An Integrated Microfluidic Microwave Array Sensor with Machine Learning for Enrichment and Detection of Mixed Biological Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Validation of Microwave Array Sensor
2.2. Design and Validation of Microfluidic Chip
2.3. Preparation of Biological Samples
2.4. Integrated Chip Manufacturing Process
3. Results and Discussion
3.1. White Blood Cell Enrichment Results
3.2. Microwave Sensing Response Results
3.3. Machine Learning Algorithm Analysis
R2 = 0.9542
R2 = 0.9727
3.4. Sensing Mechanism Analysis and Overall Experimental Process
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klein, R.D.; Hultgren, S.J. Urinary tract infections: Microbial pathogenesis, host-pathogen interactions and new treatment strategies. Nat. Rev. Microbiol. 2020, 18, 211–226. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Bai, J.H.; Wu, H.; Ying, J.Y. Trapping cells in paper for white blood cell count. Biosens. Bioelectron. 2015, 69, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Grey, B.; Upton, M.; Joshi, L.T. Urinary tract infections: A review of the current diagnostics landscape. J. Med. Microbiol. 2023, 71, 11. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.C.; Nadaraja, A.V.; Mohammadi, S.; Vizcaino, B.M.; Zarifi, M.H. Passive microwave biosensor for real-time monitoring of subsurface bacterial growth. IEEE Trans. Biomed. Circuits Syst. 2021, 15, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.J.; Zhang, D.J.; Wang, Q.J.; Mao, S.; Kim, E.S.; Kim, N.Y.; Zhou, Q.H.; Li, Y.Y.; Yao, Z. Detection of carcinoembryonic antigen specificity using microwave biosensor with machine learning. Biosens. Bioelectron. 2025, 269, 116908. [Google Scholar] [CrossRef]
- Piekarz, I.; Gorska, S.; Odrobina, S.; Drab, M.; Wincza, K.; Gamian, A.; Gruszczynski, S. A microwave matrix sensor for multipoint label-free Escherichia coli detection. Biosens. Bioelectron. 2020, 147, 111784. [Google Scholar] [CrossRef]
- Osterberg, J.A.; Dahal, N.; Divan, R.; Miller, C.S.; Moline, D.; Caldwell, T.P.; Yu, X.; Harcum, S.W.; Wang, P. Microwave sensing of yeast cell species and viability. IEEE Trans. Microw. Theory Tech. 2021, 69, 1875–1886. [Google Scholar] [CrossRef]
- Battat, S.; Weitz, D.A.; Whitesides, G.M. An outlook on microfluidics: The promise and the challenge. Lab Chip 2022, 22, 530–536. [Google Scholar] [CrossRef]
- Yeo, L.Y.; Chang, H.C.; Chan, P.P.Y.; Friend, J.R. Microfluidic devices for bioapplications. Small 2010, 7, 12–48. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Y.D.; Liu, J.L.; Zhang, Q.J.; Yin, H.Y.; Zhang, C.; Belfiore, L.A.; Mao, S.; Tang, J.G. Control of photothermal liquid jets through microbubble regulation: Fundamental mechanisms and developing strategies. Opt. Laser Technol. 2025, 181, 111845. [Google Scholar] [CrossRef]
- Nge, P.N.; Rogers, C.I.; Woolley, A.T. Advances in microfluidic materials, functions, integration, and applications. Chem. Rev. 2013, 113, 2550–2583. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.Y.; Noviana, E.; Nguyen, M.P.; Geiss, B.J.; Dandy, D.S.; Henry, C.S. Paper-based microfluidic devices: Emerging themes and applications. Anal. Chem. 2017, 89, 71–91. [Google Scholar] [CrossRef] [PubMed]
- Xiang, N.; Ni, Z.H. High-throughput concentration of rare malignant tumor cells from large-volume effusions by multistage inertial microfluidics. Lab Chip 2022, 22, 757–767. [Google Scholar] [CrossRef]
