SERS Detection of Hydrophobic Molecules: Thio-β-Cyclodextrin-Driven Rapid Self-Assembly of Uniform Silver Nanoparticle Monolayers and Analyte Trapping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Synthesis of Ag NPs
2.3. Ag NP Monolayer Film for SERS Substrate Preparation
2.4. Nile Blue Release from Nanoplastic Under Varied Environmental Conditions
2.5. SERS Measurement
2.6. Instrumentation
3. Results and Discussion
3.1. β-CD-SH-Assisted Self-Assembly of Ag NPs into Monolayer Films
3.2. Comparison with Typical SERS Film Strategies
3.3. Detection of Analytes with Different Solubility
3.4. Study on NB Release from Nanoplastics Under Different Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Albrecht, M.G.; Creighton, J.A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 1977, 99, 5215–5217. [Google Scholar] [CrossRef]
- Jeanmaire, D.L.; Vanduyne, R.P. Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. 1977, 84, 1–20. [Google Scholar] [CrossRef]
- Li, Z.H.; Hu, J.; Zhan, Y.F.; Shao, Z.Y.; Gao, M.Y.; Yao, Q.; Li, Z.; Sun, S.W.; Wang, L.H. Coupling bifunctional nanozyme-mediated catalytic signal amplification and label-free SERS with immunoassays for ultrasensitive detection of pathogens in milk samples. Anal. Chem. 2023, 95, 6417–6424. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhang, Y.S.; Ren, H.T.; Qiu, H.X.; Zhang, S.H.; Lu, Q.; Hu, Y.J. Highly sensitive SERS sensors for glucose detection based on enzyme@MOFs and ratiometric Raman. Talanta 2024, 271, 125647. [Google Scholar] [CrossRef]
- Li, M.; Wei, Y.; Fan, X.; Li, G.; Tang, X.; Xia, W.; Hao, Q.; Qiu, T. VSe2-xOx@Pd sensor for operando self-monitoring of palladium-catalyzed reactions. JACS Au 2023, 3, 468–475. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Xue, C.L.; Li, P.; Cui, S.S.; Cui, D.X.; Jin, H. Metal-organic framework engineered corn-like SERS active Ag@Carbon with controllable spacing distance for tracking trace amount of organic compounds. J. Hazard. Mater. 2022, 424, 127686. [Google Scholar] [CrossRef]
- Tian, C.; Zhao, L.; Zhu, J.; Zhang, S.S. Simultaneous detection of trace Hg2+ and Ag+ by SERS aptasensor based on a novel cascade amplification in environmental water. Chem. Eng. J. 2022, 435, 133879. [Google Scholar] [CrossRef]
- Huang, Y.T.; Yuan, B.X.; Wang, X.Q.; Dai, Y.S.; Wang, D.M.; Gong, Z.J.; Chen, J.M.; Shen, L.; Fan, M.K.; Li, Z.L. Industrial wastewater source tracing: The initiative of SERS spectral signature aided by a one-dimensional convolutional neural network. Water Res. 2023, 232, 119662. [Google Scholar] [CrossRef]
- Yang, J.; Li, W.; Li, H.; Wang, X.; Xu, K.S.; Li, Q.J.; Zheng, T.S.; Li, J.L. Highly sensitive microarray immunoassay for multiple mycotoxins on engineered 3D porous silicon SERS substrate with silver nanoparticle magnetron sputtering. Anal. Chem. 2024, 96, 2425–2434. [Google Scholar] [CrossRef]
- Li, W.; Dai, S.J.; Li, X.; Li, Q.J.; Li, J.L. Highly sensitive SERS detection of melamine based on 3D Ag@porous silicon photonic crystal. Talanta 2024, 280, 126789. [Google Scholar] [CrossRef]
