scholar] [CrossRef]
- Nawaz, A.; Hafeez, A.; Abbas, S.Z.; Haq, I.U.; Mukhtar, H.; Rafatullah, M. A State of the Art Review on Electron Transfer Mechanisms, Characteristics, Applications and Recent Advancements in Microbial Fuel Cells Technology. Green Chem. Lett. Rev. 2020, 13, 365–381. [Google Scholar] [CrossRef]
- Kakarla, R.; Min, B. Sustainable Electricity Generation and Ammonium Removal by Microbial Fuel Cell with a Microalgae Assisted Cathode at Various Environmental Conditions. Bioresour. Technol. 2019, 284, 161–167. [Google Scholar] [CrossRef]
- Heidrich, E.S.; Dolfing, J.; Wade, M.J.; Sloan, W.T.; Quince, C.; Curtis, T.P. Temperature, Inocula and Substrate: Contrasting Electroactive Consortia, Diversity and Performance in Microbial Fuel Cells. Bioelectrochemistry 2018, 119, 43–50. [Google Scholar] [CrossRef]
- Jatoi, A.S.; Akhter, F.; Mazari, S.A.; Sabzoi, N.; Aziz, S.; Soomro, S.A.; Mubarak, N.M.; Baloch, H.; Memon, A.Q.; Ahmed, S. Advanced Microbial Fuel Cell for Waste Water Treatment—A Review. Environ. Sci. Pollut. Res. 2021, 28, 5005–5019. [Google Scholar] [CrossRef]
- Flimban, S.G.A.; Ismail, I.M.I.; Kim, T.; Oh, S.-E. Overview of Recent Advancements in the Microbial Fuel Cell from Fundamentals to Applications: Design, Major Elements, and Scalability. Energies 2019, 12, 3390. [Google Scholar] [CrossRef]
- Gul, H.; Raza, W.; Lee, J.; Azam, M.; Ashraf, M.; Kim, K.-H. Progress in Microbial Fuel Cell Technology for Wastewater Treatment and Energy Harvesting. Chemosphere 2021, 281, 130828. [Google Scholar] [CrossRef]
- Dwivedi, K.A.; Huang, S.-J.; Wang, C.-T. Integration of Various Technology-Based Approaches for Enhancing the Performance of Microbial Fuel Cell Technology: A Review. Chemosphere 2022, 287, 132248. [Google Scholar] [CrossRef]
- Ida, T.K.; Mandal, B. Microbial Fuel Cell Design, Application and Performance: A Review. Mater. Today Proc. 2023, 76, 88–94. [Google Scholar]
- Agrahari, R.; Bayar, B.; Abubackar, H.N.; Giri, B.S.; Rene, E.R.; Rani, R. Advances in the Development of Electrode Materials for Improving the Reactor Kinetics in Microbial Fuel Cells. Chemosphere 2022, 290, 133184. [Google Scholar] [CrossRef]
- Kuznetsova, L.S.; Arlyapov, V.A.; Plekhanova, Y.V.; Tarasov, S.E.; Kharkova, A.S.; Saverina, E.A.; Reshetilov, A.N. Conductive Polymers and Their Nanocomposites: Application Features in Biosensors and Biofuel Cells. Polymers 2023, 15, 3783. [Google Scholar] [CrossRef]
- Abd-Elrahman, N.K.; Al-Harbi, N.; Basfer, N.M.; Al-Hadeethi, Y.; Umar, A.; Akbar, S. Applications of Nanomaterials in Microbial Fuel Cells: A Review. Molecules 2022, 27, 7483. [Google Scholar] [CrossRef]
- Kolubah, P.D.; Mohamed, H.O.; Ayach, M.; Hari, A.R.; Alshareef, H.N.; Saikaly, P.; Chae, K.-J.; Castaño, P. W2N-MXene Composite Anode Catalyst for Efficient Microbial Fuel Cells Using Domestic Wastewater. Chem. Eng. J. 2023, 461, 141821. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, J.; Zhang, Y.; Guo, Q.; Hu, T.; Xiao, H.; Lu, W.; Jia, J. Progress on Anodic Modification Materials and Future Development Directions in Microbial Fuel Cells. J. Power Sources 2023, 556, 232486. [Google Scholar] [CrossRef]
- Qian, S.; Wu, X.; Shi, Z.; Li, X.; Sun, X.; Ma, Y.; Sun, W.; Guo, C.; Li, C. Tuning Electrospinning Hierarchically Porous Nanowires Anode for Enhanced Bioelectrocatalysis in Microbial Fuel Cells. Nano Res. 2022, 15, 5089–5097. [Google Scholar] [CrossRef]
- Nasruddin, N.I.S.M.; Abu Bakar, M.H. Mitigating Membrane Biofouling in Biofuel Cell System—A Review. Open Chem. 2021, 19, 1193–1206. [Google Scholar] [CrossRef]
