Non-Invasive Brain Sensing Technologies for Modulation of Neurological Disorders
Abstract
:1. Introduction
2. Non-Invasive Neuromodulation for Brain Disorders
2.1. Ultrasound Stimulation
2.2. Electrical Stimulation
2.3. Electromagnetic Stimulation
2.4. Applications of Neuromodulation Techniques
2.5. Cognitive Enhancement and Neurofeedback
2.6. Comparison of Ultrasound, Electrical, and Electromagnetic Stimulation Techniques
3. The Closed-Loop Neuromodulation System
3.1. The Use of Closed-Loop Neuromodulation (CLN) Systems
3.2. Requirements for Closed-Loop Neuromodulation (CLN) Systems
3.3. Basic Components of Closed-Loop Neuromodulation (CLN) Systems
3.3.1. Sensors
3.3.2. Acquisition System
3.3.3. Processing Unit
3.3.4. Output Device
4. Limitations and Future Directions of Non-Invasive Neuromodulation Technologies
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Roet, M.; Hescham, S.A.; Jahanshahi, A.; Rutten, B.P.F.; Anikeeva, P.O.; Temel, Y. Progress in Neuromodulation of the Brain: A Role for Magnetic Nanoparticles? Prog. Neurobiol. 2019, 177, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Jakobs, M.; Lee, D.J.; Lozano, A.M. Modifying the Progression of Alzheimer’s and Parkinson’s Disease with Deep Brain Stimulation. Neuropharmacology 2020, 171, 107860. [Google Scholar] [CrossRef] [PubMed]
- Polanía, R.; Nitsche, M.A.; Ruff, C.C. Studying and Modifying Brain Function with Non-Invasive Brain Stimulation. Nat. Neurosci. 2018, 21, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Di Biase, L.; Falato, E.; Di Lazzaro, V. Transcranial Focused Ultrasound (Tfus) and Transcranial Unfocused Ultrasound (Tus) Neuromodulation: From Theoretical Principles to Stimulation Practices. Front. Neurol. 2019, 10, 455075. [Google Scholar] [CrossRef] [PubMed]
- Kamimura, H.A.S.; Conti, A.; Toschi, N.; Konofagou, E.E. Ultrasound Neuromodulation: Mechanisms and the Potential of Multimodal Stimulation for Neuronal Function Assessment. Front. Phys. 2020, 8, 150. [Google Scholar] [CrossRef] [PubMed]
- Euskirchen, N.; Nitsche, M.A.; van Thriel, C. Direct Current Stimulation in Cell Culture Systems and Brain Slices—New Approaches for Mechanistic Evaluation of Neuronal Plasticity and Neuromodulation: State of the Art. Cells 2021, 10, 3583. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Pan, N.; Wang, Y.; Liu, C.; Hu, S. Transcranial Focused Ultrasound Neuromodulation: A Review of the Excitatory and Inhibitory Effects on Brain Activity in Human and Animals. Front. Hum. Neurosci. 2021, 15, 749162. [Google Scholar] [CrossRef] [PubMed]
- Pashaie, R.; Anikeeva, P.; Lee, J.H.; Prakash, R.; Yizhar, O.; Prigge, M.; Chander, D.; Richner, T.J.; Williams, J. Optogenetic Brain Interfaces. IEEE Rev. Biomed. Eng. 2013, 7, 3–30. [Google Scholar] [CrossRef] [PubMed]
- Montagni, E.; Resta, F.; Mascaro, A.L.A.; Pavone, F.S. Optogenetics in Brain Research: From a Strategy to Investigate Physiological Function to a Therapeutic Tool. Photonics 2019, 6, 92. [Google Scholar] [CrossRef]
- Reed, T.; Cohen Kadosh, R. Transcranial Electrical Stimulation (Tes) Mechanisms and Its Effects on Cortical Excitability and Connectivity. J. Inherit. Metab. Dis. 2018, 41, 1123–1130. [Google Scholar] [CrossRef]
- Pama, E.A.C.; Colzato, L.S.; Hommel, B. Optogenetics as a Neuromodulation Tool in Cognitive Neuroscience. Front. Media SA 2013, 4, 610. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.D.; Walton, C.B.; Shohet, R.V. A Comparison of Focused and Unfocused Ultrasound for Microbubble-Mediated Gene Delivery. Ultrasound Med. Biol. 2021, 47, 1785–1800. [Google Scholar] [CrossRef] [PubMed]
- Spangler, S.M.; Bruchas, M.R. Optogenetic Approaches for Dissecting Neuromodulation and Gpcr Signaling in Neural Circuits. Curr. Opin. Pharmacol. 2017, 32, 56–70. [Google Scholar] [CrossRef] [PubMed]
- Pycroft, L.; Boccard, S.G.; Owen, S.L.F.; Stein, J.F.; Fitzgerald, J.J.; Green, A.L.; Aziz, T.Z. Brainjacking: Implant Security Issues in Invasive Neuromodulation. World Neurosurg. 2016, 92, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Spagnolo, P.A.; Goldman, D. Neuromodulation Interventions for Addictive Disorders: Challenges, Promise, and Roadmap for Future Research. Brain 2017, 140, 1183–1203. [Google Scholar] [CrossRef] [PubMed]