- Liu, J.N.; Li, J.Y.; Li, F.; Zhou, Y.R.; Hu, X.Y.; Xu, T.J.; Xu, W.P. Liquid-liquid interfacial self-assembled Au NP arrays for the rapid and sensitive detection of butyl benzyl phthalate (BBP) by surface-enhanced Raman spectroscopy. Anal. Bioanal. Chem. 2018, 410, 5277–5285. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Li, P.; Wang, J.Z.; Dong, R.L.; Yang, L.B. Three-phase catassembly of 10 nm Au nanoparticles for sensitive and stable surface-enhanced Raman scattering detection. Anal. Chem. 2023, 95, 15293–15301. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.F.; Qu, C.; Ding, Z.X.; Wang, X.; Zheng, L.Q.; Su, M.K.; Liu, H.L. Liquid interfacial coassembly of plasmonic arrays and trace hydrophobic nanoplastics in edible oils for robust identification and classification by surface-enhanced Raman spectroscopy. J. Agric. Food. Chem. 2023, 71, 14342–14350. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zhang, H.; Xu, L.L.; Chen, M.; Chen, F. Self-assembled monolayers of bimetallic Au/Ag nanospheres with superior surface-enhanced Raman scattering activity for ultra-sensitive triphenylmethane dyes detection. Opt. Lett. 2018, 43, 635–638. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, C.C.; Zhang, S.X.; Yu, H.J.; Xie, W. A versatile β-cyclodextrin functionalized silver nanoparticle monolayer for capture of methyl orange from complex wastewater. Chin. Chem. Lett. 2020, 31, 539–542. [Google Scholar] [CrossRef]
- Qiu, J.Y.; Chu, Y.J.; He, Q.H.; Han, Y.K.; Zhang, Y.; Han, L. A self-assembly hydrophobic oCDs/Ag nanoparticles SERS sensor for ultrasensitive melamine detection in milk. Food Chem. 2023, 402, 134241. [Google Scholar] [CrossRef]
- Zhu, M.R.; Zhou, G.L.; Dong, R.L.; Li, P.; Yang, L.B. Ag supraparticles with 3D hot spots to actively capture molecules for sensitive detection by surface enhanced Raman spectroscopy. Analyst 2024, 149, 1759–1765. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, F.F.; Su, M.K.; Du, S.S.; Liu, H.L. Halide-assisted activation of atomic hydrogen for photoreduction on two-liquid interfacial plasmonic arrays. Chem. Commun. 2019, 55, 1422–1425. [Google Scholar] [CrossRef]
- Qiu, M.Q.; Zheng, S.G.; Li, P.; Tang, L.; Xu, Q.S.; Weng, S.Z. Detection of 1-OHPyr in human urine using SERS with injection under wet liquid-liquid self-assembled films of β-CD-coated gold nanoparticles and deep learning. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 290, 122238. [Google Scholar] [CrossRef]
- Zhu, Y.J.; Wu, J.F.; Wang, K.; Xu, H.; Qu, M.M.; Gao, Z.C.; Guo, L.; Xie, J.W. Facile and sensitive measurement of GSH/GSSG in cells by surface-enhanced Raman spectroscopy. Talanta 2021, 224, 121852. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Z.H.; Liu, Z.P.; Chen, J.X.; Shi, L.Y.; Huang, L.J.; Liu, Y.; Cui, S.; He, X. Utilizing an automated SERS-digital microfluidic system for high-throughput detection of explosives. ACS Sens. 2023, 8, 1733–1741. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.F.; Lu, J.L.; Liu, T.; Chen, G.Y.; Liu, G.K.; Ren, B.; Tian, Z.Q. Key role of direct adsorption on SERS sensitivity: Synergistic effect among target, aggregating agent, and surface with Au or Ag colloid as surface-enhanced Raman spectroscopy substrate. J. Phys. Chem. Lett 2020, 11, 1022–1029. [Google Scholar] [CrossRef] [PubMed]
- Ge, M.H.; Li, P.; Zhou, G.L.; Chen, S.Y.; Han, W.; Qin, F.; Nie, Y.M.; Wang, Y.X.; Qin, M.; Huang, G.Y.; et al. General surface-enhanced Raman spectroscopy method for actively capturing target molecules in small gaps. J. Am. Chem. Soc. 2021, 143, 7769–7776. [Google Scholar] [CrossRef] [PubMed]
- Si, S.R.; Liang, W.K.; Sun, Y.H.; Huang, J.; Ma, W.L.; Liang, Z.Q.; Bao, Q.L.; Jiang, L. Facile fabrication of high-density sub-1-nm gaps from Au nanoparticle monolayers as reproducible SERS substrates. Adv. Funct. Mater. 2016, 26, 8137–8145. [Google Scholar] [CrossRef]
- Pekdemir, S.; Torun, I.; Sakir, M.; Ruzi, M.; Rogers, J.A.; Onses, M.S. Chemical funneling of colloidal gold nanoparticles on printed arrays of end-grafted polymers for plasmonic applications. ACS Nano 2020, 14, 8276–8286. [Google Scholar] [CrossRef]