- Elangovan, M.; Dharmalingam, S. Effect of Polydopamine on Quaternized Poly (Ether Ether Ketone) for Antibiofouling Anion Exchange Membrane in Microbial Fuel Cell. Polym. Adv. Technol. 2018, 29, 275–284. [Google Scholar] [CrossRef]
- Solomon, J.; Dharmalingam, S. Modified Polymer Electrolyte Membrane for Microbial Fuel Cell: Performance Analysis, Investigation on Anti-Biofouling Effect, and Microbial Community Analysis on Biofouled Membrane. J. Power Sources 2023, 580, 233452. [Google Scholar] [CrossRef]
- Zhang, S.; Hui, Y.; Han, B. Effects of Three Types of Separator Membranes on the Microbial Fuel Cells Performance. In Proceedings of the 2015 International Conference on Mechatronics, Electronic, Industrial and Control Engineering (MEIC-15), Shenyang, China, 1–3 April 2015; Atlantis Press: Amsterdam, the Netherlands, 2015; pp. 1592–1596. [Google Scholar]
- Aktij, S.A.; Taghipour, A.; Rahimpour, A.; Mollahosseini, A.; Tiraferri, A. A Critical Review on Ultrasonic-Assisted Fouling Control and Cleaning of Fouled Membranes. Ultrasonics 2020, 108, 106228. [Google Scholar] [CrossRef]
- Pasternak, G.; de Rosset, A.; Tyszkiewicz, N.; Widera, B.; Greenman, J.; Ieropoulos, I. Prevention and Removal of Membrane and Separator Biofouling in Bioelectrochemical Systems-a Comprehensive Review. IScience 2022, 25, 104510. [Google Scholar] [CrossRef]
- Blatter, M.; Delabays, L.; Furrer, C.; Huguenin, G.; Cachelin, C.P.; Fischer, F. Stretched 1000-L Microbial Fuel Cell. J. Power Sources 2021, 483, 229130. [Google Scholar] [CrossRef]
- Rossi, R.; Hur, A.Y.; Page, M.A.; Thomas, A.O.; Butkiewicz, J.J.; Jones, D.W.; Baek, G.; Saikaly, P.E.; Cropek, D.M.; Logan, B.E. Pilot Scale Microbial Fuel Cells Using Air Cathodes for Producing Electricity While Treating Wastewater. Water Res. 2022, 215, 118208. [Google Scholar] [CrossRef]
- Heinrichmeier, J.; Littfinski, T.; Vasyukova, E.; Steuernagel, L.; Wichern, M. On-Site Performance Evaluation of a 1000-Litre Microbial Fuel Cell System Using Submergible Multi-Electrode Modules with Air-Cathodes for Sustainable Municipal Wastewater Treatment and Electricity Generation. Water Sci. Technol. 2023, 87, 1969–1981. [Google Scholar] [CrossRef]
- Abdallah, M.; Feroz, S.; Alani, S.; Sayed, E.T.; Shanableh, A. Continuous and Scalable Applications of Microbial Fuel Cells: A Critical Review. Rev. Environ. Sci. Bio/Technol. 2019, 18, 543–578. [Google Scholar] [CrossRef]
- Ge, Z.; He, Z. Long-Term Performance of a 200 Liter Modularized Microbial Fuel Cell System Treating Municipal Wastewater: Treatment, Energy, and Cost. Environ. Sci. Water Res. Technol. 2016, 2, 274–281. [Google Scholar] [CrossRef]
- Mehravanfar, H.; Mahdavi, M.A.; Gheshlaghi, R. Economic Optimization of Stacked Microbial Fuel Cells to Maximize Power Generation and Treatment of Wastewater with Minimal Operating Costs. Int. J. Hydrogen Energy 2019, 44, 20355–20367. [Google Scholar] [CrossRef]
- Liang, P.; Duan, R.; Jiang, Y.; Zhang, X.; Qiu, Y.; Huang, X. One-Year Operation of 1000-L Modularized Microbial Fuel Cell for Municipal Wastewater Treatment. Water Res. 2018, 141, 1–8. [Google Scholar] [CrossRef]
- Dutta, A.; Jacob, C.A.; Das, P.; Corton, E.; Stom, D.; Barbora, L.; Goswami, P. A Review on Power Management Systems: An Electronic Tool to Enable Microbial Fuel Cells for Powering Range of Electronic Appliances. J. Power Sources 2022, 517, 230688. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayashi, T.; Iwasaki, H.; Awatsu, M.; Yokoyama, H. Ultra-Low-Power Energy Harvester for Microbial Fuel Cells and Its Application to Environmental Sensing and Long-Range Wireless Data Transmission. J. Power Sources 2019, 430, 1–11. [Google Scholar] [CrossRef]
