A Novel Ferrocene-Linked Thionine as a Dual Redox Mediator for the Electrochemical Detection of Dopamine and Hydrogen Peroxide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Instrumentation
2.3. Preparation of TH-FcDA
2.4. Modification of GC with TH-FcDA
3. Results and Discussions
3.1. FT-IR and Morphology Studies
3.2. Electrochemical Measurements
3.3. Interference Study
3.4. Real-Sample Analysis, Reproducibility, and Stability
3.5. Density Functional Theory (DFT) Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pena-Pereira, F.; Bendicho, C.; Pavlović, D.M.; Martín-Esteban, A.; Díaz-Álvarez, M.; Pan, Y.; Cooper, J.; Yang, Z.; Safarik, I.; Pospiskova, K.; et al. Miniaturized Analytical Methods for Determination of Environmental Contaminants of Emerging Concern—A Review. Anal. Chim. Acta 2021, 1158, 238108. [Google Scholar] [PubMed]
- Dincer, C.; Bruch, R.; Costa-Rama, E.; Fernández-Abedul, M.T.; Merkoçi, A.; Manz, A.; Urban, G.A.; Güder, F. Disposable Sensors in Diagnostics, Food, and Environmental Monitoring. Adv. Mater. 2019, 31, e1806739. [Google Scholar] [CrossRef] [PubMed]
- Armenta, S.; Esteve-Turrillas, F.A.; Garrigues, S.; Guardia, M. de la Smart Materials for Sample Preparation in Bioanalysis: A Green Overview. Sustain. Chem. Pharm. 2021, 21, 100411. [Google Scholar] [CrossRef]
- Anastas, P.T. Green Chemistry and the Role of Analytical Methodology Development. Crit. Rev. Anal. Chem. 1999, 29, 167–175. [Google Scholar] [CrossRef]
- Heli, H.; Pishahang, J.; Amiri, H.B. Synthesis of Hexagonal CoAl-Layered Double Hydroxide Nanoshales/Carbon Nanotubes Composite for the Non-Enzymatic Detection of Hydrogen Peroxide. J. Electroanal. Chem. 2016, 768, 134–144. [Google Scholar] [CrossRef]
- Giorgio, M.; Trinei, M.; Migliaccio, E.; Pelicci, P.G. Hydrogen Peroxide: A Metabolic by-Product or a Common Mediator of Ageing Signals? Nat. Rev. Mol. Cell Biol. 2007, 8, 722–728. [Google Scholar] [CrossRef]
- Dias, V.; Junn, E.; Mouradian, M.M. The Role of Oxidative Stress in Parkinson’s Disease. J. Parkinsons Dis. 2013, 3, 461–491. [Google Scholar] [CrossRef]
- Drábková, M.; Admiraal, W.; Maršálek, B. Combined Exposure to Hydrogen Peroxide and LightSelective Effects on Cyanobacteria, Green Algae, and Diatoms. Environ. Sci. Technol. 2007, 41, 309–314. [Google Scholar] [CrossRef]
- Mahbubur Rahman, M.; Liu, D.; Siraj Lopa, N.; Baek, J.-B.; Nam, C.-H.; Lee, J.-J. Effect of the Carboxyl Functional Group at the Edges of Graphene on the Signal Sensitivity of Dopamine Detection. J. Electroanal. Chem. 2021, 898, 115628. [Google Scholar] [CrossRef]
- Ahammad, A.J.S.; Nath, N.C.D.; Xu, G.-R.; Kim, S.; Lee, J.-J. Interference-Free Determination of Dopamine at the Poly(Thionine)-Modified Glassy Carbon Electrode. J. Electrochem. Soc. 2011, 158, F106–F110. [Google Scholar] [CrossRef]
- Xi, X.; Tang, W.; Wu, D.; Shen, C.; Ji, W.; Li, J.; Su, Y.; Guo, X.; Liu, R.; Yan, F. All-Carbon Solution-Gated Transistor with Low Operating Voltages for Highly Selective and Stable Dopamine Sensing. ACS Sens. 2023, 8, 1211–1219. [Google Scholar] [CrossRef] [PubMed]
- Devendiran, M.; Krishna Kumar, K.; Sriman Narayanan, S. Fabrication of a Novel Ferrocene/Thionin Bimediator Modified Electrode for the Electrochemical Determination of Dopamine and Hydrogen Peroxide. J. Electroanal. Chem. 2017, 802, 78–88. [Google Scholar] [CrossRef]