- Nair, V.; Dalrymple, A.N.; Yu, Z.; Balakrishnan, G.; Bettinger, C.J.; Weber, D.J.; Yang, K.; Robinson, J.T. Miniature Battery-Free Bioelectronics. Science 2023, 382, eabn4732. [Google Scholar] [CrossRef] [PubMed]
- Philip, N.S.; Arulpragasam, A.R. Reaching for the Unreachable: Low Intensity Focused Ultrasound for Non-Invasive Deep Brain Stimulation. Neuropsychopharmacology 2023, 48, 251. [Google Scholar] [CrossRef] [PubMed]
- Germann, J.; Elias, G.J.B.; Neudorfer, C.; Boutet, A.; Chow, C.T.; Wong, E.H.Y.; Parmar, R.; Gouveia, F.V.; Loh, A.; Giacobbe, P. Potential Optimization of Focused Ultrasound Capsulotomy for Obsessive Compulsive Disorder. Brain 2021, 144, 3529–3540. [Google Scholar] [CrossRef]
- Meng, Y.; Goubran, M.; Rabin, J.S.; McSweeney, M.; Ottoy, J.; Pople, C.B.; Huang, Y.; Storace, A.; Ozzoude, M.; Bethune, A. Blood–Brain Barrier Opening of the Default Mode Network in Alzheimer’s Disease with Magnetic Resonance-Guided Focused Ultrasound. Brain 2023, 146, 865–872. [Google Scholar] [CrossRef]
- Hallett, M. Transcranial Magnetic Stimulation: A Primer. Neuron 2007, 55, 187–199. [Google Scholar] [CrossRef]
- Silva, R.; Brunoni, A.R.; Goerigk, S.; Batistuzzo, M.; Costa, D.; Diniz, J.; Padberg, F.; D’Urso, G.; Miguel, E.; Shavitt, R. Efficacy and Safety of Transcranial Direct Current Stimulation as a Treatment for Obsessive-Compulsive Disorder: A Randomized, Sham-Controlled Trial. Biol. Psychiatry 2020, 87, S127. [Google Scholar] [CrossRef]
- Jones, K.T.; Ostrand, A.E.; Gazzaley, A.; Zanto, T.P. Enhancing Cognitive Control in Amnestic Mild Cognitive Impairment Via at-Home Non-Invasive Neuromodulation in a Randomized Trial. Sci. Rep. 2023, 13, 7435. [Google Scholar] [CrossRef] [PubMed]
- Ko, H.; Yoon, S.-P. Optogenetic Neuromodulation with Gamma Oscillation as a New Strategy for Alzheimer Disease: A Narrative Review. J. Yeungnam Med. Sci. 2022, 39, 269. [Google Scholar] [CrossRef] [PubMed]
- Porcaro, C.; Cottone, C.; Cancelli, A.; Rossini, P.M.; Zito, G.; Tecchio, F. Cortical Neurodynamics Changes Mediate the Efficacy of a Personalized Neuromodulation against Multiple Sclerosis Fatigue. Sci. Rep. 2019, 9, 18213. [Google Scholar] [CrossRef] [PubMed]
- Barwick, C. Developing a Working Knowledge of Ulrasound Intensities. J. Diagn. Med. Sonogr. 1994, 10, 278–282. [Google Scholar] [CrossRef]
- Zhang, Y.; Pang, N.; Huang, X.; Meng, W.; Meng, L.; Zhang, B.; Jiang, Z.; Zhang, J.; Yi, Z.; Luo, Z. Ultrasound Deep Brain Stimulation Decelerates Telomere Shortening in Alzheimer’s Disease and Aging Mice. Fundam. Res. 2023, 3, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yan, J.; Ji, H.; Wang, M.; Wang, T.; Yi, H.; Liu, L.; Li, X.; Yuan, Y. Modulatory Effect of Low-Intensity Transcranial Ultrasound Stimulation on Behaviour and Neural Oscillation in Mouse Models of Alzheimer’s Disease. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 770–780. [Google Scholar] [CrossRef] [PubMed]
- Chu, P.-C.; Huang, C.-S.; Ing, S.-Z.; Yu, H.-Y.; Fisher, R.S.; Liu, H.-L. Pulsed Focused Ultrasound Reduces Hippocampal Volume Loss and Improves Behavioral Performance in the Kainic Acid Rat Model of Epilepsy. Neurotherapeutics 2023, 20, 502–517. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Kim, T.; Joo, J.; Ryu, I.; Lee, S.; Park, E.; Shon, Y.-M. Modulation of Eeg Frequency Characteristics by Low-Intensity Focused Ultrasound Stimulation in a Pentylenetetrazol-Induced Epilepsy Model. IEEE Access 2021, 9, 59900–59909. [Google Scholar] [CrossRef]
- Riis, T.S.; Feldman, D.A.; Vonesh, L.C.; Brown, J.R.; Solzbacher, D.; Kubanek, J.; Mickey, B.J. Durable Effects of Deep Brain Ultrasonic Neuromodulation on Major Depression: A Case Report. J. Med. Case Rep. 2023, 17, 449. [Google Scholar] [CrossRef]