- Okabe, S. High Electrical Energy Harvesting Performance of an Integrated Microbial Fuel Cell and Low Voltage Booster-Rectifier System Treating Domestic Wastewater. Bioresour. Technol. 2022, 359, 127455. [Google Scholar]
- Nguyen, C.-L.; Tartakovsky, B.; Woodward, L. Harvesting Energy from Multiple Microbial Fuel Cells with a High-Conversion Efficiency Power Management System. ACS Omega 2019, 4, 18978–18986. [Google Scholar] [CrossRef]
- Potter, M.C. Electrical Effects Accompanying the Decomposition of Organic Compounds. Proc. R. Soc. London Ser. b Contain. Pap. Biol. Character 1911, 84, 260–276. [Google Scholar]
- Bennetto, H.P.; Stirling, J.L.; Tanaka, K.; Vega, C.A. Anodic Reactions in Microbial Fuel Cells. Biotechnol. Bioeng. 1983, 25, 559–568. [Google Scholar] [CrossRef]
- Santoro, C.; Brown, M.; Gajda, I.; Greenman, J.; Obata, O.; García, M.J.S.; Theodosiou, P.; Walter, A.; Winfield, J.; You, J. Microbial Fuel Cells, Concept, and Applications. In Handbook of Cell Biosensors; Springer: Berlin/Heidelberg, Germany, 2021; pp. 875–909. [Google Scholar]
- Sayed, E.T.; Rezk, H.; Abdelkareem, M.A.; Olabi, A.G. Artificial Neural Network Based Modelling and Optimization of Microalgae Microbial Fuel Cell. Int. J. Hydrogen Energy 2023, 52, 1015–1025. [Google Scholar] [CrossRef]
- Lim, C.E.; Chew, C.L.; Pan, G.-T.; Chong, S.; Arumugasamy, S.K.; Lim, J.W.; Al-Kahtani, A.A.; Ng, H.-S.; Abdurrahman, M. Predicting Microbial Fuel Cell Biofilm Communities and Power Generation from Wastewaters with Artificial Neural Network. Int. J. Hydrogen Energy 2023, 52, 1052–1064. [Google Scholar] [CrossRef]
- Berlitz, C.A.; Pietrelli, A.; Mieyeville, F.; Pillonnet, G.; Allard, B. Microbial Fuel Cell as Battery Range Extender for Frugal IoT. Energies 2023, 16, 6501. [Google Scholar] [CrossRef]
- Nelsen, M.P.; Lücking, R.; Boyce, C.K.; Lumbsch, H.T.; Ree, R.H. No Support for the Emergence of Lichens Prior to the Evolution of Vascular Plants. Geobiology 2020, 18, 3–13. [Google Scholar] [CrossRef]
- Antonelli, M.L.; Campanella, L.; Ercole, P. Lichen-Based Biosensor for the Determination of Benzene and 2-Chlorophenol: Microcalorimetric and Amperometric Investigations. Anal. Bioanal. Chem. 2005, 381, 1041–1048. [Google Scholar] [CrossRef]
The Composition of the Biofilm | The Time of Colonization | The Electrode | Detection Range | Analysis Time | Real Samples | Reference |
---|---|---|---|---|---|---|
Shewanella loihica PV-4 | At least 5 days | Carbon cloth 2.5 cm × 2.5 cm | 43.5–435 mg/L | 1 h | Electrolytes containing various concentrations of sodium lactate | [132] |
Microbial community with a predominant dominance of three species Citrobacter freundii, Aeromonas hydrophila and Desulfovibrio desulfuricans | From 22 to 140 h | Carbon brushes with a diameter of 2.50 cm and length of 2.50 cm | 10–80 mg L−1 | 0.25 h | Wastewater | [135] |
Microorganisms contained in contaminated water samples | 2 months | A piece of not wet-proofed carbon paper 9 cm2 | 0–250 mg/L | 0.67 h | Real contaminated groundwater | [136] |
Bacterial inoculum | Secondary biofilm | Carbon cloth, coated with single-walled carbon nanotubes, the size of the anode was 10 mm × 10 mm | 49–492 mg/L | - | Artificial wastewater | [137] |
