Beyond Traditional Lateral Flow Assays: Enhancing Performance Through Multianalytical Strategies
Abstract
:1. Introduction
2. Multiplex Lateral Flow Immunoassays
2.1. Simple Colorimetric Lateral Flow Immunoassays
2.2. SERS-Based Lateral Flow Immunoassays
2.3. Fluorescent Lateral Flow Immunoassays
2.4. Nanozymes
2.5. Smartphone-Based Lateral Flow Immunoassays
3. Nucleic Acid-Based Lateral Flow Assays
3.1. Polymerase Chain Reaction (PCR)-Based Amplification
3.2. Loop-Mediated Isothermal Amplification (LAMP)
3.3. Recombinase Polymerase Isothermal Amplification (RPA)
3.4. Other LFAs
4. Aptamer-Based Lateral Flow Assays
5. LFAs for the Simultaneous Detection of Different Biomolecule Categories
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, H.; Wang, Y.; Wei, H.; Rong, Z.; Wang, S. A Rapid Water Bath PCR Combined with Lateral Flow Assay for the Simultaneous Detection of SARS-CoV-2 and Influenza B Virus. RSC Adv. 2022, 12, 3437–3444. [Google Scholar] [CrossRef]
- Park, J.S.; Kim, S.; Han, J.; Kim, J.H.; Park, K.S. Equipment-Free, Salt-Mediated Immobilization of Nucleic Acids for Nucleic Acid Lateral Flow Assays. Sens. Actuators B Chem. 2022, 351, 130975. [Google Scholar] [CrossRef] [PubMed]
- Omidfar, K.; Riahi, F.; Kashanian, S. Lateral Flow Assay: A Summary of Recent Progress for Improving Assay Performance. Biosensors 2023, 13, 837. [Google Scholar] [CrossRef]
- Zheng, W.; Yao, L.; Teng, J.; Yan, C.; Qin, P.; Liu, G.; Chen, W. Lateral Flow Test for Visual Detection of Multiple MicroRNAs. Sens. Actuators B Chem. 2018, 264, 320–326. [Google Scholar] [CrossRef]
- Huang, L.; Tian, S.; Zhao, W.; Liu, K.; Ma, X.; Guo, J. Multiplexed Detection of Biomarkers in Lateral-Flow Immunoassays. Analyst 2020, 145, 2828–2840. [Google Scholar] [CrossRef]
- Khatmi, G.; Klinavičius, T.; Simanavičius, M.; Silimavičius, L.; Tamulevičienė, A.; Rimkutė, A.; Kučinskaitė-Kodzė, I.; Gylys, G.; Tamulevičius, T. Lateral Flow Assay Sensitivity and Signal Enhancement via Laser Μ-Machined Constrains in Nitrocellulose Membrane. Sci. Rep. 2024, 14, 22936. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.T.; Huang, T.H.; Ho, N.Y.J.; Chen, Y.P.; Chen, C.A.; Chen, C.F. Development of a Multiplex and Sensitive Lateral Flow Immunoassay for the Diagnosis of Periprosthetic Joint Infection. Sci. Rep. 2019, 9, 15679. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Q.; Han, M.; Zhou, J.; Gong, L.; Niu, Y.; Zhang, Y.; He, L.; Zhang, L. Development and Optimization of a Multiplex Lateral Flow Immunoassay for the Simultaneous Determination of Three Mycotoxins in Corn, Rice and Peanut. Food Chem. 2016, 213, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Kim, Y.; Cameron, R.G. A Novel Multiplex Lateral Flow Assay for Rapid Assessment of Pectin Structural/Functional Properties. Food Hydrocoll. 2022, 133, 107988. [Google Scholar] [CrossRef]
- Lee, J.H.; Seo, H.S.; Kwon, J.H.; Kim, H.T.; Kwon, K.C.; Sim, S.J.; Cha, Y.J.; Lee, J. Multiplex Diagnosis of Viral Infectious Diseases (AIDS, Hepatitis C, and Hepatitis A) Based on Point of Care Lateral Flow Assay Using Engineered Proteinticles. Biosens. Bioelectron. 2015, 69, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Xu, X.; Song, S.; Xu, L.; Wu, X.; Liu, L.; Kuang, H.; Xu, C. A Multiplex Lateral Flow Immunochromatography Assay for the Quantitative Detection of Pyraclostrobin, Myclobutanil, and Kresoxim-Methyl Residues in Wheat. Food Chem. 2022, 377, 107988. [Google Scholar] [CrossRef]
- Li, G.; Wang, X.; Guo, J.; Wang, Y.; Liu, X.; Wei, Q.; Zhang, Y.; Sun, Y.; Fan, L.; Xing, Y.; et al. Differential Detection of SARS-CoV-2 Variants and Influenza A Viruses Utilizing a Dual Lateral Flow Strip Based on Colloidal Gold-Labeled Monoclonal Antibodies. Int. J. Biol. Macromol. 2024, 280, 136067. [Google Scholar] [CrossRef]
- Yang, M.; Caterer, N.R.; Xu, W.; Goolia, M. Development of a Multiplex Lateral Flow Strip Test for Foot-and-Mouth Disease Virus Detection Using Monoclonal Antibodies. J. Virol. Methods 2015, 221, 119–126. [Google Scholar] [CrossRef]
- Xu, X.; Guo, L.; Xu, L.; Kuang, H.; Xu, C.; Liu, L. Multiplex Lateral Flow Immunochromatographic Assay for the Qualitative and Quantitative Detection of Six Steroid Hormone Residues in Chicken and Pork. Food Biosci. 2023, 53, 102498. [Google Scholar] [CrossRef]
- Yonekita, T.; Ohtsuki, R.; Hojo, E.; Morishita, N.; Matsumoto, T.; Aizawa, T.; Morimatsu, F. Development of a Novel Multiplex Lateral Flow Assay Using an Antimicrobial Peptide for the Detection of Shiga Toxin-Producing Escherichia coli. J. Microbiol. Methods 2013, 93, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.; Kim, W.; Yoo, K.; Cho, H.S.; Jang, S.; Bae, H.J.; An, J.; Lee, J.C.; Chang, H.; Kim, D.E.; et al. Highly Sensitive Multiplexed Colorimetric Lateral Flow Immunoassay by Plasmon-Controlled Metal–Silica Isoform Nanocomposites: PINs. Nano Converg. 2024, 11, 42. [Google Scholar] [CrossRef]