- Zhou, H.; Meng, L.; Xia, X.; Lin, Z.; Zhou, W.; Pang, N.; Bian, T.; Yuan, T.; Niu, L.; Zheng, H. Transcranial Ultrasound Stimulation Suppresses Neuroinflammation in a Chronic Mouse Model of Parkinson’s Disease. IEEE Trans. Biomed. Eng. 2021, 68, 3375–3387. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Chen, X.; Zhou, N.; Yuan, Y.; Geng, S.; Zhang, C.; Zhao, Z.; Wang, X.; Bao, X.; Lan, X. Low-Intensity Pulsed Ultrasound Triggers a Beneficial Neuromodulation in Dementia Mice with Chronic Cerebral Hypoperfusion Via Activation of Hippocampal Fndc5/Irisin Signaling. J. Transl. Med. 2023, 21, 139. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Chen, R.; Ji, H.; Wang, X.; Zhang, X.; Yuan, Y. Preventive and Therapeutic Effects of Low-Intensity Ultrasound Stimulation on Migraine in Rats. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 2332–2340. [Google Scholar] [CrossRef] [PubMed]
- De Ridder, D.; Maciaczyk, J.; Vanneste, S. The Future of Neuromodulation: Smart Neuromodulation. Expert. Rev. Med. Devices 2021, 18, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Ni, R.; Yuan, Y.; Yang, L.; Meng, Q.; Zhu, Y.; Zhong, Y.; Cao, Z.; Zhang, S.; Yao, W.; Lv, D. Novel Non-Invasive Transcranial Electrical Stimulation for Parkinson’s Disease. Front. Aging Neurosci. 2022, 14, 880897. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.I. Resolving Long-Standing Uncertainty About the Clinical Efficacy of Transcutaneous Electrical Nerve Stimulation (Tens) to Relieve Pain: A Comprehensive Review of Factors Influencing Outcome. Medicina 2021, 57, 378. [Google Scholar] [CrossRef] [PubMed]
- Ślusarczyk, W.T.; Nejman, T.J.; Laskowski, M.; Koperczak, A.; Stanuszek, A.; Ciekalski, M. Evaluation of Patient’s Quality of Life before and after Implantation of Abbott’s Proclaim™ Xr Spinal Cord Stimulator with Burstdr™ Stimulation in Chronic Pain Syndrome. Medicina 2023, 59, 2192. [Google Scholar] [CrossRef] [PubMed]
- Swann, N.C.; De Hemptinne, C.; Miocinovic, S.; Qasim, S.; Ostrem, J.L.; Galifianakis, N.B.; San Luciano, M.; Wang, S.S.; Ziman, N.; Taylor, R. Chronic Multisite Brain Recordings from a Totally Implantable Bidirectional Neural Interface: Experience in 5 Patients with Parkinson’s Disease. J. Neurosurg. 2017, 128, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Howell, B.; McIntyre, C.C. Feasibility of Interferential and Pulsed Transcranial Electrical Stimulation for Neuromodulation at the Human Scale. Neuromodulation Technol. Neural Interface 2021, 24, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Jara, J.S.; Agger, S.; Hollis, E.R. Functional Electrical Stimulation and the Modulation of the Axon Regeneration Program. Front. Cell Dev. Biol. 2020, 8, 736. [Google Scholar] [CrossRef]
- Barker, A.T.; Jalinous, R.; Freeston, I.L. Non-Invasive Magnetic Stimulation of Human Motor Cortex. Lancet 1985, 325, 1106–1107. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-J.; Bonmassar, G.; Kaltenbach, J.A.; Machado, A.G.; Manzoor, N.F.; Gale, J.T. Activation of the Central Nervous System Induced by Micro-Magnetic Stimulation. Nat. Commun. 2013, 4, 2463. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.D.; Lim, H.H.; Netoff, T.I.; Connolly, A.T.; Johnson, N.; Roy, A.; Holt, A.; Lim, K.O.; Carey, J.R.; Vitek, J.L.; et al. Neuromodulation for Brain Disorders: Challenges and Opportunities. IEEE Trans. Biomed. Eng. 2013, 60, 610–624. [Google Scholar] [CrossRef] [PubMed]
- Klomjai, W.; Katz, R.; Lackmy-Vallée, A. Basic Principles of Transcranial Magnetic Stimulation (Tms) and Repetitive Tms (Rtms). Ann. Phys. Rehabil. Med. 2015, 58, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.W.; Fallegger, F.; Casse, B.D.F.; Fried, S.I. Implantable Microcoils for Intracortical Magnetic Stimulation. Sci. Adv. 2016, 2, e1600889. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, M.G.; Senko, A.W.; Anikeeva, P. Magnetic Strategies for Nervous System Control. Annu. Rev. Neurosci. 2019, 42, 271–293. [Google Scholar] [CrossRef]
- Chail, A.; Saini, R.K.; Bhat, P.S.; Srivastava, K.; Chauhan, V. Transcranial Magnetic Stimulation: A Review of Its Evolution and Current Applications. Ind. Psychiatry J. 2018, 27, 172–180. [Google Scholar] [PubMed]
- professional, C. C. m. Transcranial Magnetic Stimulation (Tms). Available online: https://my.clevelandclinic.org/health/treatments/17827-transcranial-magnetic-stimulation-tms (accessed on 7 July 2024).
