Developing Biosensors in Developing Countries: South Africa as a Case Study
Abstract
:1. Introduction
Country | Per Capita GDP 2013, USD | Poverty Gap, % of Population ≤2 USD/Day/Capita (Year) | Per Capita Health Expenditure, USD (2010–2014) | R & D Expenditure, % GDP (2010–2012) |
---|---|---|---|---|
Central African Republic | 333.2 | n.d. | 13 | n.d. |
Democratic Republic of the Congo | 484.2 | n.d. | 16 | n.d. |
Mozambique | 605.4 | n.d | 40 | 0.46 |
Zimbabwe | 953.4 | n.d. | n.d. | n.d. |
Chad | 1053.7 | 60.5% (2011) | 37 | n.d. |
Zambia | 1844.8 | 86.6% (2010) | 93 | n.d. |
South Africa | 6886.3 | 26.2% (2011) | 593 | 0.76 |
France (as a comparison) | 42,560.4 | n.d | 4864 | 2.25 |
Target (Biorecognition Agent) | Transducer (Transduction) | Reported LOD | Ref. | Basis of Signal Reported by Authors |
---|---|---|---|---|
Inorganic analytes | ||||
AsO3, K3Fe(CN)6, Prussian Blue (Cytochrome c) | BDD (SWV, CV) | 8.08 μM (AsO3) | [4] | Inhibition of cytochrome c activity, measurable as direct electron transfer from cytochrome c. |
Cd2+ (HRP) | Maize tassel MWCNTs (Voltammetry) | >5 μg/L | [5] | Inhibition of HRP activity, measurable as electrocatalytic reduction of H2O2 |
Cd2+, Cu2+, Pb2+ (HRP) | PtE/PANI (Amperometry) | 0.033 ppb (Pb2+) | [6] | Inhibition of HRP activity, measurable as direct electron transfer from HRP in the presence of H2O2 |
Cd2+, Pb2+, Hg2+ (HRP) | PtE/PANI-co-PDTDA (DPV) | (8−9) × 10−4 μg/L ~pM levels | [7] | Inhibition of HRP activity, measurable as electrocatalytic reduction of H2O2 |
Cu2+ (HRP) | GCE/Maize tassel MWCNTs (Amperometry) | ~4.2 μg/L | [8] | Inhibition of HRP activity, measurable as electrocatalytic reduction of H2O2 |
H2O2 (HRP) | PtE/PANI nanotubes/Polyester sulphonic acid (DPV) | 0.185 μM | [9] | Inhibition of HRP activity, measurable as electrocatalytic reduction of H2O2 |
Heavy metals and inorganic components (recombinant bacteria) | pLUX plasmid (Bioluminescence) | >20 mg/L (Pb) | [10] | Suppression of metabolic activity of transgenic Escherichia coli and Shigella sonnei bacteria, measurable as bacterial luciferase operon expression (bioluminescence) |
H2O2(HRP) | Maize tassel/MWCNTs (Voltammetry) | 4 μM | [11] | Inhibition of HRP activity, measurable as electrocatalytic reduction of H2O2 |
H2O2(HRP) | Induced nanofibril PANI/PV sulphonate polymer (Amperometry) | 30 μM | [12] | Inhibition of HRP activity, measurable as electrocatalytic reduction of H2O2 |
Pb2+, Cd2+ (HRP) | Maize tassel MWCNTs (Voltammetry) | 2.5 μg/L (Pb2+) | [13] | Inhibition of HRP activity, measurable as electrocatalytic reduction of H2O2 |
Small organic molecule analytes | ||||
2,4-dichlorophenol (cytochrome P450-3A4) | GCE/Nafion/Co(SEP)3+ | 0.043 μg/L | [14] | Inhibition of cytochrome P450 activity, measurable as electrocatalytic reduction of O2. |
Aflatoxin B1 (rabbit antiserum) | Pt/PANI/PSSA (EIS) | 0.1 mg/L | [15] | Formation of antigen-antibody complex, measurable as increased modelled charge-transfer resistance |
β-estradiol (β-estradiol aptamer) | AuE/Dendritic PPI-Polythiophene (SWV) | >0.1 nM | [16] | Formation of aptamer-target complex, measurable as decrease in the SWV current. |
Broad range of organic pollutants (HRP) | PtE/PANI (Amperometry) | Qualitative | [17] | Inhibition of HRP activity, measurable as electrocatalytic reduction of H2O2 |