- Komova, N.S.; Serebrennikova, K.V.; Berlina, A.N.; Zherdev, A.V.; Dzantiev, B.B. Dual Lateral Flow Test for Simple and Rapid Simultaneous Immunodetection of Bisphenol A and Dimethyl Phthalate, Two Priority Plastic Related Environmental Contaminants. Environ. Pollut. 2024, 363, 125171. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; He, L.; Yu, F.; Liu, L.; Qu, C.; Qu, L.; Liu, J.; Wu, Y.; Wu, Y. A Lateral Flow Assay for Simultaneous Detection of Deoxynivalenol, Fumonisin B1 and Aflatoxin B1. Toxicon 2018, 156, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Chien, Y.S.; Tsai, T.T.; Lin, J.H.; Chang, C.C.; Chen, C.F. One-Step Copper Deposition-Induced Signal Amplification for Multiplex Bacterial Infection Diagnosis on a Lateral Flow Immunoassay Device. Biosens. Bioelectron. 2025, 267, 116849. [Google Scholar] [CrossRef]
- Yin, X.; Deng, Z.; Dou, L.; Guo, J.; Yang, C.; Dai, Z.; Wang, R.; Wang, Y.; Wang, J.; Zhang, D. Cascaded Antibody Directionality Relying on a Zinc-Based Nanocomposite for Performance Enhancement of Multiplex Lateral Flow Immunoassay. Chem. Eng. J. 2024, 481, 148493. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Z.; Wang, Z.; Pan, R.; Wu, H.; Zhai, S.; Wu, G.; Fu, W.; Gao, H. Multi-Chromatic and Multi-Component Lateral Flow Immunoassay for Simultaneous Detection of CP4 EPSPS, Bt-Cry1Ab, Bt-Cry1Ac, and PAT/Bar Proteins in Genetically Modified Crops. Microchim. Acta 2025, 192, 16. [Google Scholar] [CrossRef]
- Anfossi, L.; Di Nardo, F.; Russo, A.; Cavalera, S.; Giovannoli, C.; Spano, G.; Baumgartner, S.; Lauter, K.; Baggiani, C. Silver and Gold Nanoparticles as Multi-Chromatic Lateral Flow Assay Probes for the Detection of Food Allergens. Anal. Bioanal. Chem. 2019, 411, 1905–1913. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Tang, S.; Jin, Y.; Yang, C.; He, L.; Wang, J.; Chen, Y. Multiplex SERS-Based Lateral Flow Immunosensor for the Detection of Major Mycotoxins in Maize Utilizing Dual Raman Labels and Triple Test Lines. J. Hazard. Mater. 2020, 393, 122348. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, L.; Liu, B.; Ni, H.; Sun, L.; Su, E.; Chen, H.; Gu, Z.; Zhao, X. Quantitative and Ultrasensitive Detection of Multiplex Cardiac Biomarkers in Lateral Flow Assay with Core-Shell SERS Nanotags. Biosens. Bioelectron. 2018, 106, 204–211. [Google Scholar] [CrossRef]
- Liu, X.; Yang, X.; Li, K.; Liu, H.; Xiao, R.; Wang, W.; Wang, C.; Wang, S. Fe3O4@Au SERS Tags-Based Lateral Flow Assay for Simultaneous Detection of Serum Amyloid A and C-Reactive Protein in Unprocessed Blood Sample. Sens. Actuators B Chem. 2020, 320, 128350. [Google Scholar] [CrossRef]
- Tu, J.; Wu, T.; Yu, Q.; Li, J.; Zheng, S.; Qi, K.; Sun, G.; Xiao, R.; Wang, C. Introduction of Multilayered Magnetic Core–Dual Shell SERS Tags into Lateral Flow Immunoassay: A Highly Stable and Sensitive Method for the Simultaneous Detection of Multiple Veterinary Drugs in Complex Samples. J. Hazard. Mater. 2023, 448, 130912. [Google Scholar] [CrossRef]
- Sheng, E.; Lu, Y.; Xiao, Y.; Li, Z.; Wang, H.; Dai, Z. Simultaneous and Ultrasensitive Detection of Three Pesticides Using a Surface-Enhanced Raman Scattering-Based Lateral Flow Assay Test Strip. Biosens. Bioelectron. 2021, 181, 113149. [Google Scholar] [CrossRef]
- Liang, J.; Wu, L.; Wang, Y.; Liang, W.; Hao, Y.; Tan, M.; He, G.; Lv, D.; Wang, Z.; Zeng, T.; et al. SERS/Photothermal-Based Dual-Modal Lateral Flow Immunoassays for Sensitive and Simultaneous Antigen Detection of Respiratory Viral Infections. Sens. Actuators B Chem. 2023, 389, 133875. [Google Scholar] [CrossRef]
- Wang, M.; Feng, J.; Ding, J.; Xiao, J.; Liu, D.; Lu, Y.; Liu, Y.; Gao, X. Color- and Background-Free Raman-Encoded Lateral Flow Immunoassay for Simultaneous Detection of Carbendazim and Imidacloprid in a Single Test Line. Chem. Eng. J. 2024, 487, 150666. [Google Scholar] [CrossRef]
- Wang, L.; Sun, J.; Wang, X.; Lei, M.; Shi, Z.; Liu, L.; Xu, C. Visual and Quantitative Lateral Flow Immunoassay Based on Au@PS SERS Tags for Multiplex Cardiac Biomarkers. Talanta 2024, 274, 126040. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Zhan, Y.; Lu, Y.; Zheng, F.; Wan, Y.; Liu, B.; Yang, X.; Wan, Y.; Sun, Q.; Sha, J.; et al. A Nanostructured Lateral Flow Immunoassay Strip Combined with Au@SiO2 SERS Nanotags for Multiplex Biomarker Detection. Mater. Adv. 2023, 4, 6333–6341. [Google Scholar] [CrossRef]
- Beloglazova, N.V.; Sobolev, A.M.; Tessier, M.D.; Hens, Z.; Goryacheva, I.Y.; De Saeger, S. Fluorescently Labelled Multiplex Lateral Flow Immunoassay Based on Cadmium-Free Quantum Dots. Methods 2017, 116, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Chen, Z.; Li, X.; Li, Z.; Lin, G.; Liu, T.; Wu, Y. Dual-Color Quantum Dot-Loaded Nanoparticles Based Lateral Flow Biosensor for the Simultaneous Detection of Gastric Cancer Markers in a Single Test Line. Anal. Chim. Acta 2022, 1218, 339998. [Google Scholar] [CrossRef]
- Xiong, J.; Qin, L.; Zhang, H.; Zhang, S.; He, S.; Xu, Y.; Zhang, L.; Wang, Z.; Jiang, H. Sensitive and Simultaneous Detection of Ractopamine and Salbutamol Using Multiplex Lateral Flow Immunoassay Based on Polyethyleneimine-Mediated SiO2@QDs Nanocomposites: Comparison and Application. Microchem. J. 2022, 181, 107730. [Google Scholar] [CrossRef]