- Liu, X.; Qiu, F.; Hou, L.; Wang, X. Review of Noninvasive or Minimally Invasive Deep Brain Stimulation. Front. Behav. Neurosci. 2022, 15, 820017. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.S.; Afra, P.; Macken, M.; Minecan, D.N.; Bagić, A.; Benbadis, S.R.; Helmers, S.L.; Sinha, S.R.; Slater, J.; Treiman, D. Automatic Vagus Nerve Stimulation Triggered by Ictal Tachycardia: Clinical Outcomes and Device Performance—The Us E-37 Trial. Neuromodulation Technol. Neural Interface 2016, 19, 188–195. [Google Scholar] [CrossRef]
- Tikka, S.K.; Siddiqui, M.A.; Garg, S.; Pattojoshi, A.; Gautam, M. Clinical Practice Guidelines for the Therapeutic Use of Repetitive Transcranial Magnetic Stimulation in Neuropsychiatric Disorders. Indian. J. Psychiatry 2023, 65, 270–288. [Google Scholar]
- Van De Ruit, M.; Perenboom, M.J.L.; Grey, M.J. Tms Brain Mapping in Less Than Two Minutes. Brain Stimul. 2015, 8, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Bonmassar, G.; Lee, S.W.; Freeman, D.K.; Polasek, M.; Fried, S.I.; Gale, J.T. Microscopic Magnetic Stimulation of Neural Tissue. Nat. Commun. 2012, 3, 921. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, L. Nanomaterial-Enabled Neural Stimulation. Front. Neurosci. 2016, 10, 00069. [Google Scholar] [CrossRef]
- Yang, C.; Park, S. Nanomaterials-Assisted Thermally Induced Neuromodulation. Biomed. Eng. Lett. 2021, 11, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Patel, D.K. Nanomaterials for Biomedical Engineering Applications. In Nanomaterials for Advanced Technologies; Katiyar, J.K., Panwar, V., Ahlawat, N., Eds.; Springer Nature: Singapore, 2022; pp. 75–102. [Google Scholar]
- Karatum, O.; Han, M.; Erdogan, E.T.; Karamursel, S.; Nizamoglu, S. Physical Mechanisms of Emerging Neuromodulation Modalities. J. Neural Eng. 2023, 20, 031001. [Google Scholar] [CrossRef]
- Xu, C.; Ou, W.; Cui, Q.; Pang, Y.; Liao, M.; Shen, J.; Baber, M.Z.; Maharajan, C.; Ghosh, U. Theoretical Exploration and Controller Design of Bifurcation in a Plankton Population Dynamical System Accompanying Delay. Discret. Contin. Dyn. Syst.-S 2024. [Google Scholar] [CrossRef]
- Xu, C.; Lin, J.; Zhao, Y.; Cui, Q.; Ou, W.; Pang, Y.; Liu, Z.; Liao, M.; Li, P. New Results on Bifurcation for Fractional-Order Octonion-Valued Neural Networks Involving Delays. Netw. Comput. Neural Syst. 2024, 1–53. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Zhou, Y.; Moneruzzaman, M.; Wang, Y. Optogenetic Neuromodulation in Inflammatory Pain. Neuroscience 2023, 536, 104–118. [Google Scholar] [CrossRef]
- Soleimani, G.; Nitsche, M.A.; Bergmann, T.O.; Towhidkhah, F.; Violante, I.R.; Lorenz, R.; Kuplicki, R.; Tsuchiyagaito, A.; Mulyana, B.; Mayeli, A. Closing the Loop between Brain and Electrical Stimulation: Towards Precision Neuromodulation Treatments. Transl. Psychiatry 2023, 13, 279. [Google Scholar] [CrossRef]
- Ye, H.; Hendee, J.; Ruan, J.; Zhirova, A.; Ye, J.; Dima, M. Neuron Matters: Neuromodulation with Electromagnetic Stimulation Must Consider Neurons as Dynamic Identities. J. Neuroeng. Rehabil. 2022, 19, 116. [Google Scholar] [CrossRef]
- Yu, K.; Niu, X.; He, B. Neuromodulation Management of Chronic Neuropathic Pain in the Central Nervous System. Adv. Funct. Mater. 2020, 30, 1908999. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; He, Y.; Liang, S.; Liao, X.; Li, T.; Qiao, Z.; Chang, C.; Jia, H.; Chen, X. Non-Invasive, Opsin-Free Mid-Infrared Modulation Activates Cortical Neurons and Accelerates Associative Learning. Nat. Commun. 2021, 12, 2730. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.; Zheng, D.; Chen, Z.; Jia, B.; Zhang, P.; Yan, J.; Jiang, W.; Zhao, X.; Xu, J.-J. Near-Infrared Light-Responsive Size-Selective Lateral Flow Chip for Single-Cell Manipulation of Circulating Tumor Cells. Anal. Chem. 2022, 95, 1201–1209. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-H.; Gu, T.; Liu, X.-W.; Han, P.; Lv, H.-L.; Wang, Y.-L.; Xiao, P. The Effect of Transcranial Direct Current Stimulation and Functional Electrical Stimulation on the Lower Limb Function of Stroke Patients. Front. Neurosci. 2021, 15, 685931. [Google Scholar] [CrossRef]
- Loriette, C.; Ziane, C.; Hamed, S.B. Neurofeedback for Cognitive Enhancement and Intervention and Brain Plasticity. Rev. Neurol. 2021, 177, 1133–1144. [Google Scholar] [CrossRef]
- Carvalho, S.; Leite, J.; Fregni, F. Transcranial Alternating Current Stimulation and Transcranial Random Noise Stimulation. In Neuromodulation; Academic Press: Amsterdam, The Netherlands, 2018; pp. 1611–1617. [Google Scholar]