Carbamate and Organophosphate pesticides (AChE) | AuE/MBT/(poly-[o-methoxyaniline]/PDMA) /PSSA (SWV, DPV) | 0.06 ppb (carbofuran) | [18] | Inhibition of AChE activity, measurable as anodic detection of acetaldehyde, produced from MBT-PDMA reduction of acetate, produced during AChE reaction with acetylcholine |
Catechin (apple polyphenol oxidase) | Carbon paste, 20% w/v green apple/GCE (DPV) | 1.76 ppb | [19] | Production of enzyme-catalysed oxidation products, measurable as electroactive compounds |
Chemical Oxygen Demand (Shigella spp.) | pLUX plasmid (Bioluminescence) | n.r. | [20] | Wastewater strength measured by increase in metabolic activity of transgenic Shigella bacteria, as described for Ref. [10], above |
Diazinon (HRP) | PtE/PANI/ASA (Voltammetry) | [21] | Inhibition of HRP activity, measurable as electrocatalytic reduction of H2O2 | |
Glyphosate (HRP) | AuE/PDMA/PSS | 1.70 μg/L | [22] | Inhibition of HRP activity, measurable as electrocatalytic reduction of H2O2 |
Glyphosate and aminomethylphosphonic acid (HRP) | AuE/PDMA/PSS (Amperometry) | 0.16 μg/L and 1 μg/L, respectively | [23] | Inhibition of HRP activity, measurable as electrocatalytic reduction of H2O2 |
Indinavir (Cytochrome P450-3A4) | PtE/didodecyldimethylammonium bromide vesicle/BSA (Amperometry) | 61.5 μg/L | [24] | Inhibition of cytochrome activity, measurable as direct electron transfer from cytochromes in presence of O2. |
l-Tyrosine (Tyrosinase) | BDD, PANI entrapped (SWV) | [25] | Electrocatalytic oxidation of l-tyrosine in the presence of tyrosinase. | |
Organophosphate pesticides (AChE) | Au/MBT/PANI/AChE/PVAc (Voltammetry) | 0.018 nM (Chlorpyrifos) | [26] | Inhibition of AChE activity, as described for Ref [18] above |
Organophosphates (AChE) | AuE/MBT/PANI/AChE/PVAc (amperometry) | 0.147 ppb (Diazinon) | [27] | Inhibition of AChE activity, as described for Ref [18] above |
Phenolic compounds (Laccase) | GCE/BSA and glutaraldehyde (Amperometry) | ~μM range | [28] | Production of enzyme-catalysed oxidation products, measurable as electroactive compounds |
Phenolic compounds (Laccase) | GCE/Graphite paste (DPV) | n.r. | [29] | Production of enzyme-catalysed oxidation products, measurable as electroactive compounds |
Rifampicin (cytochrome P450-2E1) | AuE/PVP-AgNPs/poly(8-anilino-1-naphthalene sulphonic acid (DPV) | ~50 nM | [30] | Electro-reduction of the cytochrome-rifampicin complex, driving catalysis |
Urea (Urease) | ZrO2 NPs-PPI (Amperometry) | >0.01 mM | [31] | Detection of urease-catalysed production of NH3, detectable by anodic detection of NH3. |
Biopolymer analytes | ||||
(+)-3,3′,5-Triiodo-L-thyronine(Antiserum) | Carbon paste (amperometry) | 2.19 ng/mL | [32] | Not reported on |
Anti-Mycolic acid IgG (Mycolic acids) | IAsys affinity biosensor (Refractive indices) | Qualitative | [33] | Binding of host IgG to attached mycolic acids, measured as changes in refractive indices of films on sensor cuvettes |
Antitransglutaminase antibody (Transglutaminase antigen) | GCE/Overoxidised polypyrrole/Au NPs (EIS) | >1 μM | [34] | Formation of antigen-antibody complex, measured as increase in modelled charge-transfer resistance. |
β-d-glucuronidase activity (Moraxella sp. bacteria) | GCE | 2 CFU/100 mL | [35] | Anodic detection of more sensitive microbial metabolite from enzyme-catalysed product of p-nitrophenyl-β-d-glucuronide |
Creatine and Creatinine (creatinase, creatininase sarcosine oxidase) | Monocrystalline Diamond Paste (Amperometry) | 1 × 10−3 fM | [36] | Amperometric detection of enzyme-catalysed generation of H2O2 from creatine degradation; conversion of creatinine to creatine. |
