Analysis of Random Lasing in Human Blood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Blood and Blood Component Samples
2.2. RL Obtention and Optical Setup
2.3. Statistical Analysis
3. Results and Discussion
3.1. RL in WB and Blood Components
3.1.1. Whole Blood
3.1.2. Platelets
3.1.3. Lymphocytes
3.1.4. Erythrocytes
3.2. Observational Case Study: RL Characteristics of CLL Patients
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RL | Random lasing |
WB | Whole blood |
CLL | Cronic lymphocytic leukaemia |
PCA | Principal component analysis |
LDA | Linear discriminant analysis |
RhB | Rhodamine B |
EtOH | Ethanol |
RBC | Red blood cells |
References
- Ambartsumyan, R.V.; Basov, N.G.; Kryukov, P.G.; Letokhov, V.S. 5A10(b)—A Laser with a Nonresonant Feedback. IEEE J. Quantum Electron. 1966, 2, 442–446. [Google Scholar] [CrossRef]
- Letokhov, V.S. Generation of light by a scattering medium with negative resonance absorption. Sov. Phys. JETP 1968, 26, 835–840. [Google Scholar]
- Wiersma, D.S. The physics and applications of random lasers. Nat. Phys. 2008, 4, 359–367. [Google Scholar] [CrossRef]
- Lawandy, N.M.; Balachandran, R.M.; Gomes, A.S.L.; Sauvain, E. Laser action in strongly scattering media. Nature 1994, 368, 436–438. [Google Scholar] [CrossRef]
- Redding, B.; Choma, M.A.; Cao, H. Speckle-free laser imaging using random laser illumination. Nat. Photonics 2012. [Google Scholar] [CrossRef]
- Cao, H.; Choma, M.A.; Redding, B. Spatial coherence of random laser emission. Opt. Lett. 2011, 36, 3404–3406. [Google Scholar] [CrossRef]
- Cao, H.; Zhao, Y.G.; Ho, S.T.; Seelig, E.W.; Wang, Q.H.; Chang, R.P. Random Laser Action in Semiconductor Powder. Phys. Rev. Lett. 1999, 82, 2278–2281. [Google Scholar] [CrossRef]
- Ling, Y.; Cao, H.; Burin, A.L.; Ratner, M.A.; Liu, X.; Chang, R.P. Investigation of random lasers with resonant feedback. Phys. Rev. At. Mol. Opt. Phys. 2001, 64, 8. [Google Scholar] [CrossRef]
- El-Dardiry, R.G.; Mosk, A.P.; Muskens, O.L.; Lagendijk, A. Experimental studies on the mode structure of random lasers. Phys. Rev. At. Mol. Opt. Phys. 2010, 81, 043830. [Google Scholar] [CrossRef]
- Li, Y.; Xie, K.; Zhang, X.; Hu, Z.; Ma, J.; Chen, X.; Zhang, J.; Liu, Z.; Chen, D. Coherent Random Lasing Realized in Polymer Vesicles. Photonic Sens. 2020, 10, 254–264. [Google Scholar] [CrossRef]
- de Armas-Rillo, S.; Fumagallo-Reading, F.; Luis-Ravelo, D.; Abdul-Jalbar, B.; González-Hernández, T.; Lahoz, F. Random lasing detection of mutant huntingtin expression in cells. Sensors 2021, 21, 3825. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Hong, Q.; Ge, K.; Shi, X.; Wang, X.; Deng, J.; Zhou, Z.X.; Zhai, T. Random Lasing from Label-Free Living Cells for Rapid Cytometry of Apoptosis. Nano Lett. 2022, 22, 172–178. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Hu, S.; Ren, J.; Cheng, X.; Hu, Z.; Wang, N.; Zhang, H.; Lam, R.H.; Tam, H.Y. Biofluidic Random Laser Cytometer for Biophysical Phenotyping of Cell Suspensions. ACS Sens. 2019, 4, 832–840. [Google Scholar] [CrossRef]
- Zhang, D.; Kostovski, G.; Karnutsch, C.; Mitchell, A. Random lasing from dye doped polymer within biological source scatters: The pomponia imperatorial cicada wing random nanostructures. Org. Electron. 2012, 13, 2342–2345. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, G.; Wang, S.; Yang, C.; Yin, J.; Zhou, S. Coherent random lasing from liquid waveguide gain channels with biological scatters. Appl. Phys. Lett. 2014, 105. [Google Scholar] [CrossRef]
