Terahertz Fingerprint Metasurface Sensor Based on Temperature Variation for Trace Molecules
Abstract
:1. Introduction
2. Structure and Design
3. Result and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ryu, Y.S.; Lee, D.K.; Kang, J.H.; Lee, S.H.; Yu, E.S.; Seo, M. Ultrasensitive terahertz sensing of gold nanoparticles inside nano slot antennas. Opt. Express 2017, 25, 30591–30597. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Han, Z.; Qin, J.; Wang, Y.; Zhao, Z. A sensitive and selective terahertz sensor for the fingerprint detection of lactose. Talanta 2019, 192, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, Z.; Lin, S.; Jiang, S.; Liu, X.; Guo, S. Low-cost flexible plasmonic nanobump metasurfaces for label-free sensing of serum tumor marker. Biosens. Bioelectron. 2020, 150, 111905. [Google Scholar] [CrossRef]
- Dong, L.; Yang, X.; Zhang, C.; Cerjan, B.; Zhou, L.; Tseng, M.L.; Zhang, Y.; Alabastri, A.; Nordlander, P.; Halas, N.J. Nanogapped Au Antennas for Ultrasensitive Surface-Enhanced Infrared Absorption Spectroscopy. Nano Lett. 2017, 17, 5768–5774. [Google Scholar] [CrossRef] [PubMed]
- Koalla, R.; Mukherjee, S.; Mangali, S.; Vaitheeswaran, G.; Kumar Chaudhary, A. Experimental and theoretical investigation of Low-Frequency vibrational modes of 4-Amino 3,5 Dinitro Pyrazole in terahertz frequency domain. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 313, 124092. [Google Scholar] [CrossRef]
- Naftaly, M.; Miles, R.E. Terahertz Time-Domain Spectroscopy for Material Characterization. Proc. IEEE 2007, 95, 1658–1665. [Google Scholar] [CrossRef]
- Koumans, M.; Meulendijks, D.; Middeljans, H.; Peeters, D.; Douma, J.C.; van Mechelen, D. Physics-assisted machine learning for THz time-domain spectroscopy: Sensing leaf wetness. Sci. Rep. 2024, 14, 7034. [Google Scholar] [CrossRef]
- Wu, J.; Wu, J.; Li, J.; Shang, Y.; Chen, L. Molecular Dynamics Simulations of the Thermal Decomposition of RDX/HTPB Explosives. ACS Omega 2023, 8, 18851–18862. [Google Scholar] [CrossRef]
- He, X.; Zhang, Q.; Wang, M.; Liu, Q.; Liu, K.; Li, G.; Kang, Y.; Deng, H.; Shang, L. Terahertz spectral properties of temperature induced phase transition of CL-20. Infrared Laser Eng. 2022, 51, 287–293. [Google Scholar] [CrossRef]
- Duan, Y.; Liu, Q.; Wang, M.; Zhu, Y.; Zhang, Q.; Duan, X.; Deng, H.; Shang, L. Insights into temperature-induced phase transition mechanism of CL-20 using terahertz spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 307, 123640. [Google Scholar] [CrossRef]
- Cubukcu, E.; Zhang, S.; Park, Y.-S.; Bartal, G.; Zhang, X. Split ring resonator sensors for infrared detection of single molecular monolayers. Appl. Phys. Lett. 2009, 95, 043113. [Google Scholar] [CrossRef]
- Qin, J.; Cheng, W.; Han, B.; Du, Y.; Han, Z.; Zhao, Z. Ultrasensitive detection of saccharides using terahertz sensor based on metallic nano-slits. Sci. Rep. 2020, 10, 3712. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Han, Z.; Du, Y.; Qin, J. Highly sensitive terahertz fingerprint sensing with high-Q guided resonance in photonic crystal cavity. Opt. Express 2019, 27, 16071–16079. [Google Scholar] [CrossRef]
- Shi, X.; Qin, J.; Han, Z. Enhanced terahertz sensing with a coupled comb-shaped spoof surface plasmon waveguide. Opt. Express 2017, 25, 278–283. [Google Scholar] [CrossRef]
- Cen, W.; Lang, T.; Wang, J.; Xiao, M. High-Q Fano Terahertz resonance based on bound states in the continuum in All-dielectric metasurface. Appl. Surf. Sci. 2022, 575, 151723. [Google Scholar] [CrossRef]
- Wang, Y.; Han, Z.; Du, Y.; Qin, J. Ultrasensitive terahertz sensing with high-Q toroidal dipole resonance governed by bound states in the continuum in all-dielectric metasurface. Nanophotonics 2021, 10, 1295–1307. [Google Scholar] [CrossRef]
