Aptamer Screening: Current Methods and Future Trend towards Non-SELEX Approach
Abstract
:1. Introduction
2. SELEX-Based Selection Methods of DNA Aptamers
2.1. SELEX Methods in Immobilized Format
2.1.1. Capture-SELEX
2.1.2. Affinity Chromatography SELEX
2.1.3. Atomic Force Microscope SELEX
2.2. SELEX Methods in Non-Immobilized Format
2.2.1. Capillary Electrophoresis
2.2.2. Cell-SELEX
2.2.3. Graphene Oxide-SELEX
3. SELEX-Based Selection Methods of RNA and XNA Aptamers
3.1. RNA Aptamer Selection
3.2. XNA Aptamer Selection
4. Aptamer Screening Independent of Intermediate Nucleic Acid Amplification
4.1. Non-SELEX Methods in Immobilized Format
4.1.1. Magnetic Bead-Assisted Screening
4.1.2. Competition Selection
4.2. Non-SELEX Methods in Non-Immobilized Format
4.2.1. Capillary Electrophoresis in Non-SELEX
4.2.2. Centrifugal Distribution Method
4.3. In Silico
4.4. Other Emerging Automated Screening Methods
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Lu, C.; Saint-Pierre, C.; Gasparutto, D.; Roupioz, Y.; Ravelet, C.; Peyrin, E.; Buhot, A. Melting Curve Analysis of Aptachains: Adenosine Detection with Internal Calibration. Biosensors 2021, 11, 112. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Saint-Pierre, C.; Gasparutto, D.; Roupioz, Y.; Peyrin, E.; Buhot, A. Linear Chain Formation of Split-Aptamer Dimers on Surfaces Triggered by Adenosine. Langmuir 2017, 33, 12785–12792. [Google Scholar] [CrossRef] [PubMed]
- Tao, R.; Reboud, J.; Torun, H.; McHale, G.; Dodd, L.E.; Wu, Q.; Tao, K.; Yang, X.; Luo, J.; Todryk, S.; et al. Integrating microfluidics and biosensing on a single flexible acoustic device using hybrid modes. Lab Chip 2020, 20, 1002–1011. [Google Scholar] [CrossRef] [PubMed]
- Fan, R.; Tao, X.; Zhai, X.; Zhu, Y.; Li, Y.; Chen, Y.; Dong, D.; Yang, S.; Lv, L. Application of aptamer-drug delivery system in the therapy of breast cancer. Biomed. Pharmacother. 2023, 161, 114444. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-H.; Seo, J.-M.; Shin, K.-L.; Yang, S.-G. Design and clinical developments of aptamer-drug conjugates for targeted cancer therapy. Biomater. Res. 2021, 25, 42. [Google Scholar] [CrossRef]
- Allemailem, K.S.; Almatroudi, A.; Alsahli, M.A.; Basfar, G.T.; Alrumaihi, F.; Rahmani, A.H.; Khan, A.A. Recent advances in understanding oligonucleotide aptamers and their applications as therapeutic agents. 3 Biotech 2020, 10, 551. [Google Scholar] [CrossRef]
- Lu, C.; Fang, Z.; Yang, S.; Ning, K.; Xu, M.; Buhot, A.; Hou, Y.; Hu, P.; Xu, P. Innovations in measuring and mitigating phytohemagglutinins, a key food safety concern in beans. Food Qual. Saf. 2024, 8, fyae003. [Google Scholar] [CrossRef]
- Wang, J.; Han, J.; Pan, L.; Gu, X.; Xiao, C.; Liu, P.; Tang, Y.; Fang, J.; Li, X.; Lu, C. Rapid on-site nucleic acid testing: On-chip sample preparation, amplification, and detection, and their integration into all-in-one systems. Front. Bioeng. Biotechnol. 2023, 11, 1020430. [Google Scholar] [CrossRef]
- Taylor, A.I.; Holliger, P. Selecting Fully-Modified XNA Aptamers Using Synthetic Genetics. Curr. Protoc. Chem. Biol. 2018, 10, e44. [Google Scholar] [CrossRef]
- Samuelian, J.S.; Gremminger, T.J.; Song, Z.; Poudyal, R.R.; Li, J.; Zhou, Y.; Staller, S.A.; Carballo, J.A.; Roychowdhury-Saha, M.; Chen, S.-J.; et al. An RNA aptamer that shifts the reduction potential of metabolic cofactors. Nat. Chem. Biol. 2022, 18, 1263–1269. [Google Scholar] [CrossRef]
- Spöring, M.; Finke, M.; Hartig, J.S. Aptamers in RNA-based switches of gene expression. Curr. Opin. Biotechnol. 2020, 63, 34–40. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, C.; Ma, T.; Liu, X.; Zhu, C.; Song, L.; Deng, Y. Advances in aptamer screening and aptasensors’ detection of heavy metal ions. J. Nanobiotechnol. 2021, 19, 166. [Google Scholar] [CrossRef]