Entantiomers of enalapril, ramipril and pentopril (l-amino acid ) oxidase | Carbon paste (Amperometry) | [37] | Not reported | |
Ethambutol (cytochrome P450-E21) | AuE/poly (8-anilino-1-napthalene sulphonic acid)/Ag NPs (Amperometry, voltammetry) | 0.7 μM | [38] | Electro-reduction of the cytochrome-ethambutol complex, driving further catalysis, measurable as the reduction of Fe3+ centre of the cytochrome |
Fluoxetine (Cytochrome P450) | GCE/PANI (Amperometry) | ~1 nM | [39] | Cathodic detection of complex-catalysed product of Fluoxetine. |
Glucose (Glucose oxidase) | PPI dendrimer/GCE (Amperometry) | 0.1 mM | [40] | Anodic detection of enzyme-generated H2O2 in presence of substrate |
Glucose (Glucose oxidase) | GCE/Co(II)phthalocyanine-cobalt(II) tetraphenylporphyrin pentamer complex (Amperometry) | 10 μM | [41] | Anodic detection of enzyme-generated H2O2 in presence of substrate |
Glucose (Glucose oxidase) | AuE/β-mercaptoethanol/ (Amperometry) | 0.4 μM | [42] | Anodic detection of enzyme-generated H2O2 in presence of substrate |
gp120 protein (biotinylated gp120 aptamer) | GCE/dendritic PPI/streptavidin (EIS) | 0.2 nM | [43] | Formation of aptamer-target complex, measured by increased modelled charge-transfer resistance |
Immunoglobulins (Lysozyme) | 3-mercaptopropionate succinimide/ZnO nanowires (Potentiometry) | 103 ng/mL | [44] | Formation of antigen-antibody complex causes bending of or applies tensile pressure to nanowires, measurable as change in piezoelectric potential. |
Measles antigen (HRP-linked IgG) | AuE/phenylethylamine/ glutaraldehyde/antigen/BSA (Voltammetry) | [45] | Binding of HRP-linked secondary antibody to primary antibody-antigen complex; Electrochemical detection of HRP-catalysed oxidation products of TMB. | |
Single-stranded DNA (complementary DNA) | GCE (Voltammetry, EIS) | <5 nM | [46] | Hybridisation of DNA molecules, measurable as a decrease in modelled charge-transfer resistance. |
Single-stranded DNA (complementary DNA) | ITO/Chitosan-AuNP-mercaptopropionate (Voltammetric detection of Fe(CN)63−/4−) | 0.03 fM | [47] | Hybridisation of DNA molecules, measurable as an increase in Fe(CN)63−/4− current reasponse. |
Single-stranded DNA (complementary DNA) | AuE/Co(II) salicylaldiimine metallodendrimer (EIS) | 0.34 pM | [48] | Hybridisation of DNA molecules, measurable as an increase in modelled charge-transfer resistance |
Single-stranded DNA (complementary DNA) | GCE/PPI/AuNPs (EIS) | ~pM levels | [49] | Hybridisation of DNA molecules, measurable as an increase in modelled charge-transfer resistance |
2. Transducer Types and Sensor Fabrication Materials
2.1. Nanomaterials in Reviewed Biosensors
2.2. Metallophthalocyanines—Widely-Researched Chemical Catalysts in Reviewed Publications
2.3. Polymeric Supports in Reviewed Publications
2.4. Biomolecular Supports for Biosensor Materials
3. Biorecognition Agents Reviewed in Publications
3.1. Immunosensors
3.2. Aptamer Based Sensors
4. Targets in Biosensor Development
4.1. Metals
4.2. Biopolymers and Organisms
4.3. Organic Compounds/Small-Molecule Metabolites
5. Policies, Facilities and National Opportunities
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- The World Bank. Available online: http://data.worldbank.org/indicator (accessed on 1 December 2015).