- Huang, Y.; Li, R.; Zhu, W.; Zhao, J.; Wang, H.; Zhang, Z.; Lin, H.; Li, W.; Li, Z. Development of a Fluorescent Multiplexed Lateral Flow Immunoassay for the Simultaneous Detection of Crustacean Allergen Tropomyosin, Sarcoplasmic Calcium Binding Protein and Egg Allergen Ovalbumin in Different Matrices and Commercial Foods. Food Chem. 2024, 440, 138275. [Google Scholar] [CrossRef]
- Hu, J.X.; Ding, S.N. In Situ Synthesis of Highly Fluorescent, Phosphorus-Doping Carbon-Dot-Functionalized, Dendritic Silica Nanoparticles Applied for Multi-Component Lateral Flow Immunoassay. Sensors 2024, 24, 19. [Google Scholar] [CrossRef] [PubMed]
- Peng, T.; Wang, J.; Zhao, S.; Zeng, Y.; Zheng, P.; Liang, D.; Mari, G.M.; Jiang, H. Highly Luminescent Green-Emitting Au Nanocluster-Based Multiplex Lateral Flow Immunoassay for Ultrasensitive Detection of Clenbuterol and Ractopamine. Anal. Chim. Acta 2018, 1040, 143–149. [Google Scholar] [CrossRef]
- Wang, C.; Xiao, R.; Wang, S.; Yang, X.; Bai, Z.; Li, X.; Rong, Z.; Shen, B.; Wang, S. Magnetic Quantum Dot Based Lateral Flow Assay Biosensor for Multiplex and Sensitive Detection of Protein Toxins in Food Samples. Biosens. Bioelectron. 2019, 146, 111754. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Cao, J.; Ding, S.N. Simultaneous Detection of Two Ovarian Cancer Biomarkers in Human Serums with Biotin-Enriched Dendritic Mesoporous Silica Nanoparticles-Labeled Multiplex Lateral Flow Immunoassay. Sens. Actuators B Chem. 2022, 371, 132597. [Google Scholar] [CrossRef]
- Wu, L.; Liang, J.; Teng, P.; Du, Y.; He, Y.; Liao, S.; Wang, J.; Zhang, X.; Wang, Z.; Zeng, T.; et al. A Filter Pad Design-Based Multiplexed Lateral Flow Immunoassay for Rapid Simultaneous Detection of PDCoV, TGEV, and PEDV in Swine Feces. Talanta 2024, 280, 126712. [Google Scholar] [CrossRef]
- Zheng, S.; Xia, X.; Tian, B.; Xu, C.; Zhang, T.; Wang, S.; Wang, C.; Gu, B. Dual-Color MoS2@QD Nanosheets Mediated Dual-Mode Lateral Flow Immunoassay for Flexible and Ultrasensitive Detection of Multiple Drug Residues. Sens. Actuators B Chem. 2024, 403, 135142. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, G.; Chen, X.; Wei, X.; Shen, X.A.; Jiang, H.; Li, X.; Xiong, Y.; Huang, X. Aggregation-Induced Emission Nanoparticles Facilitating Multicolor Lateral Flow Immunoassay for Rapid and Simultaneous Detection of Aflatoxin B1 and Zearalenone. Food Chem. 2024, 447, 138997. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Shu, R.; Zhao, C.; Sun, C.; Zhang, M.; Wang, S.; Li, B.; Dou, L.; Ji, Y.; Wang, Y.; et al. Precise Spectral Overlap-Based Donor-Acceptor Pair for a Sensitive Traffic Light-Typed Bimodal Multiplexed Lateral Flow Immunoassay. Anal. Chem. 2024, 96, 5046–5055. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, Q.; Lu, B.; Tang, X.; Li, P. Time-Resolved Fluorescence/Visual Dual-Readout Nanobiosensors for the Detection of Aflatoxin B1, Benzo(α)Pyrene and Capsaicin in Edible Oils Using a Miniaturized Paper Analytical Device. Food Chem. 2025, 467, 142233. [Google Scholar] [CrossRef]
- Jiang, H.; Su, H.; Wu, K.; Dong, Z.; Li, X.; Nie, L.; Leng, Y.; Xiong, Y. Multiplexed Lateral Flow Immunoassay Based on Inner Filter Effect for Mycotoxin Detection in Maize. Sens. Actuators B Chem. 2023, 374, 132793. [Google Scholar] [CrossRef]
- Rong, Z.; Xiao, R.; Peng, Y.; Zhang, A.; Wei, H.; Ma, Q.; Wang, D.; Wang, Q.; Bai, Z.; Wang, F.; et al. Integrated Fluorescent Lateral Flow Assay Platform for Point-of-Care Diagnosis of Infectious Diseases by Using a Multichannel Test Cartridge. Sens. Actuators B Chem. 2021, 329, 129193. [Google Scholar] [CrossRef]
- Chen, W.; Chen, H.; Liu, Y.; Wei, H.; Wang, Y.; Rong, Z.; Liu, X. An Integrated Fluorescent Lateral Flow Assay for Multiplex Point-of-Care Detection of Four Respiratory Viruses. Anal. Biochem. 2022, 659, 114948. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Dou, L.; Yao, X.; Zhang, W.; Zhao, M.; Yin, X.; Sun, J.; Zhang, D.; Wang, J. Nanozyme Amplification Mediated On-Demand Multiplex Lateral Flow Immunoassay with Dual-Readout and Broadened Detection Range. Biosens. Bioelectron. 2020, 169, 112610. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Shu, R.; Ma, J.; Dou, L.; Zhang, W.; Wang, S.; Ji, Y.; Li, Y.; Xu, J.; Zhang, D.; et al. Mussel-Inspired Fe-Based Tannic Acid Nanozyme: A Renewable Bioresource-Derived High-Affinity Signal Tag for Dual-Readout Multiplex Lateral Flow Immunoassay. Chem. Eng. J. 2022, 446, 137382. [Google Scholar] [CrossRef]
- Xu, C.; Zheng, S.; Xia, X.; Li, J.; Yu, Q.; Wang, Y.; Jin, Q.; Wang, C.; Gu, B. Core–Satellite-Structured Magnetic Nanozyme Enables the Ultrasensitive Colorimetric Detection of Multiple Drug Residues on Lateral FLow Immunoassay. Anal. Chim. Acta 2024, 1325, 343115. [Google Scholar] [CrossRef]
- Knudsen, C.; Belfakir, S.B.; Degnegaard, P.; Jürgensen, J.A.; Haack, A.M.; Friis, R.U.W.; Dam, S.H.; Laustsen, A.H.; Ross, G.M.S. Multiplex Lateral Flow Assay Development for Snake Venom Detection in Biological Matrices. Sci. Rep. 2024, 14, 2567. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, Z.; Wang, X.; Cui, L.; Huang, W.; Zhu, Z.; Liu, Z. Highly Efficient Detection of Deoxynivalenol and Zearalenone in the Aqueous Environment Based on Nanoenzyme-Mediated Lateral Flow Immunoassay Combined with Smartphone. J. Environ. Chem. Eng. 2023, 11, 110494. [Google Scholar] [CrossRef]