- Ognjanović, M.; Stanković, D.M.; Jaćimović, Ž.K.; Kosović-Perutović, M.; Dojčinović, B.; Antić, B. The Effect of Surface-Modifier of Magnetite Nanoparticles on Electrochemical Detection of Dopamine and Heating Efficiency in Magnetic Hyperthermia. J. Alloys Compd. 2021, 884, 161075. [Google Scholar] [CrossRef]
- Shafi, P.M.; Joseph, N.; Karthik, R.; Shim, J.-J.; Bose, A.C.; Ganesh, V. Lemon Juice-Assisted Synthesis of LaMnO3 Perovskite Nanoparticles for Electrochemical Detection of Dopamine. Microchem. J. 2021, 164, 105945. [Google Scholar] [CrossRef]
- Bahrami, E.; Amini, R.; Vardak, S. Electrochemical Detection of Dopamine via Pencil Graphite Electrodes Modified by Cu/CuxO Nanoparticles. J. Alloys Compd. 2021, 855, 157292. [Google Scholar] [CrossRef]
- Anbumannan, V.; Kumar, R.T.R.; Suresh, K. Enhanced Electrochemical Detection of Dopamine by Graphene Oxide/Tungsten Trioxide Nanocomposite. Mater. Sci. Semicond. Process. 2021, 127, 105696. [Google Scholar] [CrossRef]
- Tian, J.; Wu, W. A Novel Preparation of Water-Dispersed Graphene and Their Application to Electrochemical Detection of Dopamine. Adv. Powder Technol. 2021, 32, 619–629. [Google Scholar] [CrossRef]
- Mathiarasu, R.R.; Manikandan, A.; Baby, J.N.; Panneerselvam, K.; Subashchandrabose, R.; George, M.; Slimani, Y.; Almessiere, M.A.; Baykal, A. Hexagonal Basalt-like Ceramics LaxMg1-XTiO3 (x = 0 and 0.5) Contrived via Deep Eutectic Solvent for Selective Electrochemical Detection of Dopamine. Physica B Condens. Matter 2021, 615, 413068. [Google Scholar] [CrossRef]
- Atta, N.F.; Abdel Gawad, S.A.; Galal, A.; Razik, A.A.; El-Gohary, A.R.M. Efficient Electrochemical Sensor for Determination of H2O2 in Human Serum Based on Nano Iron-nickel Alloy/Carbon Nanotubes/Ionic Liquid Crystal Composite. J. Electroanal. Chem. 2021, 881, 114953. [Google Scholar] [CrossRef]
- Sajjan, V.A.; Mohammed, I.; Nemakal, M.; Aralekallu, S.; Kumar, K.H.; Swamy, S.; Sannegowda, L.K. Hemantha Kumar, Sreenivasa Swamy, Lokesh Koodlur Sannegowda, Synthesis and electropolymerization of cobalt tetraaminebenzamidephthalocyanine macrocycle for the amperometric sensing of dopamine. J. Electroanal. Chem. 2019, 838, 33–40. [Google Scholar] [CrossRef]
- Molodtsova, T.; Gorshenkov, M.; Saliev, A.; Vanyushin, V.; Goncharov, I.; Smirnova, N. One-Step Synthesis of γ-Fe2O3/Fe3O4 Nanocomposite for Sensitive Electrochemical Detection of Hydrogen Peroxide. Electrochim. Acta 2021, 370, 137723. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, H.; Wu, W.; Shui, Z.; Dong, J.; Wen, L.; Wang, X.; Yang, M.; Hou, C.; Huo, D. Flexible Nickel–Cobalt Double Hydroxides Micro-Nano Arrays for Cellular Secreted Hydrogen Peroxide in-Situ Electrochemical Detection. Anal. Chim. Acta 2021, 1143, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Atacan, K.; Özacar, M. Construction of a Non-Enzymatic Electrochemical Sensor Based on CuO/g-C3N4 Composite for Selective Detection of Hydrogen Peroxide. Mater. Chem. Phys. 2021, 266, 124527. [Google Scholar] [CrossRef]