- Zibly, Z.; Averbuch, S.; Deogaonker, M. Emerging Technologies and Indications of Neuromodulation and Increasing Role of Non Invasive Neuromodulation. Neurology India 2020, 68 (Suppl. 2), S316–S321. [Google Scholar] [CrossRef]
- Fenno, L.; Yizhar, O.; Deisseroth, K. The Development and Application of Optogenetics. Annu. Rev. Neurosci. 2011, 34, 389–412. [Google Scholar] [CrossRef]
- Lewis, P.M.; Thomson, R.H.; Rosenfeld, J.V.; Fitzgerald, P.B. Brain Neuromodulation Techniques: A Review. Neurosci. 2016, 22, 406–421. [Google Scholar] [CrossRef]
- Sun, F.T.; Morrell, M.J. Closed-Loop Neurostimulation: The Clinical Experience. Neurotherapeutics 2014, 11, 553–563. [Google Scholar] [CrossRef]
- Nishimura, Y.; Perlmutter, S.I.; Eaton, R.W.; Fetz, E.E. Spike-Timing-Dependent Plasticity in Primate Corticospinal Connections Induced During Free Behavior. Neuron 2013, 80, 1301–1309. [Google Scholar] [CrossRef]
- Guggenmos, D.J.; Azin, M.; Barbay, S.; Mahnken, J.D.; Dunham, C.; Mohseni, P.; Nudo, R.J. Restoration of Function after Brain Damage Using a Neural Prosthesis. Proc. Natl. Acad. Sci. USA 2013, 110, 21177–21182. [Google Scholar] [CrossRef]
- Ethier, C.; Gallego, J.A.; Miller, L.E. Brain-Controlled Neuromuscular Stimulation to Drive Neural Plasticity and Functional Recovery. Curr. Opin. Neurobiol. 2015, 33, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Ramgopal, S.; Thome-Souza, S.; Jackson, M.; Kadish, N.E.; Fernández, I.S.; Klehm, J.; Bosl, W.; Reinsberger, C.; Schachter, S.; Loddenkemper, T. Seizure Detection, Seizure Prediction, and Closed-Loop Warning Systems in Epilepsy. Epilepsy Behav. 2014, 37, 291–307. [Google Scholar] [CrossRef] [PubMed]
- Geller, E.B.; Skarpaas, T.L.; Gross, R.E.; Goodman, R.R.; Barkley, G.L.; Bazil, C.W.; Berg, M.J.; Bergey, G.K.; Cash, S.S.; Cole, A.J. Brain-Responsive Neurostimulation in Patients with Medically Intractable Mesial Temporal Lobe Epilepsy. Epilepsia 2017, 58, 994–1004. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, P.; Soryal, I.; Dhahri, P.; Wimalachandra, W.; Leat, A.; Hughes, D.; Toghill, N.; Hodson, J.; Sawlani, V.; Hayton, T. Clinical Outcomes of Vns Therapy with Aspiresr® (Including Cardiac-Based Seizure Detection) at a Large Complex Epilepsy and Surgery Centre. Seizure 2018, 58, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Gilat, M. Towards Closed-Loop Deep Brain Stimulation for Freezing of Gait in Parkinson’s Disease. Clin. Neurophysiol. 2018, 129, 2448–2450. [Google Scholar] [CrossRef] [PubMed]
- Romero-Ugalde, H.M.; Le Rolle, V.; Bonnet, J.-L.; Henry, C.; Bel, A.; Mabo, P.; Carrault, G.; Hernández, A.I. A Novel Controller Based on State-Transition Models for Closed-Loop Vagus Nerve Stimulation: Application to Heart Rate Regulation. PLoS ONE 2017, 12, e0186068. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.-H.; White-Dzuro, G.A.; Ko, A.L. Approaches to Closed-Loop Deep Brain Stimulation for Movement Disorders. Neurosurg. Focus. 2018, 45, E2. [Google Scholar] [CrossRef] [PubMed]
- Gollisch, T.; Herz, A.V.M. The Iso-Response Method: Measuring Neuronal Stimulus Integration with Closed-Loop Experiments. Front. Neural Circuits 2012, 6, 104. [Google Scholar] [CrossRef]
- Russo, M.; Cousins, M.J.; Brooker, C.; Taylor, N.; Boesel, T.; Sullivan, R.; Poree, L.; Shariati, N.H.; Hanson, E.; Parker, J. Effective Relief of Pain and Associated Symptoms with Closed-Loop Spinal Cord Stimulation System: Preliminary Results of the Avalon Study. Neuromodulation Technol. Neural Interface 2018, 21, 38–47. [Google Scholar] [CrossRef]
- Wenger, N.; Moraud, E.M.; Raspopovic, S.; Bonizzato, M.; DiGiovanna, J.; Musienko, P.; Morari, M.; Micera, S.; Courtine, G. Closed-Loop Neuromodulation of Spinal Sensorimotor Circuits Controls Refined Locomotion after Complete Spinal Cord Injury. Sci. Transl. Med. 2014, 6, 255ra133. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.I.; Pirzada, N.A.; Kanjwal, Y.; Wannamaker, B.; Medhkour, A.; Koltz, M.T.; Vaughn, B.V. Complete Heart Block with Ventricular Asystole During Left Vagus Nerve Stimulation for Epilepsy. Epilepsy Behav. 2004, 5, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, Y.; Perlmutter, S.I.; Fetz, E.E. Restoration of Upper Limb Movement Via Artificial Corticospinal and Musculospinal Connections in a Monkey with Spinal Cord Injury. Front. Neural Circuits 2013, 7, 57. [Google Scholar] [CrossRef]
