Enhanced Nanoparticle Recognition via Deep Learning-Accelerated Plasmonic Sensing
Abstract
:1. Introduction
2. Experiments and Discussion
2.1. Experimental Sample Collection
2.2. Selection of Deep Learning Networks
2.3. Image Classification Experiments Based on the Simulated Image Dataset
2.3.1. Preparation of Simulated Image Datasets
2.3.2. Experiments and Discussion Based on the Simulated Image Dataset
2.4. Classification Experiments of Actual Images
2.4.1. Dataset Description
2.4.2. Experiments and Discussion Based on the Augmented Dataset
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, X.; Ishihara, T. Surface Plasmon Resonant Interference Nanolithography Technique. Appl. Phys. Lett. 2004, 84, 4780–4782. [Google Scholar] [CrossRef]
- Rothenhäusler, B.; Knoll, W. Surface–plasmon microscopy. Nature 1988, 332, 615–617. [Google Scholar] [CrossRef]
- Zhou, X.; Chieng, A.; Wang, S. Label-Free Optical Imaging of Nanoscale Single Entities. ACS Sens. 2024, 9, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Chieng, A.; Wan, Z.; Wang, S. Recent Advances in Real-Time Label-Free Detection of Small Molecules. Biosensors 2024, 14, 80. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Shan, X.; Patel, U.; Huang, X.; Lu, J.; Li, J.; Tao, N. Label-Free Imaging, Detection, and Mass Measurement of Single Viruses by Surface Plasmon Resonance. Proc. Natl. Acad. Sci. USA 2010, 107, 16028–16032. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.N.; Lv, Z.T.; Lv, W.L.; Liu, X.W. Plasmonic probing of the adhesion strength of single microbial cells. Proc. Natl. Acad. Sci. USA 2020, 117, 27148–27153. [Google Scholar] [CrossRef] [PubMed]
- Sharar, N.; Wüstefeld, K.; Talukder, R.M.; Skolnik, J.; Kaufmann, K.; Giebel, B.; Börger, V.; Nolte, F.; Watzl, C.; Weichert, F.; et al. The Employment of the Surface Plasmon Resonance (SPR) Microscopy Sensor for the Detection of Individual Extracellular Vesicles and Non-Biological Nanoparticles. Biosensors 2023, 13, 472. [Google Scholar] [CrossRef] [PubMed]
- Iriya, R.; Braswell, B.; Mo, M.; Zhang, F.; Haydel, S.E.; Wang, S. Deep Learning-Based Culture-Free Bacteria Detection in Urine Using Large-Volume Microscopy. Biosensors 2024, 14, 89. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Shan, X.; Wang, S.; Tao, N. Achieving High Spatial Resolution Surface Plasmon Resonance Microscopy with Image Reconstruction. Anal. Chem. 2017, 89, 2704–2707. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Shang, L.; Tang, J.; Wu, J.; Shang, H.; Huang, X.; Bao, Y.; Xu, Z.; Wang, H.; Yin, J. Polarized Micro-Raman Spectroscopy and 2D Convolutional Neural Network Applied to Structural Analysis and Discrimination of Breast Cancer. Biosensors 2023, 13, 65. [Google Scholar] [CrossRef] [PubMed]
- Moon, G.; Lee, J.; Lee, H.; Yoo, H.; Ko, K.; Im, S.; Kim, D. Machine learning and its applications for plasmonics in biology. Cell Rep. Phys. Sci. 2022, 3, 101042. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Noh, H.; Hong, S.; Han, B. Learning Deconvolution Network for Semantic Segmentation. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1520–1528. [Google Scholar]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. arXiv 2014, arXiv:1412.7062. [Google Scholar]
- Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.N.; et al. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Process. Mag. 2012, 29, 82–97. [Google Scholar] [CrossRef]
- Moon, G.; Son, T.; Lee, H.; Kim, D. Deep Learning Approach for Enhanced Detection of Surface Plasmon Scattering. Anal. Chem. 2019, 91, 9538–9545. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Y.; Lu, F.; Zhang, D. Enhanced Detection of Surface Plasmon Resonance Microscope via Multiangle Illumination and Pretrained Deep Neural Network. Phys. Status Solidi (A) 2022, 219, 2200321. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, Q.; Xie, F.; Wang, J.; Yang, Y.; Xu, Y.; Li, J.; Yu, H. Automated nanoparticle analysis in surface plasmon resonance microscopy. Anal. Chem. 2021, 93, 7399–7404. [Google Scholar] [CrossRef]
- He, Y.F.; Yang, S.Y.; Lv, W.L.; Qian, C.; Wu, G.; Zhao, X.; Liu, X.W. Deep-Learning Driven, High-Precision Plasmonic Scattering Interferometry for Single-Particle Identification. ACS Nano 2024, 18, 9704–9712. [Google Scholar] [CrossRef]
- John, P.; Vasa, N.J.; Zam, A. Optical Biosensors for the Diagnosis of COVID-19 and Other Viruses—A Review. Diagnostics 2023, 13, 2418. [Google Scholar] [CrossRef]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, K.-X.; Shen, J.; Wang, Y.-J.; Yang, Y.; Cao, S.-H. Enhanced Nanoparticle Recognition via Deep Learning-Accelerated Plasmonic Sensing. Biosensors 2024, 14, 363. https://doi.org/10.3390/bios14080363
Jin K-X, Shen J, Wang Y-J, Yang Y, Cao S-H. Enhanced Nanoparticle Recognition via Deep Learning-Accelerated Plasmonic Sensing. Biosensors. 2024; 14(8):363. https://doi.org/10.3390/bios14080363
Chicago/Turabian StyleJin, Ke-Xin, Jia Shen, Yi-Jing Wang, Yu Yang, and Shuo-Hui Cao. 2024. "Enhanced Nanoparticle Recognition via Deep Learning-Accelerated Plasmonic Sensing" Biosensors 14, no. 8: 363. https://doi.org/10.3390/bios14080363
APA StyleJin, K. -X., Shen, J., Wang, Y. -J., Yang, Y., & Cao, S. -H. (2024). Enhanced Nanoparticle Recognition via Deep Learning-Accelerated Plasmonic Sensing. Biosensors, 14(8), 363. https://doi.org/10.3390/bios14080363