- Zhao, F.; Zhou, S.; Zhang, Y. Ultrasensitive Detection of Hydrogen Peroxide Using Bi 2 Te 3 Electrochemical Sensors. ACS Appl. Mater. Interfaces 2021, 13, 4761–4767. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; Zheng, J. One-Pot Fabrication of AuNPs-Prussian Blue-Graphene Oxide Hybrid Nanomaterials for Non-Enzymatic Hydrogen Peroxide Electrochemical Detection. Microchem. J. 2021, 160, 105595. [Google Scholar] [CrossRef]
- Qiao, X.; Arsalan, M.; Ma, X.; Wang, Y.; Yang, S.; Wang, Y.; Sheng, Q.; Yue, T. A Hybrid of Ultrathin Metal-Organic Framework Sheet and Ultrasmall Copper Nanoparticles for Detection of Hydrogen Peroxide with Enhanced Activity. Anal. Bioanal. Chem. 2021, 413, 839–851. [Google Scholar] [CrossRef]
- Rashed, M.A.; Harraz, F.A.; Faisal, M.; El-Toni, A.M.; Alsaiari, M.; Al-Assiri, M.S. Gold Nanoparticles Plated Porous Silicon Nanopowder for Nonenzymatic Voltammetric Detection of Hydrogen Peroxide. Anal. Biochem. 2021, 615, 114065. [Google Scholar] [CrossRef]
- Ghanbari, K.; Bonyadi, S. Modified Glassy Carbon Electrode with Polypyrrole Nanocomposite for the Simultaneous Determination of Ascorbic Acid, Dopamine, Uric Acid, and Folic Acid. J. Electrochem. Sci. Technol. 2020, 11, 68–83. [Google Scholar] [CrossRef]
- Peng, J.; Li, X.; Liu, Y.; Zhuge, W.; Zhang, C.; Huang, Y. Photoelectrochemical Sensor Based on Zinc Phthalocyanine Semiconducting Polymer Dots for Ultrasensitive Detection of Dopamine. Sens. Actuators B Chem. 2022, 360, 131619. [Google Scholar] [CrossRef]
- Sai Iswarya Bakavaty, T.; Gurunathan, K. Graphene-Wrapped WO3/Mo Derivatives for the Simultaneous Electrochemical Detection of Dopamine and Uric Acid. Mater. Sci. Eng. B 2024, 299, 116967. [Google Scholar] [CrossRef]
- Barber, R.; Davis, J.; Papakonstantinou, P. Stable Chitosan and Prussian Blue-Coated Laser-Induced Graphene Skin Sensor for the Electrochemical Detection of Hydrogen Peroxide in Sweat. ACS Appl. Nano Mater. 2023, 6, 10290–10302. [Google Scholar] [CrossRef]
- Rahman, M.M.; Lee, J.J. Electrochemical Dopamine Sensors Based on Graphene. J. Electrochem. Sci. Technol. 2019, 10, 185–195. [Google Scholar]
- Nankya, R.; Opar, D.O.; Jung, H. Mesoporous Graphene-Modified Electrode for Independent and Selective Detection of Dopamine in the Presence of High Concentration of Ascorbic Acid. Bull. Korean Chem. Soc. 2020, 41, 170–175. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, L.; Tian, Y. A Durable Non-Enzymatic Electrochemical Sensor for Monitoring H 2 O 2 in Rat Brain Microdialysates Based on One-Step Fabrication of Hydrogels. Analyst 2015, 140, 3788–3793. [Google Scholar] [CrossRef]
- Mahbubur Rahman, M.; Lee, J.-J. Sensitivity Control of Dopamine Detection by Conducting Poly(Thionine). Electrochem. Commun 2021, 125, 107005. [Google Scholar] [CrossRef]
- Rahman, M.M.; Lopa, N.S.; Kim, K.; Lee, J.-J. Selective Detection of L-Tyrosine in the Presence of Ascorbic Acid, Dopamine, and Uric Acid at Poly(Thionine)-Modified Glassy Carbon Electrode. J. Electroanal. Chem. 2015, 754, 87–93. [Google Scholar] [CrossRef]
- Sree, V.G.; Sohn, J.I.; Im, H. Pre-Anodized Graphite Pencil Electrode Coated with a Poly(Thionine) Film for Simultaneous Sensing of 3-Nitrophenol and 4-Nitrophenol in Environmental Water Samples. Sensors 2022, 22, 1151. [Google Scholar] [CrossRef]