- Song, L.P.; Ben, B.X.; Cheng, Q.; Wang, X.Y.; Luo, X.N.; Chen, X.; Chen, T.; Huang, Y.J. Instant interfacial self-assembly for homogeneous nanoparticle monolayer enabled conformal “lift-on” thin film technology. Sci. Adv. 2021, 7, eabk2852. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, L.L.; You, H.J.; Fang, J.X. A solution-based SERS sensing protocol via the ultra-rapid and highly efficient molecule enrichment strategy. Sens. Actuator B Chem 2022, 367, 132064. [Google Scholar] [CrossRef]
- Zhang, J.F.; Zhang, Y.; Shi, G.Y. Interface engineering with self-assembling Au@Ag@β-cyclodextrin bimetal nanoparticles to fabricate a ring-like arrayed SERS substrate for sensitive recognition of phthalate esters based on a host-guest interaction and the coffee ring effect. Anal. Methods 2022, 14, 259–268. [Google Scholar] [CrossRef]
- Zhang, L.F.; Zhao, R.F.; Wu, Y.Z.; Zhang, Z.Y.; Chen, Y.; Liu, M.C.; Zhou, N.; Wang, Y.Q.; Fu, X.L.; Zhuang, X.M.; et al. Ultralow-background SERS substrates for reliable identification of organic pollutants and degradation intermediates. J. Hazard. Mater. 2023, 460, 132508. [Google Scholar] [CrossRef]
- Tian, H.H.; Li, H.B.; Fang, Y. Binary thiol-capped gold nanoparticle monolayer films for quantitative surface-enhanced Raman scattering analysis. ACS Appl. Mater. 2019, 11, 16207–16213. [Google Scholar] [CrossRef]
- Lu, X.F.; Huang, Y.J.; Liu, B.Q.; Zhang, L.; Song, L.P.; Zhang, J.W.; Zhang, A.F.; Chen, T. Light-controlled shrinkage of large-area gold nanoparticle monolayer film for tunable SERS activity. Chem. Mater. 2018, 30, 1989–1997. [Google Scholar] [CrossRef]
- Yang, L.; Chen, Y.H.; Li, H.L.; Luo, L.; Zhao, Y.; Zhang, H.Q.; Tian, Y. Application of silver nanoparticles decorated with β-cyclodextrin in determination of 6-mercaptopurine by surface-enhanced Raman spectroscopy. Anal. Methods 2015, 7, 6520–6527. [Google Scholar] [CrossRef]
- Ma, S.S.; Huang, Q. A SERS study of oxidation of glutathione under plasma irradiation. RSC Adv. 2015, 5, 57847–57852. [Google Scholar] [CrossRef]
- Zhang, X.M.; Yao, J.R.; Gong, X.N.; Sun, J.F.; Wang, R.H.; Wang, L.; Liu, L.Y.; Huang, Y.Z. Paper electrophoretic enrichment-assisted ultrasensitive SERS detection. Food Chem. 2024, 434, 137416. [Google Scholar] [CrossRef]
- Chandu, B.; Bharati, M.S.S.; Albrycht, P.; Rao, S.V. Fabrication of nanocages on nickel using femtosecond laser ablation and trace level detection of malachite green and Nile blue dyes using surface enhanced Raman spectroscopic technique. Opt. Laser Technol. 2020, 131, 106454. [Google Scholar] [CrossRef]
- Jia, F.; Yang, X.D.; Li, Z.Y. Synthesis and application of colloidal beta-cyclodextrin-decorated silver nanoparticles for rapid determination of malachite green in environmental water using surface-enhanced Raman spectroscopy. RSC Adv. 2016, 6, 92723–92728. [Google Scholar] [CrossRef]
- Lee, P.C.; Meisel, D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 1982, 86, 3391–3395. [Google Scholar] [CrossRef]
- Chen, X.Y.; Cui, A.R.; He, M.Y.; Yan, M.; Zhang, X.C.; Ruan, J.; Yang, S.K. Slippery Au Nanosphere Monolayers with Analyte Enrichment and SERS Enhancement Functions. Nano Lett. 2023, 23, 6736–6743. [Google Scholar] [CrossRef]
- Roy, N.; Bomzan, P.; Roy, D.; Ghosh, B.; Roy, M.N. Exploring β-CD grafted GO nanocomposites with an encapsulated fluorescent dye duly optimized by molecular docking for better applications. J. Mol. Liq. 2021, 329, 115481. [Google Scholar] [CrossRef]