- Wang, C.S.; Chang, T.Y.; Lin, T.Y.; Chen, Y.F. Biologically inspired flexible quasi-single-mode random laser: An integration of Pieris canidia butterfly wing and semiconductors. Sci. Rep. 2014, 4, 6736. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.W.; Lu, J.Y.; Hung, B.Y.; Chiesa, M.; Tung, P.H.; Lin, J.H.; Yang, T.C.K. Random lasers from photonic crystal wings of butterfly and moth for speckle-free imaging. Opt. Express 2021, 29, 2065. [Google Scholar] [CrossRef]
- Hohmann, M.; Dörner, D.; Mehari, F.; Chen, C.; Späth, M.; Müller, S.; Albrecht, H.; Klämpfl, F.; Schmidt, M. Investigation of random lasing as a feedback mechanism for tissue differentiation during laser surgery. Biomed. Opt. Express 2019, 10, 807. [Google Scholar] [CrossRef]
- de Armas-Rillo, S.; Fumagallo-Reading, F.; Luis-Ravelo, D.; Abdul-Jalbar, B.; González-Hernández, T.; Lahoz, F. Random lasing as a sensing tool in brain samples of an animal model of Huntington’s disease. Appl. Phys. Lett. 2022, 121, 123701. [Google Scholar] [CrossRef]
- Lahoz, F.; Acebes, A.; González-Hernández, T.; de Armas-Rillo, S.; Soler-Carracedo, K.; Cuesto, G.; Mesa-Infante, V. Random lasing in brain tissues. Org. Electron. 2019, 75, 105389. [Google Scholar] [CrossRef]
- Lahoz, F.; Martín, I.R.; Urgellés, M.; Marrero-Alonso, J.; Marín, R.; Saavedra, C.J.; Boto, A.; Díaz, M. Random laser in biological tissues impregnated with a fluorescent anticancer drug. Laser Phys. Lett. 2015, 12, 045805. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, Z.; Qiu, Z.; Zhang, P.; Wu, J.; Dingke, A.; Xiang, T. Random lasing in human tissues embedded with organic dyes for cancer diagnosis. Sci. Rep. 2017, 7, 8385. [Google Scholar] [CrossRef] [PubMed]
- Mogharari, N.; Sajad, B. Random Laser Emission Spectra of the Normal and Cancerous Thyroid Tissues. Iran. J. Sci. Technol. Trans. Sci. 2019, 43, 2055–2060. [Google Scholar] [CrossRef]
- Gayathri, R.; Suchand Sandeep, C.S.; Vijayan, C.; Murukeshan, V.M. Random Lasing for Bimodal Imaging and Detection of Tumor. Biosensors 2023, 13, 1003. [Google Scholar] [CrossRef]
- Cao, H.; Xu, J.Y.; Ling, Y.; Burin, A.L.; Seeling, E.W.; Liu, X.; Chang, R.P. Random lasers with coherent feedback. IEEE J. Sel. Top. Quantum Electron. 2003, 9, 111–119. [Google Scholar] [CrossRef]
- Ni, D.; Späth, M.; Klämpfl, F.; Hohmann, M. Properties and Applications of Random Lasers as Emerging Light Sources and Optical Sensors: A Review. Sensors 2023, 23, 10247. [Google Scholar] [CrossRef] [PubMed]
- Hohmann, M.; Späth, M.; Ni, D.; Dörner, D.; Lengenfelder, B.; Klämpfl, F.; Schmidt, M. Random laser as a potential tool for the determination of the scattering coefficient. Biomed. Opt. Express 2021, 12, 5439. [Google Scholar] [CrossRef] [PubMed]
- Goldys, E.M.; Liu, G.; Zhang, K.; Dawes, J.M.; Ismail, W.Z.W. Dopamine sensing and measurement using threshold and spectral measurements in random lasers. Opt. Express 2016, 24, A85–A91. [Google Scholar] [CrossRef]
- Shi, X.; Tong, J.H.; Zhai, T.; Ge, K. Low-cost biosensors based on a plasmonic random laser on fiber facet. Opt. Express 2020, 28, 12233–12242. [Google Scholar] [CrossRef]
- Song, Q.; Xiao, S.; Xu, Z.; Liu, J.; Sun, X.; Drachev, V.; Shalaev, V.M.; Akkus, O.; Kim, Y.L. Random lasing in bone tissue. Opt. Lett. 2010, 35, 1425. [Google Scholar] [CrossRef]