- Liu, Z.; Hua, Q.; Wang, J.; Liang, Z.; Li, J.; Wu, J.; Shen, X.; Lei, H.; Li, X. A Smartphone-Based Dual Detection Mode Device Integrated with Two Lateral Flow Immunoassays for Multiplex Mycotoxins in Cereals. Biosens. Bioelectron. 2020, 158, 112178. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Xing, H.; Zhang, Y.; Liu, X.; Gao, S.; Wang, L.; Li, T.; Zhang, T.; Chen, D. Centrifugated Lateral Flow Assay Strips Based on Dual-Emission Carbon Dots Modified with Europium Ions for Ratiometric Determination and on-Site Discrimination of Tetracyclines in Environment. Sci. Total Environ. 2024, 951, 175478. [Google Scholar] [CrossRef]
- Jin, B.; Yang, Y.; He, R.; Park, Y.I.; Lee, A.; Bai, D.; Li, F.; Lu, T.J.; Xu, F.; Lin, M. Lateral Flow Aptamer Assay Integrated Smartphone-Based Portable Device for Simultaneous Detection of Multiple Targets Using Upconversion Nanoparticles. Sens. Actuators B Chem. 2018, 276, 48–56. [Google Scholar] [CrossRef]
- Liu, G.; Wang, J.; Wang, J.; Cui, X.; Wang, K.; Chen, M.; Yang, Z.; Gao, A.; Shen, Y.; Zhang, Q.; et al. Deep-Learning Assisted Zwitterionic Magnetic Immunochromatographic Assays for Multiplex Diagnosis of Biomarkers. Talanta 2024, 273, 125868. [Google Scholar] [CrossRef]
- Wang, J.; Mu, K.; Wei, H.; Chen, H.; Wang, Y.; Zhang, W.; Rong, Z. Paper-Based Multiplex Colorimetric Vertical Flow Assay with Smartphone Readout for Point-of-Care Detection of Acute Kidney Injury Biomarkers. Sens. Actuators B Chem. 2023, 390, 134029. [Google Scholar] [CrossRef]
- Li, W.; Yang, X.; Wang, D.; Xie, J.; Wang, S.; Rong, Z. A Handheld Fluorescent Lateral Flow Immunoassay Platform for Highly Sensitive Point-of-Care Detection of Methamphetamine and Tramadol. Talanta 2024, 277, 126438. [Google Scholar] [CrossRef] [PubMed]
- Saetang, J.; Khrueakaew, P.; Benjakul, S.; Singh, A.; Nilsuwan, K. Molecular Authentication and Discrimination between Banana Shrimp and Pacific White Shrimp by Duplex PCR-Lateral Flow Dipstick (DPCR-LFD) System. J. Food Compos. Anal. 2024, 131, 106269. [Google Scholar] [CrossRef]
- Kim, J.H.; Oh, S.W. A Colorimetric Lateral Flow Assay Based on Multiplex PCR for the Rapid Detection of Viable Escherichia coli O157:H7 and Salmonella Typhimurium without Enrichment. LWT 2021, 152, 112242. [Google Scholar] [CrossRef]
- Phopin, K.; Luk-in, S.; Ruankham, W.; Chatsuwan, T.; Plongla, R.; Jongwachirachai, P.; Sathuphong, S.; Nuttavuttisit, C.; Tantimongcolwat, T. Duplex PCR-Lateral Flow Immunoassay for Rapid and Visual Screening of Salmonella and Vibrio Cholerae for Food Safety Assurance and Hygiene Surveillance. LWT 2024, 203, 116362. [Google Scholar] [CrossRef]
- Moon, Y.J.; Bae, J.Y.; Kim, S.H.; Oh, S.W. Simultaneous Detection Using a Portable Multiplex PCR-Dual Lateral Flow Immunoassay for P. carotovorum subsp. brasiliense and E. coli O157:H7. Microchem. J. 2023, 195, 109396. [Google Scholar]
- Feng, J.; Lan, H.; Pan, D. Triplex-Colored Nucleic Acid Lateral Flow Strip and Multiplex Polymerase Chain Reaction Coupled Method for Quantitative Identification of Beef, Pork and Chicken. J. Food Compos. Anal. 2023, 123, 105493. [Google Scholar] [CrossRef]
- Maglaras, P.; Lilis, I.; Paliogianni, F.; Bravou, V.; Kalogianni, D.P. A Molecular Lateral Flow Assay for SARS-CoV-2 Quantitative Detection. Biosensors 2022, 12, 926. [Google Scholar] [CrossRef]
- Kim, S.; Han, J.; Park, J.S.; Kim, J.H.; Lee, E.S.; Cha, B.S.; Park, K.S. DNA Barcode-Based Detection of Exosomal MicroRNAs Using Nucleic Acid Lateral Flow Assays for the Diagnosis of Colorectal Cancer. Talanta 2022, 242, 123306. [Google Scholar] [CrossRef] [PubMed]
- Kalligosfyri, P.M.; Nikou, S.; Karteri, S.; Kalofonos, H.P.; Bravou, V.; Kalogianni, D.P. Rapid Multiplex Strip Test for the Detection of Circulating Tumor DNA Mutations for Liquid Biopsy Applications. Biosensors 2022, 12, 97. [Google Scholar] [CrossRef] [PubMed]
- Litos, I.K.; Ioannou, P.C.; Christopoulos, T.K.; Tzetis, M.; Kanavakis, E.; Traeger-Synodinos, J. Quadruple-Allele Dipstick Test for Simultaneous Visual Genotyping of A896G (Asp299Gly) and C1196T (Thr399Ile) Polymorphisms in the Toll-like Receptor-4 Gene. Clin. Chim. Acta 2011, 412, 1968–1972. [Google Scholar] [CrossRef]
- Litos, I.K.; Ioannou, P.C.; Christopoulos, T.K.; Traeger-Synodinos, J.; Kanavakis, E. Multianalyte, Dipstick-Type, Nanoparticle-Based DNA Biosensor for Visual Genotyping of Single-Nucleotide Polymorphisms. Biosens. Bioelectron. 2009, 24, 3135–3139. [Google Scholar] [CrossRef]