- Zhu, C.; Feng, Z.; Qin, H.; Chen, L.; Yan, M.; Li, L.; Qu, F. Recent progress of SELEX methods for screening nucleic acid aptamers. Talanta 2024, 266, 124998. [Google Scholar] [CrossRef]
- Guo, X.; Chen, G.-H. Capillary electrophoresis-based methodology for screening of oligonucleotide aptamers. Biomed. Chromatogr. 2021, 35, e5109. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, N.; Chan, C.-W.; Lu, A.; Yu, Y.; Zhang, G.; Ren, K. The application of microfluidic technologies in aptamer selection. Front. Cell. Dev. Biol. 2021, 9, 730035. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Cho, J.; Lee, B.-H.; Hwang, D.; Park, J.-W. Design and Prediction of Aptamers Assisted by In Silico Methods. Biomedicines 2023, 11, 356. [Google Scholar] [CrossRef]
- Wu, D.; Gordon, C.K.L.; Shin, J.H.; Michael, E.; Soh, H.T. Directed Evolution of Aptamer Discovery Technologies. Acc. Chem. Res. 2022, 55, 685–695. [Google Scholar] [CrossRef]
- Li, L.; Zhou, J.; Wang, K.; Chen, X.; Fu, L.; Wang, Y. Screening and Identifcation of Specifc Aptamers for Shellfsh Allergen Tropomyosin with Capillary Electrophoresis-SELEX. Food Anal. Methods 2022, 15, 1535–1544. [Google Scholar] [CrossRef]
- Yan, J.; Xiong, H.; Cai, S.; Wen, N.; He, Q.; Liu, Y.; Peng, D.; Liu, Z. Advances in aptamer screening technologies. Talanta 2019, 200, 124–144. [Google Scholar] [CrossRef]
- Yang, J.; Lu, X.; Chen, M.; Tang, C.; Wei, Z.; Liu, Y.; Jiang, H.; Peng, Y. Non-immobilized GO-SELEX screening of the aptamer against Cyclosporine A and its application in AuNPs colorimetric aptasensor. Anal. Methods 2024, 16, 227–236. [Google Scholar] [CrossRef]
- Lyu, C.; Khan, I.M.; Wang, Z. Capture-SELEX for aptamer selection: A short review. Talanta 2021, 229, 122274. [Google Scholar] [CrossRef] [PubMed]
- Takenaka, M.; Okumura, Y.; Amino, T.; Miyachi, Y.; Ogino, C.; Kondo, A. DNA-duplex linker for AFM-SELEX of DNA aptamer against human serum albumin. Bioorg. Med. Chem. Lett. 2017, 27, 954–957. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Jiang, X.; Xu, X.; Wang, N.; Wang, X.; Yang, R.; Liu, X.; Liu, Z.; Luan, Y. An Aptamer Affinity Column for Extraction of Four Aminoglycoside Antibiotics from Milk. Separations 2022, 9, 267. [Google Scholar] [CrossRef]
- Yu, F.; Li, H.; Sun, W.; Xu, D.; He, F. Rapid selection of aptamers based on protein microarray. RSC Adv. 2019, 9, 9762–9768. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Ye, J.; Liu, H.; Wu, Y.; Shi, Y.; Xie, Y.; Wang, S. FAM Tag Size Separation-Based Capture-Systematic Evolution of Ligands by Exponential Enrichment for Sterigmatocystin-Binding Aptamers with High Specificity. Anal. Chem. 2024, 96, 710–720. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Zhang, H.; Ding, Y.; Zhang, Y.; Wang, D.; Liu, J. Capture-SELEX for a short aptamer for label-free detection of salicylic acid. Smart Mol. 2023, 1, e20230007. [Google Scholar] [CrossRef]
- Kowalska, E.; Bartnicki, F.; Pels, K.; Strzalka, W. The impact of immobilized metal affinity chromatography (IMAC) resins on DNA aptamer selection. Anal. Bioanal. Chem. 2014, 406, 5495–5499. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, T.; Rathore, A.S.; Jha, S.K. The selection of highly specific and selective aptamers using modified SELEX and their use in process analytical techniques for Lucentis bioproduction. RSC Adv. 2020, 10, 28906–28917. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Kono, F.; Nakatani, K.; Hirose, M.; Horii, K.; Hippo, Y.; Tamada, T.; Suenaga, Y.; Matsuo, T. Structural characterization of human de novo protein NCYM and its complex with a newly identified DNA aptamer using atomic force microscopy and small-angle X-ray scattering. Front. Oncol. 2023, 13, 1213678. [Google Scholar] [CrossRef]