- Ganzer, P.D.; Darrow, M.J.; Meyers, E.C.; Solorzano, B.R.; Ruiz, A.D.; Robertson, N.M.; Adcock, K.S.; James, J.T.; Jeong, H.S.; Becker, A.M. Closed-Loop Neuromodulation Restores Network Connectivity and Motor Control after Spinal Cord Injury. eLife 2018, 7, e32058. [Google Scholar] [CrossRef]
- Parastarfeizabadi, M.; Kouzani, A.Z. Advances in Closed-Loop Deep Brain Stimulation Devices. J. Neuroeng. Rehabil. 2017, 14, 79. [Google Scholar] [CrossRef] [PubMed]
- Pruitt, D.T.; Schmid, A.N.; Kim, L.J.; Abe, C.M.; Trieu, J.L.; Choua, C.; Hays, S.A.; Kilgard, M.P.; Rennaker, R.L. Vagus Nerve Stimulation Delivered with Motor Training Enhances Recovery of Function after Traumatic Brain Injury. J. Neurotrauma 2016, 33, 871–879. [Google Scholar] [CrossRef]
- Lo, M.-C.; Widge, A.S. Closed-Loop Neuromodulation Systems: Next-Generation Treatments for Psychiatric Illness. Int. Rev. Psychiatry 2017, 29, 191–204. [Google Scholar] [CrossRef]
- Hebb, A.O.; Zhang, J.J.; Mahoor, M.H.; Tsiokos, C.; Matlack, C.; Chizeck, H.J.; Pouratian, N. Creating the Feedback Loop: Closed-Loop Neurostimulation. Neurosurg. Clin. 2014, 25, 187–204. [Google Scholar] [CrossRef]
- Lopez-Gordo, M.A.; Sanchez-Morillo, D.; Valle, F.P. Dry Eeg Electrodes. Sensors 2014, 14, 12847–12870. [Google Scholar] [CrossRef]
- Zanos, S. Closed-Loop Neuromodulation in Physiological and Translational Research. Cold Spring Harb. Perspect. Med. 2019, 9, a034314. [Google Scholar] [CrossRef]
- Arle, J.; Shils, J.L. Essential Neuromodulation; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Young, G.B.; Ives, J.R.; Chapman, M.G.; Mirsattari, S.M. A Comparison of Subdermal Wire Electrodes with Collodion-Applied Disk Electrodes in Long-Term Eeg Recordings in Icu. Clin. Neurophysiol. 2006, 117, 1376–1379. [Google Scholar] [CrossRef] [PubMed]
- Schalk, G.; Leuthardt, E.C. Brain-Computer Interfaces Using Electrocorticographic Signals. IEEE Rev. Biomed. Eng. 2011, 4, 140–154. [Google Scholar] [CrossRef] [PubMed]
- Gunasekera, B.; Saxena, T.; Bellamkonda, R.; Karumbaiah, L. Intracortical Recording Interfaces: Current Challenges to Chronic Recording Function. ACS Chem. Neurosci. 2015, 6, 68–83. [Google Scholar] [CrossRef] [PubMed]
- Tator, C.H.; Minassian, K.; Mushahwar, V.K. Spinal Cord Stimulation: Therapeutic Benefits and Movement Generation after Spinal Cord Injury. Handb. Clin. Neurol. 2012, 109, 283–296. [Google Scholar] [PubMed]
- Rijnbeek, E.H.; Eleveld, N.; Olthuis, W. Update on Peripheral Nerve Electrodes for Closed-Loop Neuroprosthetics. Front. Neurosci. 2018, 12, 314838. [Google Scholar] [CrossRef] [PubMed]
- Oie, K.S.; Gordon, S.; McDowell, K. The Multi-Aspect Measurement Approach: Rationale, Technologies, Tools, and Challenges for Systems Design. In Designing Soldier Systems; CRC Press: Boca Raton, FL, USA, 2018; pp. 217–247. [Google Scholar]
- Yogev, D.; Goldberg, T.; Arami, A.; Tejman-Yarden, S.; Winkler, T.E.; Maoz, B.M. Current State of the Art and Future Directions for Implantable Sensors in Medical Technology: Clinical Needs and Engineering Challenges. APL Bioeng. 2023, 7, 031506. [Google Scholar] [CrossRef]
- Patel, S.; Park, H.; Bonato, P.; Chan, L.; Rodgers, M. A Review of Wearable Sensors and Systems with Application in Rehabilitation. J. Neuroeng. Rehabil. 2012, 9, 21. [Google Scholar] [CrossRef]
- Raducanu, B.C.; Yazicioglu, R.F.; Lopez, C.M.; Ballini, M.; Putzeys, J.; Wang, S.; Andrei, A.; Rochus, V.; Welkenhuysen, M.; Van Helleputte, N. Time Multiplexed Active Neural Probe with 1356 Parallel Recording Sites. Sensors 2017, 17, 2388. [Google Scholar] [CrossRef]
- Won, S.M.; Song, E.; Zhao, J.; Li, J.; Rivnay, J.; Rogers, J.A. Recent Advances in Materials, Devices, and Systems for Neural Interfaces. Adv. Mater. 2018, 30, 1800534. [Google Scholar] [CrossRef]
- Holleman, J. Design Considerations for Neural Amplifiers; IEEE: Piscataway, NJ, USA, 2016; pp. 6331–6334. [Google Scholar]
- Erez, Y.; Tischler, H.; Moran, A.; Bar-Gad, I. Generalized Framework for Stimulus Artifact Removal. J. Neurosci. Methods 2010, 191, 45–59. [Google Scholar] [CrossRef]
- Maheshwari, S.; Acharyya, A.; Puddu, P.E.; Mazomenos, E.B.; Leekha, G.; Maharatna, K.; Schiariti, M. An Automated Algorithm for Online Detection of Fragmented Qrs and Identification of Its Various Morphologies. J. R. Soc. Interface 2013, 10, 20130761. [Google Scholar] [CrossRef] [PubMed]