- Petropoulou, M.; Poula, A.; Traeger-Synodinos, J.; Kanavakis, E.; Christopoulos, T.K.; Ioannou, P.C. Multi-Allele DNA Biosensor for the Rapid Genotyping of “nondeletion” Alpha Thalassaemia Mutations in HBA1 and HBA2 Genes by Means of Multiplex Primer Extension Reaction. Clin. Chim. Acta 2015, 446, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Amvrosiadou, M.; Petropoulou, M.; Poulou, M.; Tzetis, M.; Kanavakis, E.; Christopoulos, T.K.; Ioannou, P.C. Multi-Allele Genotyping Platform for the Simultaneous Detection of Mutations in the Wilson Disease Related ATP7B Gene. J. Chromatogr. B 2015, 1006, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Fountoglou, N.; Petropoulou, M.; Iliadi, A.; Christopoulos, T.K.; Ioannou, P.C. Τwo-Panel Molecular Testing for Genetic Predisposition for Thrombosis Using Multi-Allele Visual Biosensors. Anal. Bioanal. Chem. 2016, 408, 1943–1952. [Google Scholar] [CrossRef] [PubMed]
- Kouloulia, S.; Lazaridou, M.; Christopoulos, T.K.; Ioannou, P.C. Multi-Allele Dipstick Assay for Visual Genotyping of Four Novel SIRT1 Gene Variant Alleles as Candidate Biomarkers for Sporadic Parkinson Disease. Microchim. Acta 2017, 184, 2845–2853. [Google Scholar] [CrossRef]
- Elenis, D.S.; Ioannou, P.C.; Christopoulos, T.K. A Nanoparticle-Based Sensor for Visual Detection of Multiple Mutations. Nanotechnology 2011, 22, 155501. [Google Scholar] [CrossRef] [PubMed]
- Christopoulou, N.M.; Mamoulaki, V.; Mitsiakou, A.; Samolada, E.; Kalogianni, D.P.; Christopoulos, T.K. Screening Method for the Visual Discrimination of Olive Oil from Other Vegetable Oils by a Multispecies DNA Sensor. Anal. Chem. 2024, 96, 1803–1811. [Google Scholar] [CrossRef]
- Christopoulou, N.M.; Figgou, E.; Kalaitzis, P.; Kalogianni, D.P.; Christopoulos, T.K. Multiallelic DNA Sensors for Molecular Traceability of Olive Oil Varietal Origin. Sens. Actuators B Chem. 2024, 406, 135423. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, X.; Han, L.; Chen, T.; Wang, L.; Li, H.; Li, S.; He, L.; Fu, X.; Chen, S.; et al. Multiplex Reverse Transcription Loop-Mediated Isothermal Amplification Combined with Nanoparticle-Based Lateral Flow Biosensor for the Diagnosis of COVID-19. Biosens. Bioelectron. 2020, 166, 112437. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Jiang, Y.; Song, Y.; Qin, X.; Ren, Y.; Zhao, Y.; Man, C.; Zhang, W. Point-of-Care and Visual Detection of Salmonella Spp. and Cronobacter Spp. by Multiplex Loop-Mediated Isothermal Amplification Label-Based Lateral Flow Dipstick in Powdered Infant Formula. Int. Dairy J. 2021, 118, 105022. [Google Scholar] [CrossRef]
- Barra, M.; Chang, M.; Salcedo, M.P.; Schmeler, K.; Scheurer, M.; Maza, M.; Lopez, L.; Alfaro, K.; Richards-Kortum, R. Single-Tube Four-Target Lateral Flow Assay Detects Human Papillomavirus Types Associated with Majority of Cervical Cancers. Anal. Biochem. 2024, 688, 115480. [Google Scholar] [CrossRef]
- Panich, W.; Tejangkura, T.; Chontananarth, T. Assay for the Simultaneous Detection of Raillietina spp. (R. echinobothrida, R. tetragona, and R. cesticillus) and Ascaridia galli Infection in Chickens Using Duplex Loop-Mediated Isothermal Amplification Integrated with a Lateral Flow Dipstick Assay. Vet. Parasitol. 2024, 328, 110174. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Zhang, L.; Xu, J.; Ye, C. Visual and Multiplex Detection of Nucleic Acid Sequence by Multiple Cross Displacement Amplification Coupled with Gold Nanoparticle-Based Lateral Flow Biosensor. Sens. Actuators B Chem. 2017, 241, 1283–1293. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J.H.; Kim, S.; Park, J.S.; Cha, B.S.; Lee, E.S.; Han, J.; Shin, J.; Jang, Y.; Park, K.S. Loop-Mediated Isothermal Amplification-Based Nucleic Acid Lateral Flow Assay for the Specific and Multiplex Detection of Genetic Markers. Anal. Chim. Acta 2022, 1205, 339781. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Ma, B.; Li, J.; Shuai, J.; Zhang, M. Multiplex Reverse Transcription Recombinase Polymerase Amplification Combined with Lateral Flow Biosensor for Simultaneous Detection of Three Viral Pathogens in Cattle. Talanta 2025, 281, 126775. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.D.; Bender, A.T.; Sullivan, B.P.; Lillis, L.; Boyle, D.S.; Posner, J.D. SARS-CoV-2 Recombinase Polymerase Amplification Assay with Lateral Flow Readout and Duplexed Full Process Internal Control. Sens. Diagn. 2024, 3, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Li, J.; Chen, K.; Yu, X.; Sun, C.; Zhang, M. Multiplex Recombinase Polymerase Amplification Assay for the Simultaneous Detection of Three Foodborne Pathogens in Seafood. Foods 2020, 9, 278. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, Y.; Zhang, Y.; Qin, G.; Sun, W.; Wang, A.; Wang, Y.; Zhang, G.; Zhao, J. On-Site Detection and Differentiation of African Swine Fever Virus Variants Using an Orthogonal CRISPR-Cas12b/Cas13a-Based Assay. iScience 2024, 27, 109050. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Wang, X.; Chen, X.; Xu, X.; Wei, W.; Yang, L.; Ji, Y.; Wu, J.; Xu, J.; Peng, C. Development of a Novel Cas13a/Cas12a-Mediated “one-Pot” Dual Detection Assay for Genetically Modified Crops. J. Adv. Res. 2024, in press. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Q.; Wang, K.; Zhang, Q.; Ma, C.; Yang, G.; Xie, Y.; Mauk, M.G.; Fu, S.; Chen, L. RPA-CRISPR-Cas-Mediated Dual Lateral Flow Assay for the Point-of-Care Testing of HPV16 and HPV18. Bioconjug. Chem. 2024, 35, 1797–1804. [Google Scholar] [CrossRef]