- Nagano, M.; Toda, T.; Makino, K.; Miki, H.; Sugizaki, Y.; Tomizawa, H.; Isobayashi, A.; Yoshimoto, K. Discovery of a Highly Specific Anti-methotrexate (MTX) DNA Aptamer for Antibody-Independent MTX Detection. Anal. Chem. 2022, 94, 17255–17262. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, G.; Zhu, C.; Li, L.; Zhao, Y.; Luan, Y.; Qu, F. Three-step evolutionary enhanced capillary electrophoresis-SELEX for aptamer selection of exosome vesicles. Talanta 2024, 267, 125203. [Google Scholar] [CrossRef] [PubMed]
- Le, A.T.H.; Krylova, S.M.; Kanoatov, M.; Desai, S.; Krylov, S.N. Ideal-Filter Capillary Electrophoresis (IFCE) Facilitates the One-Step Selection of Aptamers. Angew. Chem. Int. Ed. 2019, 58, 2739–2743. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, A.M.; Rangel, A.; Feagin, T.; Chun, E.M.; Wan, L.; Li, A.; Moeckl, L.; Wu, D.; Eisenstein, M.; Pitteri, S.; et al. Discovery of indole-modified aptamers for highly specific recognition of protein glycoforms. Nat. Commun. 2021, 12, 7106. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.-C.; Lin, C.-S.; Lin, C.-N.; Hsu, K.-F.; Lee, G.-B. Screening aptamers targeting the cell membranes of clinical cancer tissues on an integrated microfluidic system. Sens. Actuator. B Chem. 2021, 330, 129343. [Google Scholar] [CrossRef]
- Nelissen, F.H.T.; Peeters, W.J.M.; Roelofs, T.P.; Nagelkerke, A.; Span, P.N.; Heus, H.A. Improving Breast Cancer Treatment Specificity Using Aptamers Obtained by 3D Cell-SELEX. Pharmaceuticals 2021, 14, 349. [Google Scholar] [CrossRef] [PubMed]
- Hedayati, N.; Taghdisi, S.M.; Yazdian-Robati, R.; Mansouri, A.; Abnous, K.; Mohajeri, S.A. Selection of DNA aptamers for tramadol through the systematic evolution of ligands by exponential enrichment method for fabrication of a sensitive fluorescent aptasensor based on graphene oxide. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 259, 119840. [Google Scholar] [CrossRef] [PubMed]
- Yeoh, T.S.; Hazrina, H.Y.; Bukari, B.A.; Tang, T.-H.; Citartan, M. Generation of an RNA aptamer against LipL32 of Leptospira isolated by Tripartite-hybrid SELEX coupled with in-house Python-aided unbiased data sorting. Bioorg. Med. Chem. 2023, 81, 117186. [Google Scholar] [CrossRef]
- Vockenhuber, M.-P.; Hoetzel, J.; Maurer, L.-M.; Fröhlich, P.; Weiler, S.; Muller, Y.A.; Koeppl, H.; Suess, B. A Novel RNA Aptamer as Synthetic Inducer of DasR Controlled Transcription. ACS Synth. Biol. 2024, 13, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ciancio, D.; Lin, L.-H.; Veeramani, S.; Barros, M.N.; Sanchez, D.; Bartoio, A.L.D.; Masone, D.; Giangrande, P.H.; Mestre, M.B.; Thiel, W.H. Selection of a novel cell-internalizing RNA aptamer specific for CD22 antigen in B cell acute lymphoblastic leukemia. Mol. Ther. Nucleic Acids 2023, 33, 698–712. [Google Scholar] [CrossRef]
- Autour, A.; Bouhedda, F.; Cubi, R.; Ryckelynck, M. Optimization of fluorogenic RNA-based biosensors using droplet-based microfluidic ultrahigh-throughput screening. Methods 2019, 161, 46–53. [Google Scholar] [CrossRef]