- Dai, L.; Zhao, X.; Guo, J.C.; Feng, S.L.; Fu, Y.S.; Kang, Y.J.; Guo, J.H. Microfluidics-based microwave sensor. Sens. Actuators A Phys. 2020, 309, 111910. [Google Scholar] [CrossRef]
- Sun, T.M.; Feng, B.; Huo, J.P.; Xiao, Y.; Wang, W.G.; Peng, J.; Li, Z.H.; Du, C.J.; Wang, W.X.; Zou, G.S.; et al. Artificial intelligence meets flexible sensors: Emerging smart flexible sensing systems driven by machine learning and artificial synapses. Nano-Micro Lett. 2024, 16, 14. [Google Scholar] [CrossRef]
- Moradkhani, A.; Hasannejad, O.; Baghelani, M. An artificial intelligence assisted distance variation robust microwave sensor for biofuel analysis applications. IEEE Microw. Wirel. Compon. Lett. 2022, 32, 1475–1478. [Google Scholar] [CrossRef]
- Niksan, O.; Colegrave, K.; Zarifi, M.H. Battery-free, artificial neural network-assisted microwave resonator array for ice detection. IEEE Trans. Microw. Theory Tech. 2023, 71, 698–709. [Google Scholar] [CrossRef]
- Wu, J.K.; Yue, W.; Gao, K.; Von Gratowski, S.; Gu, X.F.; Pan, L.J.; Kim, N.Y.; Liang, J.G. Microwave-sensor array for decoupling detection of distance, shape, dielectric, and morphology. IEEE Trans. Instrum. Meas. 2023, 72, 6008310. [Google Scholar] [CrossRef]
- Loutchanwoot, P.; Harnsoongnoen, S. Microwave microfluidic sensor for detection of high equol concentrations in aqueous solution. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 244–251. [Google Scholar] [CrossRef]
- Ye, W.; Wang, D.W.; Wang, J.; Chen, S.C.; Wang, G.F.; Zhao, W.S. Microwave heating induced on-demand droplet generation in microfluidic systems. Anal. Chem. 2021, 93, 1266–1270. [Google Scholar] [CrossRef]
- Antonelli, G.; Filippi, J.; D’Orazio, M.; Curci, G.; Casti, P.; Mencattini, A.; Martinelli, E. Integrating machine learning and biosensors in microfluidic devices: A review. Biosens. Bioelectron. 2024, 263, 116632. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.L.; Chen, Y.; Wang, M.R.; Chung, A.J. Continuous inertial microparticle and blood cell separation in straight channels with local microstructures. Lab Chip 2016, 16, 532–542. [Google Scholar] [CrossRef] [PubMed]
- Petchakup, C.; Chen, Y.Y.C.; Tay, H.M.; Ong, H.B.; Hon, P.Y.; De, P.P.; Yeo, T.W.; Li, K.H.H.; Vasoo, S.; Hou, H.W. Rapid screening of urinary tract infection using microfluidic inertial-impedance cytometry. ACS Sens. 2023, 8, 3136–3145. [Google Scholar] [CrossRef] [PubMed]
- Ying, Y.; Lin, Y. Inertial focusing and separation of particles in similar curved channels. Sci. Rep. 2019, 9, 16575. [Google Scholar] [CrossRef]
- Bhagat, A.A.S.; Kuntaegowdanahalli, S.S.; Papautsky, I. Inertial microfluidics for continuous particle filtration and extraction. Microfluid. Nanofluidics 2008, 7, 217–226. [Google Scholar] [CrossRef]
- Wu, L.D.; Guan, G.F.; Hou, H.W.; Bhagat, A.A.S.; Han, J. Separation of leukocytes from blood using spiral channel with trapezoid cross-section. Anal. Chem. 2012, 84, 9324–9331. [Google Scholar] [CrossRef]
- Kumar, D.P.; Amgoth, T.; Annavarapu, C.S.R. Machine learning algorithms for wireless sensor networks: A survey. Inf. Fusion 2019, 49, 1–25. [Google Scholar] [CrossRef]
- Harnsoongnoen, S.; Wanthong, A. A non-contact planar microwave sensor for detection of high-salinity water containing NaCl, KCl, CaCl2, MgCl2 and Na2CO3. Sens. Actuator B Chem. 2021, 331, 129355. [Google Scholar] [CrossRef]