- Wang, J.; Luo, J.; Liu, H.; Xu, D.; Li, Y.; Liu, X.; Zeng, H. “Blue-Red-Purple” Multicolored Lateral Flow Immunoassay for Simultaneous Detection of GM Crops Utilizing RPA and CRISPR/Cas12a. Talanta 2025, 282, 127010. [Google Scholar] [CrossRef]
- Liu, H.; Cao, T.; Chen, H.; Zhang, J.; Li, W.; Zhang, Y.; Liu, H. Two-Color Lateral Flow Nucleic Acid Assay Combined with Double-Tailed Recombinase Polymerase Amplification for Simultaneous Detection of Chicken and Duck Adulteration in Mutton. J. Food Compos. Anal. 2023, 118, 105209. [Google Scholar] [CrossRef]
- Feng, J.; Lan, H.; Pan, D.; Xu, X.; Wu, Y. Development of a Duplex Recombinase Polymerase Amplification-Lateral Flow Strip Assay with 1 min of DNA Extraction for Simultaneous Identification of Pork and Chicken Ingredients. J. Food Compos. Anal. 2024, 132, 106253. [Google Scholar] [CrossRef]
- Xu, T.; Lin, X.; Zhang, X.; Fu, Y.; Luo, H.; Luo, C.; Luo, Z.; Lei, L.; Jia, M.A. Triplex Visual Detection of Tobacco Potyviruses Using Reverse Transcription Recombinase Polymerase Amplification Assay Combined with Lateral Flow Dipstick. Crop Prot. 2023, 174, 106397. [Google Scholar] [CrossRef]
- Javani, A.; Javadi-Zarnaghi, F.; Rasaee, M.J. A Multiplex Protein-Free Lateral Flow Assay for Detection of MicroRNAs Based on Unmodified Molecular Beacons. Anal. Biochem. 2017, 537, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Zi, M.; Dou, Y.; Tashpulatov, K.; Zeng, J.B.; Wen, C.Y. An Fe3O4-Au Heterodimer Nanoparticle-Based Lateral Flow Assay for Rapid and Simultaneous Detection of Multiple Influenza Virus Nucleic Acids. Anal. Methods 2024, 16, 5777–5784. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Mei, X.; Yang, J.; Liu, J.; Li, Y. Ultrasensitive Hybridization Chain Reaction-Assisted Multisite Exonuclease III Amplification Strategy Combined with a Direct Quantitative Fluorescence Lateral Flow Technique for Multiple Bacterial 16S RRNA Detection. Anal. Chem. 2023, 95, 5807–5814. [Google Scholar] [CrossRef]
- Li, G.; Niu, P.; Ge, S.; Cao, D.; Sun, A. SERS Based Lateral Flow Assay for Rapid and Ultrasensitive Quantification of Dual Laryngeal Squamous Cell Carcinoma-Related MiRNA Biomarkers in Human Serum Using Pd-Au Core-Shell Nanorods and Catalytic Hairpin Assembly. Front. Mol. Biosci. 2022, 8, 813007. [Google Scholar] [CrossRef]
- Liu, H.; Cao, T.; Wang, J.; Yuan, Y.; Li, H.; He, K.; Chen, H.; Wang, L. Accurate and Simultaneous Detection of Pork and Horse Meat Adulteration by Double Tailed Recombinase Polymerase Amplification Integrated with SERS Based Two-Color Lateral Flow Nucleic Acid Hybridization Strip. J. Food Compos. Anal. 2024, 134, 106562. [Google Scholar] [CrossRef]
- Tang, Y.; Ma, P.; Khan, I.M.; Cao, W.; Zhang, Y.; Wang, Z. Lateral Flow Assay for Simultaneous Detection of Multiple Mycotoxins Using Nanozyme to Amplify Signals. Food Chem. 2024, 460, 140398. [Google Scholar] [CrossRef]
- Falconnet, D.; She, J.; Tornay, R.; Leimgruber, E.; Bernasconi, D.; Lagopoulos, L.; Renaud, P.; Demierre, N.; Van Den Bogaard, P. Rapid, Sensitive and Real-Time Multiplexing Platform for the Analysis of Protein and Nucleic-Acid Biomarkers. Anal. Chem. 2015, 87, 1582–1589. [Google Scholar] [CrossRef] [PubMed]
- Klebes, A.; Kittel, A.S.; Verboket, R.D.; von Stetten, F.; Früh, S.M. Multianalyte Lateral Flow Immunoassay for Simultaneous Detection of Protein-Based Inflammation Biomarkers and Pathogen DNA. Sens. Actuators B Chem. 2022, 355, 131283. [Google Scholar] [CrossRef]
Signal | Target | Method | Reporters | LOD | Multiplicity | Ref |
---|---|---|---|---|---|---|
Lateral flow immunoassays | ||||||
Simple colorimetric | ||||||
Color | PJI proteins | Sandwich immunoassay | AuNPs–antibody | - | 2 | [7] |
Color | Mycotoxins | Sandwich immunoassay | AuNPs–antibody | 0.10–0.46 μg/kg | 3 | [8] |
Color | Pectin structures | Sandwich immunoassay | Gold NPs and gold nano-urchins | 0.02 μg/mL | 4 | [9] |
Color | Virus | Sandwich immunoassay | AuNPs–antibody | - | 3 | [10] |
Color | Fungicide | Competitive immunoassay | AuNPs–antibody | 2.0–8.8 ng/g, | 3 | [11] |
Color | Virus | Sandwich immunoassay | AuNPs–antibody | 2.44–4.88 ng/mL | 2 | [12] |
Color | Virus | Sandwich immunoassay | AuNPs–antibody | - | 3 | [13] |
Color | Steroid hormones | Sandwich immunoassay | AuNPs–antibody | 0.32–0.64 μg/kg | 3 | [14] |
Color | Virus | Sandwich immunoassay | AuNPs–antibody | 2.9–6.3 CFU | 3 | [15] |
Color | Intercellular adhesion molecule 1 (ICAM1), carbohydrate antigen 19-9 (CA19-9), and prostate-specific antigen (PSA) | Sandwich immunoassay | Plasmon-controlled metal–silica isoform nanocomposites | 6.65 ng/mL, 0.04 U/mL, and 0.12 ng/mL | 3 | [16] |
Color | Pollutants | Sandwich immunoassay | AuNPs–antibody | 0.67–2.22 ng/mL | 2 | [17] |
Color | Toxins | Competitive immunoassay | AuNPs–antibody | 10–30 ng/mL | 3 | [18] |
Color | Bacteria | Sandwich immunoassay | AuNPs (Cu2 deposition) | 0.01–0.03 μg/mL | 2 | [19] |
Color | Metabolites | Cascaded antibody directionality (CAbD) | Ab-ZnO-based nanocomposites | 0.060–0.106 ng/mL | 2 | [20] |