- Cubi, R.; Bouhedda, F.; Collot, M.; Klymchenko, A.S.; Ryckelynck, M. μIVC-Useq: A microfluidic-assisted high-throughput functional screening in tandem with next-generation sequencing and artificial neural network to rapidly characterize RNA molecules. RNA 2021, 27, 841–853. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Yu, H. Selection of threose nucleic acid aptamers to block PD-1/PD-L1 interaction for cancer immunotherapy. Chem. Commun. 2020, 56, 14653–14656. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Li, P.-C.; Guo, J.; Huo, F.; Yang, J.; Jia, R.; Wang, J.; Huang, Q.; Theodorescu, D.; et al. Development of Novel Aptamer-Based Targeted Chemotherapy for Bladder Cancer. Cancer Res. 2022, 82, 1128–1139. [Google Scholar] [CrossRef]
- Kundu, N.; McCloskey, C.M.; Hajjar, M.; Chaput, J.C. Parameterizing the Binding Properties of XNA Aptamers Isolated from a Low Stringency Selection. Biochemistry 2023, 62, 3245–3254. [Google Scholar] [CrossRef]
- Uemachi, H.; Kasahara, Y.; Tanaka, K.; Okuda, T.; Yoneda, Y.; Obika, S. Hybrid-Type SELEX for the Selection of Artificial Nucleic Acid Aptamers Exhibiting Cell Internalization Activity. Pharmaceutics 2021, 13, 888. [Google Scholar] [CrossRef]
- Siegl, J.; Nikolin, C.; Phung, N.L.; Thoms, S.; Blume, C.; Mayer, G. Split-Combine Click-SELEX Reveals Ligands Recognizing the Transplant Rejection Biomarker CXCL9. ACS Chem. Biol. 2022, 17, 129–137. [Google Scholar] [CrossRef]
- Yik, E.J.; Medina, E.; Paegel, B.M.; Chaput, J.C. Highly Parallelized Screening of Functionally Enhanced XNA Aptamers in Uniform Hydrogel Particles. ACS Synth. Biol. 2023, 12, 2127–2134. [Google Scholar] [CrossRef]
- Dunn, M.R.; Mccloskey, C.M.; Buckley, P.; Rhea, K.; Chaput, J.C. Generating Biologically Stable TNA Aptamers that Function with High Affinity and Thermal Stability. J. Am. Chem. Soc. 2020, 142, 7721–7724. [Google Scholar] [CrossRef]
- Gordon, C.K.L.; Wu, D.; Pusuluri, A.; Feagin, T.A.; Csordas, A.T.; Eisenstein, M.S.; Hawker, C.J.; Niu, J.; Soh, H.T. Click-Particle Display for Base-Modified Aptamer Discovery. ACS Chem. Biol. 2019, 14, 2652–2662. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.; Brill, J.; Amini, R.; Nurmi, C.; Li, Y. Development of Better Aptamers: Structured Library Approaches, Selection Methods, and Chemical Modifications. Angew. Chem. Int. Ed. 2024, 63, e202318665. [Google Scholar] [CrossRef] [PubMed]
- Dufrêne, Y.F.; Viljoen, A.; Mignolet, J.; Mathelié-Guinlet, M. AFM in cellular and molecular microbiology. Cell. Microbiol. 2021, 23, e13324. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Li, H.; Zhao, L.; Zhang, Y.; Liu, Z. Oligonucleotide aptamers: Recent advances in their screening, molecular conformation and therapeutic applications. Biomed. Pharmacother. 2021, 143, 112232. [Google Scholar] [CrossRef]
- Le, A.T.H.; Krylova, S.M.; Krylov, S.N. Kinetic capillary electrophoresis in screening oligonucleotide libraries for protein binders. TrAC Trends Anal. Chem. 2023, 162, 117061. [Google Scholar] [CrossRef]
- Duan, Y.; Zhang, C.; Wang, Y.; Chen, G. Research progress of whole-cell-SELEX selection and the application of cell-targeting aptamer. Mol. Biol. Rep. 2022, 49, 7979–7993. [Google Scholar] [CrossRef]
- Yu, H.; Alkhamis, O.; Canoura, J.; Liu, Y.; Xiao, Y. Advances and Challenges in Small-Molecule DNA Aptamer Isolation, Characterization, and Sensor Development. Angew. Chem. Int. Ed. 2021, 60, 16800–16823. [Google Scholar] [CrossRef] [PubMed]
- Narlawar, S.S.; Gandhi, S. Fabrication of graphene nanoplatelets embedded “partition cartridge” for efficient separation of target-bound ssDNA during SELEX. Mater. Today Adv. 2021, 12, 100174. [Google Scholar] [CrossRef]
- Kohlberger, M.; Gadermaier, G. SELEX: Critical factors and optimization strategies for successful aptamer selection. Biotechnol. Appl. Biochem. 2022, 69, 1771–1792. [Google Scholar] [CrossRef]