- He, Y.; Guo, G.; Feng, T.; Xu, Y.; Miroshnichenko, A.E. Toroidal dipole bound states in the continuum. Phys. Rev. B 2018, 98, 161112. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, C.; Kaj, K.; Hammock, I.; Huang, Y.; Averitt, R.D.; Zhang, X. Terahertz investigation of bound states in the continuum of metallic metasurfaces. Optica 2020, 7, 1548–1554. [Google Scholar] [CrossRef]
- Li, R.; Li, Z.; Jiang, Y. Terahertz biosensor integrated with Au nanoparticles to improve the sensing performance. Appl. Opt. 2023, 62, 5069–5076. [Google Scholar] [CrossRef]
- Han, S.; Rybin, M.V.; Pitchappa, P.; Srivastava, Y.K.; Kivshar, Y.S.; Singh, R. Guided-Mode Resonances in All-Dielectric Terahertz Metasurfaces. Adv. Opt. Mater. 2020, 8, 1900959. [Google Scholar] [CrossRef]
- Xue, Y.; Zhang, S.; Lin, J.; Wang, W.; Chai, Z.; Sun, M.; Shi, Y.; Zhang, Y. Metasurface-based sensor with terahertz molecular fingerprint enhancement in trace additives identification. J. Phys. D Appl. Phys. 2024, 57, 235104. [Google Scholar] [CrossRef]
- Tittl, A.; Leitis, A.; Liu, M.; Yesilkoy, F.; Choi, D.Y.; Neshev, D.N.; Kivshar, Y.S.; Altug, H. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 2018, 360, 1105–1109. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Jiang, S.; Xie, Y.; Li, F.; Du, L.; Meng, K.; Zhu, L.; Zhou, J. Enhancing terahertz molecular fingerprint detection by a dielectric metagrating. Opt. Lett. 2020, 45, 2335–2338. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.K.; Kang, J.H.; Lee, J.S.; Kim, H.S.; Kim, C.; Kim, J.H.; Lee, T.; Son, J.H.; Park, Q.H.; Seo, M. Highly sensitive and selective sugar detection by terahertz nano-antennas. Sci. Rep. 2015, 5, 15459. [Google Scholar] [CrossRef] [PubMed]
- Seo, M.A.; Park, H.R.; Koo, S.M.; Park, D.J.; Kang, J.H.; Suwal, O.K.; Choi, S.S.; Planken, P.C.M.; Park, G.S.; Park, N.K.; et al. Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit. Nat. Photonics 2009, 3, 152–156. [Google Scholar] [CrossRef]
- Xie, Y.; Zakharian, A.R.; Moloney, J.V.; Mansuripur, M. Transmission of light through periodic arrays of sub-wavelength slits in metallic hosts. Opt. Express 2006, 14, 6400–6413. [Google Scholar] [CrossRef] [PubMed]
- Ahmadivand, A.; Gerislioglu, B.; Ahuja, R.; Kumar Mishra, Y. Terahertz plasmonics: The rise of toroidal metadevices towards immunobiosensings. Mater. Today 2020, 32, 108–130. [Google Scholar] [CrossRef]
- Lin, S.; Bhattarai, K.; Zhou, J.; Talbayev, D. Thin InSb layers with metallic gratings: A novel platform for spectrally-selective THz plasmonic sensing. Opt. Express 2016, 24, 19448–19457. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Liu, B.; Lu, P.; Peng, Y. Rapid Determination of Ochratoxin A in Black Tea Using Terahertz Ultrasensitive Biosensor. Photonics 2024, 11, 9. [Google Scholar] [CrossRef]
- Tan, C.Z.; Arndt, J. Temperature dependence of refractive index of glassy SiO2 in the infrared wavelength range. J. Phys. Chem. Solids 2000, 61, 1315–1320. [Google Scholar] [CrossRef]
- Davies, C.L.; Patel, J.B.; Xia, C.Q.; Herz, L.M.; Johnston, M.B. Temperature-Dependent Refractive Index of Quartz at Terahertz Frequencies. J. Infrared Millim. Terahertz Waves 2018, 39, 1236–1248. [Google Scholar] [CrossRef]
- Gong, J.; Dai, R.; Wang, Z.; Zhang, C.; Yuan, X.; Zhang, Z. Temperature dependent optical constants for SiO2 film on Si substrate by ellipsometry. Mater. Res. Express 2017, 4, 085005. [Google Scholar] [CrossRef]
- Howells, S.C.; Schlie, L.A. Transient terahertz reflection spectroscopy of undoped InSb from 0.1 to 1.1 THz. Appl. Phys. Lett. 1996, 69, 550–552. [Google Scholar] [CrossRef]
- Oszwałldowski, M.; Zimpel, M. Temperature dependence of intrinsic carrier concentration and density of states effective mass of heavy holes in InSb. J. Phys. Chem. Solids 1988, 49, 1179–1185. [Google Scholar] [CrossRef]