Color | Proteins | Sandwich immunoassay | Polystyrene microspheres | 2.5–7.8 ng/mL | 3 | [21] |
Color | Allergens | Sandwich immunoassay | Metal nanoparticles | 1 mg/L–1% | 3 | [22] |
SERS | ||||||
SERS | Toxins | Immunoassay | SERS nanoprobes–antibodies | 0.11–15.7 pg/mL | 3 | [23] |
SERS | Cardiac biomarkers | Sandwich immunoassay | Core-shell SERS nanotags | 0.44–3.2 pg/mL | 3 | [24] |
SERS | Serum amyloid A/C-reactive protein | Immunoassay | Fe3O4@Au nanotags–antibodies | 0.1 ng/mL and 0.01 ng/mL | 2 | [25] |
SERS | Kanamycin/ractopamine/Clenbuterol/chloramphenicol | Competitive immunoassay | Magnetic-core dual-shell nanoparticles–antibodies | 0.52, 2.5, 0.87, and 6.2 pg/mL | 4 | [26] |
SERS | Chlorothalonil/imidacloprid/oxyfluorfen | Immunoassay | Ag@AuNPs nanotags–antibodies | - | 3 | [27] |
SERS/Thermal Signal | Influenza A/influenza B/SARS-CoV-2 | Immunoassay | Gold-core–silver-shell bimetallic nanoparticles–antibodies | 62.5, 750, and 31.25 pg/mL | 3 | [28] |
SERS | Carbendazim/imidacloprid | Immunoassay | Dual-SERS nanotags–antibodies | 0.04 and 0.06 ng/mL | 2 | [29] |
SERS | Troponin I/N-terminal natriuretic peptide precursor | Immunoassay | AuNPs–polystyrene tags–antibodies | 1 and 10 pg/mL | 2 | [30] |
SERS | Alzheimer’s biomarkers | Immunoassay | Gold–silica nanotags–antibodies | ~16 fg/mL | 2 | [31] |
Fluorescent | ||||||
Fluorescence | Mycotoxins | Competitive immunoassay | Ab–SiO2@QDs | 50–500 μg/kg | 2 | [32] |
Fluorescence | Proteins | Sandwich immunoassay | Ab–dual color QDs | 0.29–0.66 ng/mL | 2 | [33] |
Fluorescence | Proteins | Competitive immunoassay | Ab–SiO2@QDs | 0.007–0.32 ng/mL | 2 | [34] |
Fluorescence | Proteins | Sandwich immonoassay | Ab–QDs | 0.05–0.5 μg/mL | 3 | [35] |
Fluorescence | Antigens | Sandwich immunoassay | Ab–DMSNs–BCDs | 0.01 ng/mL and 0.1 U/mL | 3 | [36] |
Fluorescence | Proteins | Sandwich immunoassay | SA–Au nanoclusters | 0.003–0.023 mg/L | 2 | [37] |
Fluorescence | Toxins | Sandwich immunoassay | Ab–magnetic QD NPs | 2.52–2.86 pg/mL | 2 | [38] |
Fluorescence | Antigens | Sandwich immunoassay | SA–SiNPs | 5 U/mL–5 pM | 2 | [39] |
Fluorescence | Viruses | Sandwich immunoassay | Ab–EuNPs | 3.4 × 102–2.1 × 104 TCID50/mL | 3 | [40] |
Fluorescence and Color | Drug residues | Sandwich immunoassay | Ab–MoS2–QDs | 0.12–0.36 ng/mL | 4 | [41] |
Fluorescence | Mycotoxins | Competitive immunoassay | Aggregation-induced emission nanoparticles | 6.12–26 pg/mL | 2 | [42] |
Fluorescence and Color | Drugs | Sandwich immunoassay | Ab–AuNPs/Prussian blue nanoparticles | 0.013–0.152 ng/mL | 2 | [43] |
Fluorescence and Color | Pollutants | Competitive immunoassay | Ab–AuNPs and EuNPs | 0.003–0.6 ng/mL | 3 | [44] |
Fluorescence | Mycotoxins | Inner filter effect and competitive immunoassay | Ab/SA-Au nanoflowers/QDs | 0.005–0.4 μg/L | 3 | [45] |
Fluorescence | Infectious diseases | Sandwich immunoassay | Quantum dot nanobeads (QBs) | 0.11–0.62 NCU/mL | 4 | [46] |
Fluorescence | Viruses | Sandwich immunoassay | Ab-QBs | 0.01–0.40 ng/mL | 4 | [47] |
Nanozymes | ||||||
Color | RAC/CLE | Competitive immunoassay | Prussian blue nanozymes | 0.20 and 0.12 ng/mL | 2 | [48] |
Color | RAC/CLE | Competitive immunoassay | Fe-based tanic acid nanozyme | 0.015 and 0.156 ng/mL | 2 | [49] |
Color | Drug residues | Competitive immunoassay | Fe-Au@Pt nanozyme | 1.1–10.1 pg/mL | 3 | [50] |
Smartphone-based | ||||||
Color | Snake venoms | Sandwich immunoassay | Carbon NPs–antibody | 10–50 ng/mL in spiked plasma and urine, 50–500 ng/mL spiked serum | 2 | [51] |
Color | Deoxynivalenol/zearalenone | Immunoassay | Au@Pt nanozyme–antibody | 0.24/0.04 ng/mL | 2 | [52] |
Color/ Fluorescence | Aflatoxins | Immunoassay | AuNPs and time-resolved fluorescence microspheres conjugated with antibodies | 0.04–0.75 μg/kg | 5 | [53] |
Fluorescence | Tetracyclines | Centrifugated LFA | Dual-emission CDs@Eu3+ | 46.7–72.0 nM | 4 | [54] |
Fluorescence | Hg2+/ochratoxin A/Salmonella | Competitive aptamer-LFA | DNA–UCNPs | 5 ppb, 3 ng/mL, and 85 CFU/mL | 3 | [55] |
Color | SARS-CoV-2/influenza A/influenza B | Immunochromatografic test | Magnetic nanoparticles–zwitterionic ligands | 0.0062, 0.0051, and 0.0147 ng/mL | 3 | [56] |
Color | Acute kidney injury biomarkers | Vertical paper-based immunoassay | AuNPs–antibodies | ~ 1 ng/mL | 3 | [57] |
Fluorescence | Methamphetamine/tramadol | Immunoassay | Silica core quantum dot-shell nanocomposite–antibodies | 0.11 and 0.017 ng/mL | 2 | [58] |
Nucleic acid-based LFA | ||||||
PCR | ||||||
Color | Shrimps/cytB gene | PCR | Anti-FAM Ab–AuNPs | 0.02%–0.01 ng | 2 | [59] |
Color | Escherichia coli/Salmonella Typhimurium bacteria | PCR | SA–AuNPs | 10–100 CFU/25 ng | 2 | [60] |
Fluorescence | SARS-CoV-2/influenza B virus | PCR | SA–QDs | 8.4–14.2 copies/mL | 2 | [1] |
Color | Salmonella/Vibrio cholerae bacteria | PCR | Antibiotin–AuNPs | 104–106 CFU/mL | 2 | [61] |
Color | P. carotovorum brasilience/E. coli O157:H7 bacteria | PCR | SA–AuNPs | 1.26–13.7 CFU/mL | 2 | [62] |
Color | SARS-CoV-2 | Asymmetric PCR | SA–AuNPs | 300 aM | 3 | [2] |