- Fernández-Lucas, J.; Arroyo, M. Enzymatic Synthesis of Nucleic Acid Derivatives by Immobilized Enzymes. In Enzymatic and Chemical Synthesis of Nucleic Acid Derivatives; Fernández-Lucas, J., Rius, M.J.C., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2019; pp. 107–128. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, S.; Li, Z.; Yu, H. Functional nucleic acids with synthetic sugar or nucleobase moieties. Adv. Agrochem 2023, 2, 236–245. [Google Scholar] [CrossRef]
- Wei, D.; Li, X.; Wang, Y.; Yu, H. Functional XNA and Biomedical Application. In Handbook of Chemical Biology of Nucleic Acids; Sugimoto, N., Ed.; Springer Nature Singapore Pte Ltd.: Singapore, 2023; pp. 1–29. [Google Scholar]
- Ji, D.; Feng, H.; Liew, S.W.; Kwok, C.K. Modified nucleic acid aptamers: Development, characterization, and biological applications. Trends Biotechnol. 2023, 41, 1360–1384. [Google Scholar] [CrossRef]
- Duffy, K.; Arangundy-Franklin, S.; Holliger, P. Modified nucleic acids: Replication, evolution, and next-generation therapeutics. BMC Biol. 2020, 18, 112. [Google Scholar] [CrossRef]
- Freund, N.; Fürst, M.J.L.J.; Holliger, P. New chemistries and enzymes for synthetic genetics. Curr. Opin. Biotechnol. 2022, 74, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Parashar, A.; Bhushan, V.; Mahanandia, N.C.; Kumar, S.; Mohanty, A.K. Non-SELEX method for aptamer selection against β-casomorphin-7 peptide. J. Dairy Sci. 2022, 105, 5545–5560. [Google Scholar] [CrossRef] [PubMed]
- Tapp, M.J.N.; Slocik, J.M.; Dennis, P.B.; Naik, R.R.; Milam, V.T. Competition-Enhanced Ligand Selection to Identify DNA Aptamers. ACS Comb. Sci. 2018, 20, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Lisi, S.; Fiore, E.; Scarano, S.; Pascale, E.; Boehman, Y.; Ducongé, F.; Chierici, S.; Minunni, M.; Peyrin, E.; Ravelet, C. Non-SELEX isolation of DNA aptamers for the homogeneous-phase fluorescence anisotropy sensing of tau Proteins. Anal. Chim. Acta 2018, 1038, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Biyani, M.; Yasuda, K.; Isogai, Y.; Okamoto, Y.; Weilin, W.; Kodera, N.; Flechsig, H.; Sakaki, T.; Nakajima, M.; Biyani, M. Novel DNA Aptamer for CYP24A1 Inhibition with Enhanced Antiproliferative Activity in Cancer Cells. ACS Appl. Mater. Interfaces 2022, 14, 18064–18078. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, A.; Takamura, Y.; Nishigaki, K.; Biyani, M. Competitive non-SELEX for the selective and rapid enrichment of DNA aptamers and its use in electrochemical aptasensor. Sci. Rep. 2019, 9, 6642. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, R.; Adams, M.C.; Naik, R.R.; Milam, V.T. Analyzing secondary structure Patterns in DNA Aptamers Identified via CompELS. Molecules 2019, 24, 1572. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Zhu, C.; Zhao, L.; Li, L.; Huang, Y.; Zhang, Y.; Qu, F. Pressure controllable aptamers picking strategy by targets competition. Chin. Chem. Lett. 2021, 32, 218–220. [Google Scholar] [CrossRef]
- Han, S.; Zhao, L.; Yang, G.; Qu, F. Efficient screening for 8-oxoguanine DNA glycosylase binding aptamers via capillary electrophoresis. Chin. J. Chromatogr. 2021, 39, 721–729. [Google Scholar] [CrossRef]
- Liu, M.; Geng, L.; Zhang, F.; Dou, S.; Li, F.; Liu, Z.; Guo, Y.; Sun, X. Isolation of Bacteria Aptamers with Non-SELEX for the Development of a Highly Sensitive Colorimetric Assay Based on Dual Signal Amplification. J. Agric. Food Chem. 2022, 70, 15990–15998. [Google Scholar] [CrossRef]
- Kim, H.R.; Song, M.Y.; Kim, B.C. Rapid isolation of bacteria-specific aptamers with a non-SELEX-based method. Anal. Biochem. 2020, 591, 113542. [Google Scholar] [CrossRef] [PubMed]
- Jeong, I.H.; Kim, H.K.; Kim, H.R.; Kim, J.; Kim, B.C. Development of aptamers for rapid airborne bacteria detection. Anal. Bioanal. Chem. 2022, 414, 7763–7771. [Google Scholar] [CrossRef] [PubMed]