Effluent enriched with Geobacter genus (98%) | About 1 year | Carbon felt with a geometric surface area of 16 cm2 | 0–250 mg/L | 2 min | Domestic wastewater from Waterloo wastewater treatment plant (ON, Canada) | [138] |
Inoculated with mixed culture anaerobic sludge | 4–6 weeks | Carbon felt 0.3 cm in diameter and 0.3 cm in thickness | Up to 300 mg L−1 | 10 min | Synthetic wastewater | [139] |
Pre-cultured electroactive bacteria isolated from activated sludge | 5 days | Carbon fiber veil with a total macro-surface area of 1250 cm2, wrapped around a ceramic cylinder | Up to 149.7 ± mg O2 L−1 | 5 min | Water samples from the Cotswold Water Park (UK) | [140] |
Bacterial community with a dominant presence Geobacter | - | Carbon felt size 2 cm×2 cm | 25–400 mg L−1 | - | Synthetic wastewaters | [141] |
Activated sludge with a predominant content of genera Aquabacterium and the aerobic denitrifier Thauera | 2 weeks | A stainless-steel mesh size 220 mm × 760 mm × 0.5 mm | 40 to 200 mg/L | 6 h | Swine wastewater | [142] |
A microbial community with a predominance of Proteobacteria, Firmicutes, and Bacteroidetes | 48 h | The aerogel of carbonized Luffa cylindrica (LC) was used as the scaffold for loading biofilm and FeS2 nanoparticles (FeS2NPs) were employed to modify this aerogel (FeS2NPs/GelLC) | 6–30 mg/L | 30–100 min | Water samples from Lake Chagan | [143] |
Geobacter-enriched mixed bacterial culture from anaerobic digester sludge | 40–44 h | Carbon cloth size 10 mm × 4 mm | 20−490 mg/L | 1.1 min | Wastewater samples from municipal wastewater treatment plant | [144] |
Bacterial inoculum was obtained from effluent of an acetate-fed microbial electrolysis cell (MEC) mother reactor that had mixed bacterial culture from anaerobic digester sludge. | 24 h | Carbon cloth size 10 × 10 mm | Up to 400 mg/L | 10 min | Wastewater samples from the Toronto wastewater treatment plant and the Burlington wastewater treatment plant | [145] |
Yeast | 2 weeks | Carbon felt with a projected active area of 7 cm2 | 0−10 mg/L | 30 min | The lake, river, and tap water samples | [146] |
Bacteroidetes, Proteobacteria, and Firmicutes were the major functional bacteria (92%) | 1 year | Carbon cloth with diameter of 2.8 cm | 20 to 500 mg/L | 15 min | Synthetic wastewaters | [147] |
The Composition of the Biofilm | The Time of Colonization | Working Electrode | Limits of Detection | Analysis Time | Real Sample | References |
---|---|---|---|---|---|---|
Heavy Metal Ions | ||||||
Activated sludge | 10 days | Mg: 0.01 mg∙L−1; Pb: 0.1 mg∙L−1; | 1 h | Inlet of the wastewater treatment plant | [172] | |
Engineered HJFbgrTM Bacillus subtilis biofilm | 6 days | Biochar | Pb, Cu: 0.1 μM; Hg2+: 0.01 μM; | 12 h | Contaminated soil | [173] |
Microbial community from sediment soil, mostly Proteobacteria | 30 days | Carbon felt | Cd2+, Zn2+: 1 mg/L; Pb2+, Hg2+: 0.5 mg/L | 30 min | Lake water samples | [174] |
Mixed microbial culture from industrial wastewater | 2 weeks | Graphite | 5 mg/L for Cu2+, Cr6+, Zn2+, Ni2+ | 2 h | Industrial wastewater | [175] |
E. coli BL21 engineered to express genes with PzntA promoter, which could sense zinc | 120 h | Carbon felt | Zn: 20 μM | 15 h | Synthetic wastewater | [176] |
Enriched microbial culture from secondary sedimentation tank sludge | 50 h | Carbon felt | Cd: 0.1 mg L−1 Cr6+, Zn2+, Cd2+: 1 mg L−1 | 30 min | - | [177] |
Inoculated aerobic sludge | 35 h | Carbon felt | Cu2+: 1 mg/L | 5 h | - | [178] |
Pesticides | ||||||
Anaerobic sludge | 7 days | Carbon cloth, 0.32 cm2 | Atrazine, 0.05–0.3 ppm | 24.4 ± 7.7 min | - | [166] |