- Dai, X.; Xiang, Y.; Wen, S.; He, H. Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb. J. Appl. Phys. 2011, 109. [Google Scholar] [CrossRef]
- Seo, M.; Park, H.R. Terahertz Biochemical Molecule-Specific Sensors. Adv. Opt. Mater. 2019, 8, 1900662. [Google Scholar] [CrossRef]
- Novitsky, A.; Zalkovskij, M.; Malureanu, R.; Lavrinenko, A. Microscopic model of the THz field enhancement in a metal nanoslit. Opt. Commun. 2011, 284, 5495–5500. [Google Scholar] [CrossRef]
- Park, H.-R.; Ahn, K.J.; Han, S.; Bahk, Y.-M.; Park, N.; Kim, D.-S. Colossal Absorption of Molecules Inside Single Terahertz Nanoantennas. Nano Lett. 2013, 13, 1782–1786. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.H.; Choe, J.-H.; Kim, D.S.; Park, Q.H. Substrate effect on aperture resonances in a thin metal film. Opt. Express 2009, 17, 15652–15658. [Google Scholar] [CrossRef]
- Bahk, Y.-M.; Choi, J.-W.; Kyoung, J.; Park, H.-R.; Ahn, K.J.; Kim, D.-S. Selective enhanced resonances of two asymmetric terahertz nano resonators. Opt. Express 2012, 20, 25644–25653. [Google Scholar] [CrossRef]
- Zhong, Y.; Du, L.; Liu, Q.; Zhu, L.; Meng, K.; Zou, Y.; Zhang, B. Ultrasensitive specific sensor based on all-dielectric metasurfaces in the terahertz range. RSC Adv. 2020, 10, 33018–33025. [Google Scholar] [CrossRef]
- Xie, Y.; Ma, Y.; Liu, X.; Khan, S.A.; Chen, W.; Zhu, L.; Zhu, J.; Liu, Q.H. Dual-Degree-of-Freedom Multiplexed Metasensor Based on Quasi-BICs for Boosting Broadband Trace Isomer Detection by THz Molecular Fingerprint. IEEE J. Sel. Top. Quantum Electron. 2023, 29, 1–10. [Google Scholar] [CrossRef]
- Chen, H.; Han, J.; Liu, J.; Gao, L.; Ma, S. Identification of chiral lansoprazole drugs using THz fingerprint spectroscopy. Chem. Pap. 2023, 77, 887–893. [Google Scholar] [CrossRef]
- Dorney, T.D.; Baraniuk, R.G.; Mittleman, D.M. Material parameter estimation with terahertz time-domain spectroscopy. J. Opt. Soc. Am. A 2001, 18, 1562–1571. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, Y.; Zhao, H.; Bastiaans, G.J.; Zhang, X.C. Absorption coefficients of selected explosives and related compounds in the range of 0.1–2.8 THz. Opt. Express 2007, 15, 12060–12067. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Nie, L.; Wu, H.; Zhang, L.; Yan, D. Enhancing THz fingerprint detection by the stretchable substrate with a dielectric metagrating. Appl. Opt. 2023, 62, 9028–9035. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Xu, L.; Wang, J.; Jiao, Y.; Ma, Z.; Ma, Z.; Chang, C.; Yang, X.; Wang, R. A pixelated frequency-agile metasurface for broadband terahertz molecular fingerprint sensing. Nanoscale 2022, 14, 9681–9685. [Google Scholar] [CrossRef]
- Meng, D.; Liu, J.; Chen, W.; Cheng, Y.-Y.; You, K.-W.; Fan, Z.-C.; Ye, Q.; Huang, P.-H.; Chen, Y.-S. Study on the enhancement mechanism of terahertz molecular fingerprint sensing. Results Phys. 2022, 39, 105766. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Sun, M.; Lin, J.; Xue, Y.; Shi, Y. Terahertz Fingerprint Metasurface Sensor Based on Temperature Variation for Trace Molecules. Biosensors 2024, 14, 318. https://doi.org/10.3390/bios14070318
Wang W, Sun M, Lin J, Xue Y, Shi Y. Terahertz Fingerprint Metasurface Sensor Based on Temperature Variation for Trace Molecules. Biosensors. 2024; 14(7):318. https://doi.org/10.3390/bios14070318
Chicago/Turabian StyleWang, Weijin, Mingjun Sun, Jie Lin, Ying Xue, and Yanpeng Shi. 2024. "Terahertz Fingerprint Metasurface Sensor Based on Temperature Variation for Trace Molecules" Biosensors 14, no. 7: 318. https://doi.org/10.3390/bios14070318
APA StyleWang, W., Sun, M., Lin, J., Xue, Y., & Shi, Y. (2024). Terahertz Fingerprint Metasurface Sensor Based on Temperature Variation for Trace Molecules. Biosensors, 14(7), 318. https://doi.org/10.3390/bios14070318