- Cabello, G.; Sazanovich, I.V.; Siachos, I.; Bilton, M.; Mehdi, B.L.; Neale, A.R.; Hardwick, L.J. Simultaneous Surface-Enhanced Raman Scattering with a Kerr Gate for Fluorescence Suppression. J. Phys. Chem. Lett 2024, 15, 608–615. [Google Scholar] [CrossRef]
- Cyr, T.D.; Dawson, B.A.; Neville, G.A.; Shurvell, H.F. Spectral characterization of fluconazole. J. Pharm. Biomed. Anal. 1996, 14, 247–255. [Google Scholar] [CrossRef]
- He, J.; Li, H.X.; Zhang, L.L.; Zhi, X.; Li, X.; Wang, X.; Feng, Z.J.; Shen, G.X.; Ding, X.T. Silver microspheres aggregation-induced Raman enhanced scattering used for rapid detection of carbendazim in Chinese tea. Food Chem. 2021, 339, 128085. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Cheng, J.; Han, C.Q.; Xie, J.C. A versatile SERS sensor for multiple determinations of polycyclic aromatic hydrocarbons and its application potential in analysis of fried foods. Int. J. Anal. Chem 2020, 2020, 4248029. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.F.; Dong, X.H.; Cai, N.F.; Yang, F.W.; Yao, W.R.; Huang, L.J. Application of a novel Au@ZIF-8 composite in the detection of bisphenol A by surface-enhanced Raman spectroscopy. Foods 2023, 12, 813. [Google Scholar] [CrossRef] [PubMed]
- Fateixa, S.; Nogueira, H.I.S.; Trindade, T. Surface-Enhanced Raman Scattering Spectral Imaging for the Attomolar Range Detection of Crystal Violet in Contaminated Water. Acs Omega 2018, 3, 4331–4341. [Google Scholar] [CrossRef]
- Isnaeni, I.; Waluyo, R.; Purwandari, V.; Djamal, M.; Alatas, H.; Fauzia, V.; Aminah, N.S. One-pot synthesis of silver nanoparticle-coated fiberglass as a reusable and flexible SERS substrate of malachite green. Opt. Mater. 2024, 152, 115526. [Google Scholar] [CrossRef]
- Yan, Y.Y.; Zhu, F.X.; Zhu, C.Y.; Chen, Z.H.; Liu, S.C.; Wang, C.; Gu, C. Dibutyl phthalate release from polyvinyl chloride microplastics: Influence of plastic properties and environmental factors. Water Res. 2021, 204, 117597. [Google Scholar] [CrossRef]
- Wang, F.; Shih, K.M.; Li, X.Y. The partition behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanesulfonamide (FOSA) on microplastics. Chemosphere 2015, 119, 841–847. [Google Scholar] [CrossRef]
- Liu, P.; Lu, K.; Li, J.L.; Wu, X.W.; Qian, L.; Wang, M.J.; Gao, S.X. Effect of aging on adsorption behavior of polystyrene microplastics for pharmaceuticals: Adsorption mechanism and role of aging intermediates. J. Hazard. Mater. 2020, 384, 121193. [Google Scholar] [CrossRef]
- Tang, B.; Wu, C.; Lin, T.; Zhang, S. Heat-resistant PMMA photonic crystal films with bright structural color. Dye Pigment. 2013, 99, 1022–1028. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Q.; Wang, Y. SERS Detection of Hydrophobic Molecules: Thio-β-Cyclodextrin-Driven Rapid Self-Assembly of Uniform Silver Nanoparticle Monolayers and Analyte Trapping. Biosensors 2025, 15, 52. https://doi.org/10.3390/bios15010052
Yuan Q, Wang Y. SERS Detection of Hydrophobic Molecules: Thio-β-Cyclodextrin-Driven Rapid Self-Assembly of Uniform Silver Nanoparticle Monolayers and Analyte Trapping. Biosensors. 2025; 15(1):52. https://doi.org/10.3390/bios15010052
Chicago/Turabian StyleYuan, Qi, and Yunqing Wang. 2025. "SERS Detection of Hydrophobic Molecules: Thio-β-Cyclodextrin-Driven Rapid Self-Assembly of Uniform Silver Nanoparticle Monolayers and Analyte Trapping" Biosensors 15, no. 1: 52. https://doi.org/10.3390/bios15010052
APA StyleYuan, Q., & Wang, Y. (2025). SERS Detection of Hydrophobic Molecules: Thio-β-Cyclodextrin-Driven Rapid Self-Assembly of Uniform Silver Nanoparticle Monolayers and Analyte Trapping. Biosensors, 15(1), 52. https://doi.org/10.3390/bios15010052