Algae Chlamydomonas reinhardtii | 24 h | Screen-printed electrodes modified with carbon black nanoparticles | Atrazine, 0.1 and 50 μM; RSD of 1.1%; storage stability up to 3 weeks | 15 min | River water | [179] |
Cyanobacterium Synechocystis PCC6803 wt. | 48 h | A filter paper sheet was covered with seven layers of single-walled carbon nanotube paint | Atrazine, diuron, and paraquat; 10.7, 0.5, 0.7 mM; stability >20 days | 250 min | [168] | |
Artificial multi-species biofilm from E. coli, S. cerevisiae, and B. subtilis | 24 h | Platinum disc covered with a piece of PVA–alginate microbial biofilm attached | 3,5-dcp—1 mg/L; Ametryn, acephate, and thiram—5 mg/L | 20 min | River water, wastewater from garbage-treatment plant, and landfill wastewater | [180,181] |
Algae Scenedesmus obliquus | 24 h | Acid-treated carbon graphite felt | Atrazine—0.5 mg/L | 2 h | - | [182] |
Mixed biofilm from Proteobacteria, Bacilli, Deltaproteobacteria, and Betaproteobacteria | 48 h | Aerogel of carbonized Luffa cylindrica with FeS2 nanoparticles | 3,5-dcp—10 mg/L | 30 min | Water from Lake Chagan | [143] |
Geobacter-dominated mixed biofilms | 15 days | Carbon cloth treated by ammonia | Avermectin and ivermectin—1.0 mg/L | 70 min | - | [183] |
Antibiotics | ||||||
Escherichia coli/pMTLacZ | Filter paper strips (1 × 4 cm) | Tetracycline; detection limits of 5.23–17.1 μg/L for water and 5.21–35.3 μg/kg for the EDTA soil extracts; range of 75–10,000 μg/L in water and 75–7500 μg/L in soil extracts | 90 min | Water; soil extracts | [184] | |
Escherichia coli SN0301 | >20 h | Microplate, fluorescence | 8 pg/mL of meropenem and 40 pg/mL of imipenem; 1–10 ng/mL for penicillins and cephalosporins | [185] | ||
Anaerobic digestion sludge | 7 days | Three-dimensional porous pristine carbon fiber | Neomycin—0.01 mg L−1 | 1 h | Domestic wastewater treatment plant | [186] |
Pseudomonas putida TSh-18 biofilm | 4 days | Microplate, fluorescence | Ampicillin—0.5 μg/mL | 24 h | - | [187] |
Recombinant plasmids transferred into Escherichia coli DH5α | 12 h | Microplate, fluorescence | Tetracycline—30 μg/L | 1 h | Lake water and tap water | [188] |
Geobacter-dominated mixed biofilms | 15 days | Carbon cloth treated by ammonia | Chlortetracycline—1.0 mg/L | 70 min | - | [183] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perchikov, R.; Cheliukanov, M.; Plekhanova, Y.; Tarasov, S.; Kharkova, A.; Butusov, D.; Arlyapov, V.; Nakamura, H.; Reshetilov, A. Microbial Biofilms: Features of Formation and Potential for Use in Bioelectrochemical Devices. Biosensors 2024, 14, 302. https://doi.org/10.3390/bios14060302
Perchikov R, Cheliukanov M, Plekhanova Y, Tarasov S, Kharkova A, Butusov D, Arlyapov V, Nakamura H, Reshetilov A. Microbial Biofilms: Features of Formation and Potential for Use in Bioelectrochemical Devices. Biosensors. 2024; 14(6):302. https://doi.org/10.3390/bios14060302
Chicago/Turabian StylePerchikov, Roman, Maxim Cheliukanov, Yulia Plekhanova, Sergei Tarasov, Anna Kharkova, Denis Butusov, Vyacheslav Arlyapov, Hideaki Nakamura, and Anatoly Reshetilov. 2024. "Microbial Biofilms: Features of Formation and Potential for Use in Bioelectrochemical Devices" Biosensors 14, no. 6: 302. https://doi.org/10.3390/bios14060302
APA StylePerchikov, R., Cheliukanov, M., Plekhanova, Y., Tarasov, S., Kharkova, A., Butusov, D., Arlyapov, V., Nakamura, H., & Reshetilov, A. (2024). Microbial Biofilms: Features of Formation and Potential for Use in Bioelectrochemical Devices. Biosensors, 14(6), 302. https://doi.org/10.3390/bios14060302