- Bavi, R.; Liu, Z.; Han, Z.; Zhang, H.; Gu, Y. In silico designed RNA aptamer against epithelial cell adhesion molecule for cancer cell imaging. Biochem. Biophys. Res. Commun. 2019, 509, 937–942. [Google Scholar] [CrossRef]
- Soon, S.; Nordin, N.A. In silico predictions and optimization of aptamers against Streptococcus agalactiae surface protein using computational docking. Mater. Today Proc. 2019, 16, 2096–2100. [Google Scholar] [CrossRef]
- Mousivand, M.; Anfossi, L.; Bagherzadeh, K.; Barbero, N.; Mirzadi-Gohari, A.; Javan-Nikkhah, M. In silico maturation of affinity and selectivity of DNA aptamers against aflatoxin B1 for biosensor development. Anal. Chim. Acta 2020, 1105, 178–186. [Google Scholar] [CrossRef]
- Bell, D.R.; Weber, J.K.; Yin, W.; Huynh, T.; Duan, W.; Zhou, R. In silico design and validation of high-affinity RNA aptamers targeting epithelial cellular adhesion molecule dimers. Proc. Natl. Acad. Sci. USA 2020, 117, 8486–8493. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Guo, P.; Cheng, W.; Liu, Y.; Zhang, Y.; Huo, P.; Feng, S.; Zhang, W. An effciient and universal In silico screening strategy for acquisition of high-affniity Aptamer and its application in analytical utility. Talanta 2024, 269, 125535. [Google Scholar] [CrossRef] [PubMed]
- Lozoya-Colinas, A.; Yu, Y.; Chaput, J.C. Functionally Enhanced XNA Aptamers Discovered by Parallelized Library Screening. J. Am. Chem. Soc. 2023, 145, 25789–25796. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Feagin, T.; Mage, P.; Rangel, A.; Wan, L.; Kong, D.; Li, A.; Coller, J.; Eisenstein, M.; Soh, H.T. Flow-Cell-Based Technology for Massively Parallel Characterization of Base-Modified DNA Aptamers. Anal. Chem. 2023, 95, 2645–2652. [Google Scholar] [CrossRef]
- Yoshikawa, A.M.; Rangel, A.E.; Zheng, L.; Wan, L.; Hein, L.A.; Hariri, A.A.; Eisenstein, M.; Soh, H.T. A massively parallel screening platform for converting aptamers into molecular switches. Nat. Commun. 2023, 14, 2336. [Google Scholar] [CrossRef]
- Kim, E.R.; Dang, T.T.-T.; Lee, S.J.; Nguyen, T.T.-Q.; Park, J.-W.; Gu, M.B. A highly sensitive sandwich-type electrochemical aptasensor using a pair of novel truncated aptamers for the detection of vaspin. Chem. Eng. J. 2023, 477, 147002. [Google Scholar] [CrossRef]
- Sun, Y.; Hou, Y.; Cao, T.; Luo, C.; Wei, Q. A Chemiluminescence Sensor for the Detection of α-Fetoprotein and Carcinoembryonic Antigen Based on Dual-Aptamer Functionalized Magnetic Silicon Composite. Anal. Chem. 2023, 95, 7387–7395. [Google Scholar] [CrossRef]
- Ishida, R.; Adachi, T.; Yokota, A.; Yoshihara, H.; Aoki, K.; Nakamura, Y.; Hamada, M. RaptRanker: In silico RNA aptamer selection from HT-SELEX experiment based on local sequence and structure information. Nucleic Acids Res. 2020, 48, e82. [Google Scholar] [CrossRef] [PubMed]
- Douaki, A.; Garoli, D.; Inam, A.K.M.S.; Angeli, M.A.C.; Cantarella, G.; Rocchia, W.; Wang, J.; Petti, L.; Lugli, P. Smart Approach for the Design of Highly Selective Aptamer-Based Biosensors. Biosensors 2022, 12, 574. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.A.; Zulkifli, R.M.; Hussin, H.; NadriIn, M.H. In silico approach for Post-SELEX DNA aptamers: A mini-review. J. Mol. Graph. Model. 2021, 105, 107872. [Google Scholar] [CrossRef] [PubMed]