- Gutruf, P.; Rogers, J.A. Implantable, Wireless Device Platforms for Neuroscience Research. Curr. Opin. Neurobiol. 2018, 50, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Denison, T.; Litt, B. Advancing Neuromodulation through Control Systems: A General Framework and Case Study in Posture-Responsive Stimulation. Neuromodulation Technol. Neural Interface 2014, 17, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Van Dongen, M.; Serdijn, W. Design of Efficient and Safe Neural Stimulators; Springer International Publishing: Chem, Switzerland, 2016; Volume 16. [Google Scholar]
- Cogan, S.F. Neural Stimulation and Recording Electrodes. Annu. Rev. Biomed. Eng. 2008, 10, 275–309. [Google Scholar] [CrossRef] [PubMed]
- Merrill, D.R.; Bikson, M.; Jefferys, J.G.R. Electrical Stimulation of Excitable Tissue: Design of Efficacious and Safe Protocols. J. Neurosci. Methods 2005, 141, 171–198. [Google Scholar] [CrossRef] [PubMed]
- Sim, J.Y.; Haney, M.P.; Park, S.I.; McCall, J.G.; Jeong, J.-W. Microfluidic Neural Probes: In Vivo Tools for Advancing Neuroscience. Lab. Chip 2017, 17, 1406–1435. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.J.; Chen, J.D.Z. Non-Invasive Neuromodulation: An Emerging Intervention for Visceral Pain in Gastrointestinal Disorders. Bioelectron. Med. 2023, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Deffieux, T.; Younan, Y.; Wattiez, N.; Tanter, M.; Pouget, P.; Aubry, J.F. Low-Intensity Focused Ultrasound Modulates Monkey Visuomotor Behavior. Curr. Biol. 2013, 23, 2430–2433. [Google Scholar] [CrossRef] [PubMed]
- Tufail, Y.; Matyushov, A.; Baldwin, N.; Tauchmann, M.L.; Georges, J.; Yoshihiro, A.; Tillery, S.I.; Tyler, W.J. Transcranial Pulsed Ultrasound Stimulates Intact Brain Circuits. Neuron 2010, 66, 681–694. [Google Scholar] [CrossRef]
- Li, G.; Qiu, W.; Zhang, Z.; Jiang, Q.; Su, M.; Cai, R.; Li, Y.; Cai, F.; Deng, Z.; Xu, D.; et al. Noninvasive Ultrasonic Neuromodulation in Freely Moving Mice. IEEE Trans. Biomed. Eng. 2019, 66, 217–224. [Google Scholar] [CrossRef]
- Hou, X.; Qiu, Z.; Xian, Q.; Kala, S.; Jing, J.; Wong, K.F.; Zhu, J.; Guo, J.; Zhu, T.; Yang, M.; et al. Precise Ultrasound Neuromodulation in a Deep Brain Region Using Nano Gas Vesicles as Actuators. Adv. Sci. 2021, 8, e2101934. [Google Scholar] [CrossRef] [PubMed]
- Legon, W.; Ai, L.; Bansal, P.; Mueller, J.K. Neuromodulation with Single-Element Transcranial Focused Ultrasound in Human Thalamus. Hum. Brain Mapp. 2018, 39, 1995–2006. [Google Scholar] [CrossRef] [PubMed]
- Folloni, D.; Verhagen, L.; Mars, R.B.; Fouragnan, E.; Constans, C.; Aubry, J.F.; Rushworth, M.F.S.; Sallet, J. Manipulation of Subcortical and Deep Cortical Activity in the Primate Brain Using Transcranial Focused Ultrasound Stimulation. Neuron 2019, 101, 1109–1116.e5. [Google Scholar] [CrossRef] [PubMed]
- All, A.H.; Zeng, X.; Teh, D.B.L.; Yi, Z.; Prasad, A.; Ishizuka, T.; Thakor, N.; Hiromu, Y.; Liu, X. Expanding the Toolbox of Upconversion Nanoparticles for In Vivo Optogenetics and Neuromodulation. Adv. Mater. 2019, 31, e1803474. [Google Scholar] [CrossRef] [PubMed]
- Stanley, S.A.; Kelly, L.; Latcha, K.N.; Schmidt, S.F.; Yu, X.; Nectow, A.R.; Sauer, J.; Dyke, J.P.; Dordick, J.S.; Friedman, J.M. Bidirectional Electromagnetic Control of the Hypothalamus Regulates Feeding and Metabolism. Nature 2016, 531, 647–650. [Google Scholar] [CrossRef]
- Yu, C.; Cassar, I.R.; Sambangi, J.; Grill, W.M. Frequency-Specific Optogenetic Deep Brain Stimulation of Subthalamic Nucleus Improves Parkinsonian Motor Behaviors. J. Neurosci. 2020, 40, 4323–4334. [Google Scholar] [CrossRef]
Subject | US Type | US Wave Targeted Brain Region | Targeted Disease | Sonication Parameter | Main Outcomes |
---|---|---|---|---|---|
Twenty (APP/PS1) male mice Six normal male mice Twenty female aging mice [22] | Focused US | Cortex and Hippocampus | AD | Fundamental frequency = 500 kHz, PRF = 500 Hz, DC = 5% | UDBS could activate telomerase and decelerate telomere shortening, UDBS exerts change on the cortex and hippocampus’s neurons; and it could greatly elevate the cortex’s c-Fos expression. The synapse might be modulated by UDBS and therefore could be related to enhancement of memory and cognition |
Twenty-four female (APP/PS1) mice—twelve female control mice—six female APP/PS1 mice for the auditory response experiment [23] | Unfocused US | Hippocampus | AD | Fundamental frequency = 500 kHz, pulse duration = 50 ms, PRF = 1 Hz, DC = 5%, ISPPA = 6 W/cm2 | TUS enhanced spatial and short-term memory and learning capacity in AD mice and raised AD mice’s epsilon frequency band. Collectively, outcomes indicate that TUS can modulate neural activity and enhance cognitive behavior in AD subjects |