Color | Meat species | PCR | DNA–latex microspheres | 0.1% | 3 | [63] |
Color | SARS-CoV-2 virus | RT-PCR | Antibiotin–AuNPs | 1 copy | 2 | [64] |
Color | miR-92a/miR-141/miR-345 | Stem-loop RT-PCR | Antibiotin-AuNPs | - | 3 | [65] |
Color | KRAS gene | PCR-PEXT | SA–AuNPs | - | 4 | [66] |
Color | Toll-like receptor 4 (TLR4) gene | PCR-PEXT | Antibiotin–AuNPs | - | 2 SNPs 4 alleles | [67] |
Color | MBL2 gene | PCR-PEXT | Antibiotin–AuNPs | - | 2 SNPs 4 alleles | [68] |
Color | HBA1/HBA2 genes | PCR-PEXT | Antibiotin–AuNPs | - | 5 SNPs 10 alleles | [69] |
Color | ATP7B gene | PCR-PEXT | Antibiotin–AuNPs | - | 5 SNPs 10 alleles | [70] |
Color | FV Leiden/PTH/MTHFR genes | PCR-PEXT | Antibiotin–AuNPs | - | 3–4 SNPs 6–8 alleles | [71] |
Color | SIRT1 gene | PCR-PEXT | Antibiotin–AuNPs | - | 4 SNPs 8 alleles | [72] |
Color | MBL2/JAK2/TLR4 genes | PCR-PEXT | Antibiotin–AuNPs | - | 5 SNPs 10 alleles | [73] |
Color | Plant edible oils | PCR-PEXT | Antibiotin–AuNPs | - | 7 | [74] |
Color | Olive oil | PCR-PEXT | Antibiotin–AuNPs | - | 2 SNPs 4 alleles | [75] |
LAMP | ||||||
Color | SARS-CoV-2 virus | LAMP | SA–polymer NPs | 12 copies | 2 | [76] |
Color | Salmonella spp./Cronobacter spp. | LAMP | Anti-FITC Ab–AuNPs | 2.8–4.3 CFU/g | 2 | [77] |
Color | HPV virus | LAMP | Antibiotin–AuNPs | 10–100 copies/reaction, 1 ng/reaction | 2 | [78] |
Color | Raillietina spp./Ascaridia galli bacteria | LAMP | Anti-FAM Ab–AuNPs | 5 pg/μL | 2 | [79] |
Color | Salmonella/Shigella bacteria | LAMP | SA–AuNPs | 3.4–3.9 CFU/reaction | 2 | [80] |
Color | Salmonella/Staphylococcus bacteria | LAMP | Antibiotin–AuNPs | 16 CFU, 9 aM, 5.4 copies/mL | 2 | [81] |
RPA | ||||||
Color | Bovine viral diarrhea virus/bovine epidemic fever virus/bovine respiratory syncytial virus | RT-RPA | Antibiotin–AuNPs | 262, 242, and 256 copies/μL | 3 | [82] |
Color | SARS-CoV-2 virus/MS2 Bacteriophage | RT-RPA | Anti-FAM Ab–AuNPs | 50 copies | 2 | [83] |
Color | Staphylococcus aureus/Vibrio parahaemolyticus/Salmonella Enteritidis | RPA | Anti-Dig Ab–AuNPs | 12.9–76 CFU/mL | 3 | [84] |
Color | African swine fever virus | RPA/CRISPR | Anti-FAM Ab–AuNPs | 1.6 and 8 copies/μL | 2 | [85] |
Color | Cauliflower Mosaic Virus 35S promoter/nopaline synthase terminator, color terminator | RPA/CRISPR | Anti-FITC/Dig Ab–AuNPs | 20 copies | 2 | [86] |
Color | HPV virus | RPA/CRISPR | Anti-FAM/Dig Ab–AuNPs | 10 copies/μL | 2 | [87] |
Color | GM crops | RPA-CRISPR/Cas12a | Anti-FAM/Dig Ab–red or blue latex microspheres | 10 copies/μL | 2 | [88] |
Color | Meat species Mitochondrial gene Anas platyrhynchos for duck/Gallus gallus for chicken | RPA | DNA–magenta AuNPs/cyan gold nanoflowers | 0.01% | 2 | [89] |
Color | Meat species Pork (Porcine) mitochondrial ND2 gene/chicken (Gallus gallus) cytochrome B gene | RPA | SA–AuNPs | 0.1% | 2 | [90] |
Color | Tobacco potyviruses | RT-RPA | Antibiotin–AuNPs | 103 copies | 3 | [91] |
Other | ||||||
Color | miR-210/miR-424 | Hybridization | DNA–AuNPs | 10 pmol | 2 | [92] |
Color | miR-21/miR-155/miR-210 | Hybridization | DNA–AuNPs | 0.007 nM, 0.068 nM, and 0.017 nM | 3 | [4] |
Color | H1N1/H3N2/ H9N2 influenza virus synthetic nucleic acids sequences | Hybridization | DNA–Fe3O4–Au NPs | 0.5–2.5 nM | 3 | [93] |
Fluorescence | Bacterial 16S rRNA Staphylococcus aureus/Listeria Monocytogenes/Salmonella typhimurium | HCR/Exo-III amplifier | DNA–CdTe/CdS | 47, 43, and 56 CFU/mL | 3 | [94] |
SERS | miR-106b/miR-196b | SERS/CHA | DNA–Pd–Au nanorods–hairpin | 43.08 and 61.36 aM | 2 | [95] |
SERS | Horse meat adulteration | Hybridization/SERS/RPA | AuNPs–DNA probes | 0.01% | 2 | [96] |
Aptamer | ||||||
Fluorescence | Hg2+/ochratoxin A/Salmonella | Competitive aptamer–LFA | DNA–UCNPs | 5 ppb, 3 ng/mL, and 85 CFU/mL | 3 | [55] |
Color | Aflatoxin M1/aflatoxin B1/ochratoxin A | Aptamer–LFA/hybridization | DNA–Au@Ir NPs | 0.39 ng/mL, 0.36 ng/mL, and 0.82 ng/mL | 3 | [97] |
Combined biomolecules categories | ||||||
Fluorescence | Pseudomonas auruginosa gDNA/IL-6 protein | RPA and sandwich immunoassay | Microspheres | 70 copies/reaction gDNA and 4 ng/mL protein | 2 | [99] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamprou, E.; Kalligosfyri, P.M.; Kalogianni, D.P. Beyond Traditional Lateral Flow Assays: Enhancing Performance Through Multianalytical Strategies. Biosensors 2025, 15, 68. https://doi.org/10.3390/bios15020068
Lamprou E, Kalligosfyri PM, Kalogianni DP. Beyond Traditional Lateral Flow Assays: Enhancing Performance Through Multianalytical Strategies. Biosensors. 2025; 15(2):68. https://doi.org/10.3390/bios15020068
Chicago/Turabian StyleLamprou, Eleni, Panagiota M. Kalligosfyri, and Despina P. Kalogianni. 2025. "Beyond Traditional Lateral Flow Assays: Enhancing Performance Through Multianalytical Strategies" Biosensors 15, no. 2: 68. https://doi.org/10.3390/bios15020068
APA StyleLamprou, E., Kalligosfyri, P. M., & Kalogianni, D. P. (2025). Beyond Traditional Lateral Flow Assays: Enhancing Performance Through Multianalytical Strategies. Biosensors, 15(2), 68. https://doi.org/10.3390/bios15020068