- Guo, J.J.; Liu, X.Q.; Sun, Z.S.; Zheng, X.Q.; Sung, H.K.; Yao, Z.; Li, Y.; Li, Y.Y. An intelligent dual-sensing e-skin system for pressure and temperature detection using laser-induced graphene and polydimethylsiloxane. Mater. Des. 2024, 238, 112640. [Google Scholar] [CrossRef]
- Harnsoongnoen, S.; Loutchanwoot, P.; Srivilai, P. Sensing high 17β-estradiol concentrations using a planar microwave sensor integrated with a microfluidic channel. Biosensors 2023, 13, 541. [Google Scholar] [CrossRef]
- Amineh, R.K.; Ravan, M.; Tandel, D. Detection of water pollutants with a nonuniform array of microwave sensors. IEEE Trans. Instrum. Meas. 2023, 72, 6004011. [Google Scholar] [CrossRef]
- Zhu, Z.X.; Li, S.; Wu, D.; Ren, H.; Ni, C.; Wang, C.L.; Xiang, N.; Ni, Z.H. High-throughput and label-free enrichment of malignant tumor cells and clusters from pleural and peritoneal effusions using inertial microfluidics. Lab Chip 2022, 22, 2097–2106. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, N.; Gholizadeh, N.; Musilek, P. Selective microwave zeroth-order resonator sensor aided by machine learning. Sensors 2022, 22, 5362. [Google Scholar] [CrossRef]
- Rao, T.N. Validation of Analytical Methods; Intech Open: London, UK, 2018; ISBN 978-1-78923-085-7. [Google Scholar]
- ICH Harmonized Tripartite Guideline. In Validation of Analytical Procedures: Text and Methodology Q2 (R1); Somatek Inc.: San Diego, CA, USA, 2014; pp. 11–12.
- Shrivastava, A.; Gupta, V.B. Methods for the determination of LOD and LOQ. Chron. Young Sci. 2011, 2, 21–25. [Google Scholar] [CrossRef]
- Muñoz-Enano, J.; Vélez, P.; Gil, M.; Martín, F. Planar microwave resonant sensors: A review and recent developments. Appl. Sci. 2020, 10, 2615. [Google Scholar] [CrossRef]
- Wang, B.; Long, J.; Teo, K.H. Multi-channel capacitive sensor arrays. Sensors 2016, 16, 150. [Google Scholar] [CrossRef]
Ref. | Microfluidic Structure | Maximum Enrichment Efficiency | Number of Sensors | Maximum Sensitivity | Number of Algorithms | Maximum Accuracy |
---|---|---|---|---|---|---|
[19] | A single channel is used only for sensitive areas | None | 1 | Not Given | 2 | Not Given |
[30] | A single channel is used only for sensitive areas | None | 1 | Not Given | 2 | Not Given |
[31] | None | None | 4 | Not Given | 3 | 83.00% |
[32] | Single-machine spiral microfluidic | 85% | None | None | None | None |
[33] | None | None | 1 | Not Given | 1 | 90.70% |
This work | Multistage inertial spiral microfluidics | 88.30% | 8 | 25.48 MHz/105·mL−1 | 5 | 97.27% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Wang, Y.; Jiang, Y.; Qiang, T. An Integrated Microfluidic Microwave Array Sensor with Machine Learning for Enrichment and Detection of Mixed Biological Solution. Biosensors 2025, 15, 45. https://doi.org/10.3390/bios15010045
Yang S, Wang Y, Jiang Y, Qiang T. An Integrated Microfluidic Microwave Array Sensor with Machine Learning for Enrichment and Detection of Mixed Biological Solution. Biosensors. 2025; 15(1):45. https://doi.org/10.3390/bios15010045
Chicago/Turabian StyleYang, Sen, Yanxiong Wang, Yanfeng Jiang, and Tian Qiang. 2025. "An Integrated Microfluidic Microwave Array Sensor with Machine Learning for Enrichment and Detection of Mixed Biological Solution" Biosensors 15, no. 1: 45. https://doi.org/10.3390/bios15010045
APA StyleYang, S., Wang, Y., Jiang, Y., & Qiang, T. (2025). An Integrated Microfluidic Microwave Array Sensor with Machine Learning for Enrichment and Detection of Mixed Biological Solution. Biosensors, 15(1), 45. https://doi.org/10.3390/bios15010045