- Rahman, M.M.; Lopa, N.S.; Ju, M.J.; Lee, J.-J. Highly Sensitive and Simultaneous Detection of Dopamine and Uric Acid at Graphene Nanoplatelet-Modified Fluorine-Doped Tin Oxide Electrode in the Presence of Ascorbic Acid. J. Electroanal. Chem. 2017, 792, 54–60. [Google Scholar] [CrossRef]
- Sangeetha, N.S.; Narayanan, S.S. A Novel Bimediator Amperometric Sensor for Electrocatalytic Oxidation of Gallic Acid and Reduction of Hydrogen Peroxide. Anal. Chim. Acta 2014, 828, 34–45. [Google Scholar] [CrossRef]
- Kumar, T.N.; Sivabalan, S.; Chandrasekaran, N.; Phani, K.L.N. Ferrocene-functionalized polydopamine as a novel redox matrix for H2O2 oxidation. J. Mater. Chem. B 2014, 2, 6081–6088. [Google Scholar] [CrossRef]
- Thenmozhi, K.; Narayanan, S.S. Carbon paste electrode with covalently immobilized thionine for electrochemical sensing of hydrogen peroxide. IOP Conf. Ser. Mater. Sci. Eng. 2017, 263, 022031. [Google Scholar] [CrossRef]
- Manikandan, P.N.; Dharuman, V. Electrochemical Simultaneous Sensing of Melatonin, Dopamine and Acetaminophen at Platinum Doped and Decorated Alpha Iron Oxide. Electroanalysis 2017, 29, 1524–1531. [Google Scholar] [CrossRef]
- Stephens, P.J.; Devlin, F.J.; Ashvar, C.S.; Bak, K.L.; Taylor, P.R.; Frisch, M.J. Comparison of Local, Nonlocal, and Hybrid Density Functionals Using Vibrational Absorption and Circular Dichroism Spectroscopy; American Chemical Society: Washington, DC, USA, 1996; pp. 105–113. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
Sample No | Spiked (µM) | Found (µM) * | Recovery (%) | RSD (%) |
---|---|---|---|---|
1 | 10 | 9.98 ± 0.02 | 99.8 | 0.2 |
2 | 50 | 50.04 ± 0.04 | 100.08 | 0.08 |
3 | 100 | 99.89 ± 0.11 | 99.89 | 0.11 |
Sample No | Spiked (µM) | Found (µM) * | Recovery (%) | RSD (%) |
1 | 5 | 4.96 ± 0.04 | 99.2 | 0.8 |
2 | 10 | 10.10 ± 0.10 | 101 | 0.99 |
3 | 20 | 20.09 ± 0.09 | 100.45 | 0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palinci Nagarajan, M.; Ramalingam, M.; Subbiah Arivuthilagam, I.; Paramaguru, V.; Rahman, M.M.; Park, J.; Asiam, F.K.; Lee, B.; Kim, K.P.; Lee, J.-J. A Novel Ferrocene-Linked Thionine as a Dual Redox Mediator for the Electrochemical Detection of Dopamine and Hydrogen Peroxide. Biosensors 2024, 14, 448. https://doi.org/10.3390/bios14090448
Palinci Nagarajan M, Ramalingam M, Subbiah Arivuthilagam I, Paramaguru V, Rahman MM, Park J, Asiam FK, Lee B, Kim KP, Lee J-J. A Novel Ferrocene-Linked Thionine as a Dual Redox Mediator for the Electrochemical Detection of Dopamine and Hydrogen Peroxide. Biosensors. 2024; 14(9):448. https://doi.org/10.3390/bios14090448
Chicago/Turabian StylePalinci Nagarajan, Manikandan, Manikandan Ramalingam, Ilakeya Subbiah Arivuthilagam, Vishwa Paramaguru, Md. Mahbubur Rahman, Jongdeok Park, Francis Kwaku Asiam, Byungjik Lee, Kwang Pyo Kim, and Jae-Joon Lee. 2024. "A Novel Ferrocene-Linked Thionine as a Dual Redox Mediator for the Electrochemical Detection of Dopamine and Hydrogen Peroxide" Biosensors 14, no. 9: 448. https://doi.org/10.3390/bios14090448
APA StylePalinci Nagarajan, M., Ramalingam, M., Subbiah Arivuthilagam, I., Paramaguru, V., Rahman, M. M., Park, J., Asiam, F. K., Lee, B., Kim, K. P., & Lee, J. -J. (2024). A Novel Ferrocene-Linked Thionine as a Dual Redox Mediator for the Electrochemical Detection of Dopamine and Hydrogen Peroxide. Biosensors, 14(9), 448. https://doi.org/10.3390/bios14090448