- Song, Q.; Xu, Z.; Choi, S.H.; Sun, X.; Xiao, S.; Akkus, O.; Kim, Y.L. Detection of nanoscale structural changes in bone using random lasers. Biomed. Opt. Express 2010, 1, 1401. [Google Scholar] [CrossRef] [PubMed]
- Polson, R.C.; Vardeny, Z.V. Random lasing in human tissues. Appl. Phys. Lett. 2004, 85, 1289–1291. [Google Scholar] [CrossRef]
- Marrugo-Ramírez, J.; Mir, M.; Samitier, J. Blood-Based Cancer Biomarkers in Liquid Biopsy: A Promising Non-Invasive Alternative to Tissue Biopsy. Int. J. Mol. Sci. 2018, 19, 2877. [Google Scholar] [CrossRef] [PubMed]
- Oppegaard, K.R.; Armstrong, T.S.; Anguera, J.A.; Kober, K.M.; Kelly, D.L.; Laister, R.C.; Saligan, L.N.; Ayala, A.P.; Kuruvilla, J.; Alm, M.W.; et al. Blood-based biomarkers of cancer-related cognitive impairment in non-central nervous system cancer: A scoping review. Crit. Rev. Oncol. 2022, 180, 103822. [Google Scholar] [CrossRef] [PubMed]
- Zudeh, G.; Franca, R.; Stocco, G.; Decorti, G. Biomarkers for gastrointestinal adverse events related to thiopurine therapy. World J. Gastroenterol. 2021, 27, 6348. [Google Scholar] [CrossRef]
- Dhingra, R.; Vasan, R.S. Biomarkers in Cardiovascular Disease: Statistical Assessment and Section on Key Novel Heart Failure Biomarkers. Trends Cardiovasc. Med. 2017, 27, 123. [Google Scholar] [CrossRef]
- Karceski, S.; Antonopoulos, M. Biomarkers in Alzheimer Disease: A Review. Neurology 2023, 101, E461–E463. [Google Scholar] [CrossRef]
- Alcolea, D.; Beeri, M.S.; Rojas, J.C.; Gardner, R.C.; Lleó, A. Blood Biomarkers in Neurodegenerative Diseases: Implications for the Clinical Neurologist. Neurology 2023, 101, 172–180. [Google Scholar] [CrossRef]
- Mendicuti, E.; Käferlein, O.; García-Segundo, C. Random laser emission from whole blood as the active medium. Opt. Lett. 2021, 46, 274. [Google Scholar] [CrossRef]
- Gomes, A.S.; Moura, A.L.; de Araújo, C.B.; Raposo, E.P. Recent advances and applications of random lasers and random fiber lasers. Prog. Quantum Electron. 2021, 78, 100343. [Google Scholar] [CrossRef]
- Hallek, M.; Cheson, B.D.; Catovsky, D.; Caligaris-Cappio, F.; Dighiero, G.; Döhner, H.; Hillmen, P.; Keating, M.; Montserrat, E.; Chiorazzi, N.; et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood 2018, 131, 2745–2760. [Google Scholar] [CrossRef] [PubMed]
- Woessner-Casas, S.; Florensa-Brichs, L. La Citología Óptica en el Diagnóstico Hematológico, 5th ed.; Acción Médica: Madrid, Spain, 2006. [Google Scholar]
- Matutes, E.; Polliack, A. Morphological and Immunophenotypic Features of Chronic Lymphocytic Leukemia. Rev. Clin. Exp. Hematol. 2000, 4, 22–47. [Google Scholar] [CrossRef]
- Orfao, A.; Gonzalez, M.; San Miguel, J.F.; Cañizo, M.C.; Galindo, P.; Caballero, M.D.; Jimenez, R.; Borrasca, A.L. Clinical and immunological findings in large B-cell chronic lymphocytic leukemia. Clin. Immunol. Immunopathol. 1988, 46, 177–185. [Google Scholar] [CrossRef]
- Bos, M.H.A.; van ‘t Veer, C.; Reitsma, P.H. Molecular Biology and Biochemistry of the Coagulation Factors and Pathways of Hemostasis. In Williams Hematology, 9e; Kaushansky, K., Lichtman, M.A., Prchal, J.T., Levi, M.M., Press, O.W., Burns, L.J., Caligiuri, M., Eds.; McGraw-Hill Education: New York, NY, USA, 2015; Chapter 113; pp. 2017–2051. [Google Scholar]