- Navien, T.N.; Thevendran, R.; Hamdani, H.Y.; Tang, T.-H.; CitartanIn, M. In silico molecular docking in DNA aptamer development. Biochimie 2021, 180, 54–67. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, J.; Chen, M.; Lu, X.; Wei, Z.; Tang, C.; Yu, P. Recent Advances in Computer-aided Virtual Screening and Docking Optimization for Aptamer. Curr. Top. Med. Chem. 2023, 23, 1985–2000. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Yan, Y.; He, J.; Tao, H.; Wu, Q.; Huang, S.Y. Docking and scoring for nucleic acid-ligand interactions: Principles and current status. Drug Discov. Today 2022, 27, 838–847. [Google Scholar] [CrossRef] [PubMed]
- Otte, D.-M.; Choukeife, M.; Patwari, T.; Mayer, G. Nucleic Acid Aptamers: From Basic Research to Clinical Applications. In Handbook of Chemical Biology of Nucleic Acids; Sugimoto, N., Ed.; Springer Nature Singapore Pte Ltd.: Singapore, 2023; pp. 747–771. [Google Scholar] [CrossRef]
- Sakamoto, T.; Ennifar, E.; Nakamura, Y. Thermodynamic study of aptamers binding to their target proteins. Biochimie 2018, 145, 91–97. [Google Scholar] [CrossRef]
- Slavkovic, S.; Zhu, Y.; Churcher, Z.R.; Shoara, A.A.; Johnson, A.E.; Johnson, P.E. Thermodynamic analysis of cooperative ligand binding by the ATP-binding DNA aptamer indicates a population-shift binding mechanism. Sci. Rep. 2020, 10, 18944. [Google Scholar] [CrossRef]
- Hu, B.; Zhou, R.; Li, Z.; Ouyang, S.; Li, Z.; Hu, W.; Wang, L.; Jiao, B. Study of the binding mechanism of aptamer to palytoxin by docking and molecular simulation. Sci. Rep. 2019, 9, 15494. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-L.; Lv, C.; Li, Z.-H.; Jiang, S.; Cai, D.; Liu, S.-S.; Wang, T.; Zhang, K.-H. Analysis of aptamer-target binding and molecular mechanisms by thermofluorimetric analysis and molecular dynamics simulation. Front. Chem. 2023, 11, 1144347. [Google Scholar] [CrossRef] [PubMed]
Method | Target Type | Target | Type of Aptamer | Kd | Reference |
---|---|---|---|---|---|
Capture-SELEX | Small molecule | Sterigmatocystin | DNA | 25.3 nM | [25] |
Capture-SELEX | Small molecule | Salicylic acid | DNA | 26.7 ± 5.8 μM | [26] |
Immobilized metal affinity chromatography-SELEX | Polypeptide | A histidine-tagged 29 amino acid peptide | DNA | - | [27] |
Affinity chromatography-SELEX | Antibody | Lucentis | DNA | 23–35 nM | [28] |
Atomic force microscope-SELEX | Protein | NCYM | DNA | 53.9–299 nM | [29] |
Capillary Electrophoresis-SELEX | Protein | Shellfish Allergen Tropomyosin | DNA | 0.95 nM | [18] |
Microbead-assisted capillary electrophoresis-SELEX | Small molecule | Methotrexate | DNA | 0.57 μM | [30] |
Three-step evolutionary enhanced capillary electrophoresis-SELEX | Protein | Natural killer cells exosome-specific proteins | DNA | 27.6 nM | [31] |
Ideal-Filter Capillary Electrophoresis | Protein | MutS protein | DNA | 40 nM | [32] |
Fluorescence-activated cell sorting | Protein | RNase B; Fetuin | Modified DNA | 29.5 ± 2.7 µM; 6.2 ± 0.2 µM | [33] |
Two-step SELEX | Cell | The cell membranes of clinical cancer tissues | DNA | 41.6 ± 8.7 nM | [34] |
3D Cell-SELEX | Cell | SKBR3 cells | DNA | 81.4 nM | [35] |
Graphene Oxide-SELEX | Small molecule | Cyclosporine A | DNA | 41.21 ng/mL | [20] |
Graphene Oxide-SELEX | Small molecule | Tramadol hydrochloride | DNA | 178.4 nM | [36] |
Tripartite-hybrid SELEX | Protein | LipL32 protein of Leptospira | RNA | 350 ± 47.45 nM | [37] |
SELEX | Protein | DasR protein | RNA | 406 ± 15 nM | [38] |
Cell internalization SELEX | Cell | B-ALL cells | RNA | - | [39] |
Microfluidic screening | Small molecule | Theophylline | RNA | 1.7 ± 0.3 μM | [40] |
Microfluidic-assisted in vitro compartmentalization | Aptamer | The light-up RNA aptamer SRB-2 | RNA | - | [41] |
Capillary Electrophoresis-SELEX | Protein | PD-L1 protein | TNA | 400 nM | [42] |
Cell internalization SELEX | Cell | T24 cancer cells | Modified RNA | - | [43] |