Thirty male rats; 14 out of 15 received KA injections and survived, and 15 received non-KA sham injections [24] | Focused low-intensity pulsed US | Striatum ND Hippocampus | Epilepsy | Fundamental frequency = 500 kHz, PRF = 100 Hz, DC = 30%, ISPPA = 1.67 W/cm2, ISPTA = 0.5 W/cm2 | As KA injection leads to hippocampal and striatal volume reduction and higher toxicity, two treatments of focused ultrasound (FUS) partially reversed volume declination. FUS also lowered anxiety levels, and two FUS sessions improved sociability and restored limb balance |
23 of 29 male used rats were injected with PTZ for seizure induction. 7 untreated, and 16 treated with LIFUS [25] | Focused low-intensity US | Anteroventral Thalamus and hippocampus | Epilepsy | Fundamental frequency = 1100 kHz, SD = 3 min, PRD = 10 ms, DC = 5% | LIFUS affects GABAergic synapses, therefore leading to the inhibition of seizures in epilepsy subjects |
Single female human subject [26] | Focused low-intensity pulsed US | Posterior subcallosal cingulate cortex (SCC), anterior SCC, pregenual cingulate | Depression | Fundamental frequency = 650 kHz, pulse duration = 30 ms, PRD = 4.03 ms, DC = 0.8% | This is a case study of a single human subject with treatment-resistant depression. The modulation of the SCC region assessed using fMRI and the subject’s report of symptom relief for 44 days before relapse suggest ultrasound treatment efficacy in such case |
120 male mice; 4 groups: control + sham, MPTP + sham, MPTP + STN + US, MPTP + V1 + US [27] | Pulsed US | Subthalamic nucleus | PD | Fundamental frequency = 3.8 MHz, PRF = 1 kHz, DC = 50%, SD = 1 s, ISPTA = 430 mW/cm2 | US showed an increase in c-Fos expression in STN and V1 regions, while it is deemed safe as no signs of hemorrhage post-US stimulation were detected. US also greatly improved climbing motor function, reduced proinflammatory cytokines, and suppressed inflammatory signaling in the SN and striatum |
Male mice [28] | Focused low-intensity pulsed US | Bilateral hippocampus | Dementia | Fundamental frequency = 1 MHz, pulse duration = 50 ms, PRF = 1 Hz, DC = 5%, ISPTA = 528 mW/cm2 | In VaD, the hippocampal Fndc5/irisin activity might be corrupted. LIPUS increased Fndc5 expression and irisin concentration in aging mice, and it ameliorated cognitive shortages in VaD-induced mice |
56 male rats, eight groups of seven members each [29] | Focused low-intensity pulsed US | No specific brain targets, as stated by the author | Migraine | Fundamental frequency = 500 kHz, SD = 400 ms, PRF = 1 kHz, DC = 50%, ISPPA = 8.3 W/cm2 | TUS was able to decrease the frequency of migraine attacks but not cerebral blood flow (CBF) velocity |
Techniques Type | Ultrasound | Electromagnetic | Electrical |
---|---|---|---|
Spatial resolution | ~1 mm | <1 mm | >1 mm |
Depth of penetration | 10–15 cm or more | Unlimited in theory | 5 cm or more |
Testing | On animals and human | On animals and human | On animals and human |
Cost | Moderate | High | Low |
Complexity level | Moderate | Complicated | Moderate |
Reversible | Yes | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfihed, S.; Majrashi, M.; Ansary, M.; Alshamrani, N.; Albrahim, S.H.; Alsolami, A.; Alamari, H.A.; Zaman, A.; Almutairi, D.; Kurdi, A.; et al. Non-Invasive Brain Sensing Technologies for Modulation of Neurological Disorders. Biosensors 2024, 14, 335. https://doi.org/10.3390/bios14070335
Alfihed S, Majrashi M, Ansary M, Alshamrani N, Albrahim SH, Alsolami A, Alamari HA, Zaman A, Almutairi D, Kurdi A, et al. Non-Invasive Brain Sensing Technologies for Modulation of Neurological Disorders. Biosensors. 2024; 14(7):335. https://doi.org/10.3390/bios14070335
Chicago/Turabian StyleAlfihed, Salman, Majed Majrashi, Muhammad Ansary, Naif Alshamrani, Shahad H. Albrahim, Abdulrahman Alsolami, Hala A. Alamari, Adnan Zaman, Dhaifallah Almutairi, Abdulaziz Kurdi, and et al. 2024. "Non-Invasive Brain Sensing Technologies for Modulation of Neurological Disorders" Biosensors 14, no. 7: 335. https://doi.org/10.3390/bios14070335
APA StyleAlfihed, S., Majrashi, M., Ansary, M., Alshamrani, N., Albrahim, S. H., Alsolami, A., Alamari, H. A., Zaman, A., Almutairi, D., Kurdi, A., Alzaydi, M. M., Tabbakh, T., & Al-Otaibi, F. (2024). Non-Invasive Brain Sensing Technologies for Modulation of Neurological Disorders. Biosensors, 14(7), 335. https://doi.org/10.3390/bios14070335