- Salem, R.O.; Laposata, M. Effects of alcohol on hemostasis. Am. J. Clin. Pathol. 2005, 123, S96–S105. [Google Scholar] [CrossRef]
- Huefner, A.; Kuan, W.L.; Mason, S.L.; Mahajan, S.; Barker, R.A. Serum Raman spectroscopy as a diagnostic tool in patients with Huntington’s disease. Chem. Sci. 2020, 11, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Zilker, S.J.; Haarer, D.; Beckering, G. Spectral measurements of the emission from highly scattering gain media. Opt. Lett. 1997, 22, 1427–1429. [Google Scholar] [CrossRef]
- Pour, M.R.M.; Bavali, A.; Parvin, P.; Mohammadian, M.; Mortazavi, S.Z. Red/blue spectral shifts of laser-induced fluorescence emission due to different nanoparticle suspensions in various dye solutions. Appl. Opt. 2014, 53, 5398–5409. [Google Scholar] [CrossRef]
- Cue, N.; Yoo, K.M.; Zhang, W. Emission linewidth of laser action in random gain media. Opt. Lett. 1995, 20, 961–963. [Google Scholar] [CrossRef]
- El-Dardiry, R.G.; Lagendijk, A. Tuning random lasers by engineered absorption. Appl. Phys. Lett. 2011, 98. [Google Scholar] [CrossRef]
- Ignesti, E.; Tommasi, F.; Fini, L.; Martelli, F.; Azzali, N.; Cavalieri, S. A new class of optical sensors: A random laser based device. Sci. Rep. 2016, 6, 35225. [Google Scholar] [CrossRef]
- Zuhaier, A.K.I.; Mohammad, K.; Devanesan, S.; AlSalhi, M.S.; Prasad, S.; Masilamani, V. Shelf-life enhancement of donor blood by He-Ne laser biostimulation. Curr. Sci. 2015, 109, 1151–1153. [Google Scholar]
- Dmitrieva, E.A.; Nikitin, E.A.; Ignatova, A.A.; Vorobyev, V.I.; Poletaev, A.V.; Seregina, E.A.; Voronin, K.A.; Polokhov, D.M.; Maschan, A.A.; Novichkova, G.A.; et al. Platelet function and bleeding in chronic lymphocytic leukemia and mantle cell lymphoma patients on ibrutinib. J. Thromb. Haemost. 2020, 18, 2672–2684. [Google Scholar] [CrossRef] [PubMed]
Predicted Group (%) | |||||
---|---|---|---|---|---|
Control | CLL | Overall Accuracy (%) | |||
WB | Training set cross-validation | Control | 65.3 | 34.7 | 65.6 |
CLL | 34.0 | 66.0 | |||
Validation set | Control | 66.6 | 33.4 | 67.2 | |
CLL | 32.2 | 67.8 | |||
Platelets | Training set cross-validation | Control | 74.6 | 25.4 | 73.9 |
CLL | 26.8 | 73.2 | |||
Validation set | Control | 71.1 | 28.9 | 71.2 | |
CLL | 28.7 | 71.3 | |||
Lymphocytes | Training set cross-validation | Control | 89.7 | 10.3 | 87.1 |
CLL | 15.5 | 84.5 | |||
Validation set | Control | 87.8 | 12.2 | 86.7 | |
CLL | 14.3 | 85.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Armas-Rillo, S.; Abdul-Jalbar, B.; Salas-Hernández, J.; Raya-Sánchez, J.M.; González-Hernández, T.; Lahoz, F. Analysis of Random Lasing in Human Blood. Biosensors 2024, 14, 441. https://doi.org/10.3390/bios14090441
de Armas-Rillo S, Abdul-Jalbar B, Salas-Hernández J, Raya-Sánchez JM, González-Hernández T, Lahoz F. Analysis of Random Lasing in Human Blood. Biosensors. 2024; 14(9):441. https://doi.org/10.3390/bios14090441
Chicago/Turabian Stylede Armas-Rillo, Sergio, Beatriz Abdul-Jalbar, Josmar Salas-Hernández, Jose María Raya-Sánchez, Tomás González-Hernández, and Fernando Lahoz. 2024. "Analysis of Random Lasing in Human Blood" Biosensors 14, no. 9: 441. https://doi.org/10.3390/bios14090441
APA Stylede Armas-Rillo, S., Abdul-Jalbar, B., Salas-Hernández, J., Raya-Sánchez, J. M., González-Hernández, T., & Lahoz, F. (2024). Analysis of Random Lasing in Human Blood. Biosensors, 14(9), 441. https://doi.org/10.3390/bios14090441