Affinity chromatography-SELEX | Enzyme | HIV reverse transcriptase | TNA | 1–15 nM | [44] |
Hybrid-Type SELEX | Protein | Human TROP2 | Artificial nucleic acid | 50 ± 6.9 nM | [45] |
Split−Combine Click-SELEX | Cytokine | CXCL9 | Clickmer | 12 ± 2 nM; 92 ± 14 nM | [46] |
Highly Parallelized Screening | Protein | The full S1 glycoprotein of SARS-CoV-2 | TNA | 1–300 nM | [47] |
Display strategy based on TNA | Enzyme | HIV reverse transcriptase | TNA | ~0.4–4.0 nM | [48] |
Click-particle display | Small molecule; Protein | Epinephrine; Concanavalin A | Modified DNA | ~1.1 µM; 3.2 ± 0.2 nM | [49] |
Method | Target Type | Target | Type of Aptamer | Kd | Reference |
---|---|---|---|---|---|
Non-SELEX assisted by magnetic beads | Polypeptide | β-casomorphin-7 | DNA | 28.93 ± 0.783 nM | [64] |
Competition-based aptamer selection strategy | Protein | CYP24A1 | DNA | - | [67] |
Systematic evolution of ligands by competitive selection | Protein | Influenza virus protein H1N1 | DNA | 82 pM | [68] |
Competition-enhanced ligand screening | Metal | PlanarAu | DNA | 0.56 nM | [65] |
Competition-enhanced ligand screening | Nanomaterial | Gold nanorod | DNA | - | [69] |
Non-SELEX based on the capillary electrophoresis | Protein | Tau protein | DNA | 13 ± 3; 116 ± 6; 84 ± 6; 49 ± 4 nM | [66] |
One-round pressure controllable selection | Protein | Human holo-transferrin; Platelet-derived growth factor-BB | DNA | 0.050 ± 0.015; 0.081 ± 0.018 µM | [70] |
One-round pressure controllable selection | Protein | 8-Oxoguanine DNA glycosylase | DNA | 1.71~2.64 µM | [71] |
Centrifugation-based partitioning method | Bacterium | Escherichia coli | DNA | 101.76 nM | [72] |
Centrifugation-based partitioning method | Cell | Escherichia coli cell | DNA | 3.9 ± 0.6; 8.0 ± 0.9; 10.1 ± 0.7 nM | [73] |
Centrifugation-based partitioning method | Bacterium | Citrobacter braakii | DNA | 16.42 ± 2.30 nM | [74] |
In silico screening strategy | Protein | Epithelial cell adhesion molecule | RNA | 21.8 ± 3.1; 96.9 ± 25.65 nM | [75] |
In silico screening strategy | Protein | Streptoccocus agalactiae surface protein | RNA | - | [76] |
In silico maturation strategy | Toxin | Alatoxin B1 | DNA | 0.004–8.7 nM | [77] |
In silico screening strategy | Protein | Epithelial cell adhesion molecule | RNA | 39.89 ± 3.37 nM | [78] |
In silico screening strategy | Protein | Neuron-specific enolase | DNA | 2.76 ± 1.14 nM | [79] |
Parallelized library screening | Protein | The S1 protein from SARS-CoV-2 | XNA | 0.8–3.7 nM | [80] |
Non-natural aptamer array (N2A2) system | Protein | Vascular endothelial growth factor; Fetuin; Insulin | Modified DNA | 2.8 nM ± 0.63; 3 µM; 4.8 µM | [81] |
Parallel screening-based strategy | - | ATP | DNA | 12–157 μM | [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Z.; Feng, X.; Tang, F.; Jiang, H.; Han, S.; Tao, R.; Lu, C. Aptamer Screening: Current Methods and Future Trend towards Non-SELEX Approach. Biosensors 2024, 14, 350. https://doi.org/10.3390/bios14070350
Fang Z, Feng X, Tang F, Jiang H, Han S, Tao R, Lu C. Aptamer Screening: Current Methods and Future Trend towards Non-SELEX Approach. Biosensors. 2024; 14(7):350. https://doi.org/10.3390/bios14070350
Chicago/Turabian StyleFang, Zhihui, Xiaorui Feng, Fan Tang, Han Jiang, Shuyuan Han, Ran Tao, and Chenze Lu. 2024. "Aptamer Screening: Current Methods and Future Trend towards Non-SELEX Approach" Biosensors 14, no. 7: 350. https://doi.org/10.3390/bios14070350
APA StyleFang, Z., Feng, X., Tang, F., Jiang, H., Han, S., Tao, R., & Lu, C. (2024). Aptamer Screening: Current Methods and Future Trend towards Non-SELEX Approach. Biosensors, 14(7), 350. https://doi.org/10.3390/bios14070350