- Welch, C.M.; Comptom, R.G. Review: The use of nanoparticles in electroanalysis: A review. Anal. Bioanal. Chem. 2006, 384, 601–619. [Google Scholar] [CrossRef] [PubMed]
- Cozzens, S.; Cortes, R.; Soumonni, O.; Woodson, T. Nanotechnology and the millenium development goals: Water, energy and agri-food. J. Nanoparticle Res. 2013, 15, 2001. [Google Scholar] [CrossRef]
- Fuku, X.; Iftikar, F.; Hess, E.; Iwuoha, E.; Baker, P. Cytochrome c biosensor for determination of trace levels of cyanide and arsenic compounds. Anal. Chim. Acta 2012, 730, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Moyo, M.; Okonkwo, J.O. Horseradish peroxidase biosensor based on maize-tassel MWCNTs composite for cadmium detection. Sens. Actuators B 2014, 193, 515–521. [Google Scholar] [CrossRef]
- Nomngongo, P.N.; Ngila, J.C.; Nyamori, V.O.; Songa, E.A.; Iwuoha, E.I. Determination of Selected Heavy Metals Using Amperometric Horseradish Peroxidase (HRP) Inhibition Biosensor. Anal. Lett. 2011, 44, 2031–2046. [Google Scholar] [CrossRef]
- Silwana, B.; van der Horst, C.; Iwuoha, E.; Somerset, V. Amperometric determination of cadmium, lead, and mercury metal ions using a novel polymer immobilised horseradish peroxidase biosensor system. J. Environ. Sci. Health Part A Toxic Hazard. Subst. Environ. Eng. 2014, 49, 1501–1511. [Google Scholar] [CrossRef] [PubMed]
- Moyo, M.; Okonkwo, J.O.; Agyei, N.M. Optimization of Horseradish Peroxidase Immobilization on Glassy Carbon Electrode Based on Maize Tassel-Multiwalled Carbon Nanotubes for Sensitive Copper(II) Ion Detection. Int. J. Electrochem. Sci. 2014, 9, 1439–1453. [Google Scholar]
- Al-Ahmed, A.; Ndangili, P.M.; Jahed, N.; Baker, P.G.L.; Iwuoha, E.I. Polyester Sulphonic Acid Interstitial Nanocomposite Platform for Peroxide Biosensor. Sensors 2009, 9, 9965–9976. [Google Scholar] [CrossRef] [PubMed]
- Olaniroan, A.O.; Hiralal, L.; Pillay, B. Whole-cell bacterial biosensors for rapid and effective monitoring of heavy metals and inorganic pollutants in wastewater. J. Environ. Monit. 2011, 13, 2914–2920. [Google Scholar] [CrossRef] [PubMed]
- Moyo, M.; Okonkwo, J.O.; Agyei, N.M. A Novel Hydrogen Peroxide Biosensor Based on Adsorption of Horseradish Peroxidase onto a Nanobiomaterial Composite Modified Glassy Carbon Electrode. Electroanalysis 2013, 25, 1946–1954. [Google Scholar] [CrossRef]
- Ndangili, P.M.; Waryo, T.T.; Muchindu, M.; Baker, P.G.L.; Ngila, C.J.; Iwuoha, E.I. Ferrocenium hexafluorophosphate-induced nanofibrillarity of polyaniline-polyvinyl sulfonate electropolymer and application in an amperometric enzyme biosensor. Electrochim. Acta 2010, 55, 4267–4273. [Google Scholar] [CrossRef]
- Moyo, M.; Okonkwo, J.O.; Agyei, N.M. An amperometric biosensor based on horseradish peroxidase immobilized onto maize tassel-multi-walled carbon nanotubes modified glassy carbon electrode for determination of heavy metal ions in aqueous solution. Enzyme Microb. Technol. 2014, 56, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Hendricks, N.R.; Waryo, T.T.; Arotiba, O.; Jahed, N.; Baker, P.G.L.; Iwuoha, E.I. Microsomal cytochrome P450–3A4 (CYP3A4) nanobiosensor for the determination of 2,4-dichlorophenol—An endocrine disruptor compound. Electrochim. Acta 2009, 54, 1925–1931. [Google Scholar] [CrossRef]
- Owino, J.H.O.; Ignaszak, A.; Al-Ahmed, A.; Baker, P.G.L.; Alemu, H.; Ngila, J.C.; Iwuoha, E.I. Modelling of the impedimetric responses of an aflatoxin B1 immunosensor prepared on an electrosynthetic polyaniline platform. Anal. Bioanal. Chem. 2007, 388, 1069–1074. [Google Scholar] [CrossRef] [PubMed]
- Olowu, R.A.; Ndangili, P.M.; Baleg, A.A.; Ikpo, C.O.; Njomo, N.; Baker, P.; Iwuoha, E. Spectroelectrochemical Dynamics of Dendritic Poly (Propylene imine)-Polythiophene Star Copolymer Aptameric 17β-Estradiol Biosensor. Int. J. Electrochem. Sci. 2011, 6, 1686–1708. [Google Scholar]
- Nomngongo, P.N.; Ngila, J.C.; Msagati, T.A.M.; Gumbi, B.P.; Iwuoha, E.I. Determination of selected persistent organic pollutants in wastewater from landfill leachates, using an amperometric biosensor. Phys. Chem. Earth 2012, 50–52, 252–261. [Google Scholar] [CrossRef]
- Somerset, V.S.; Klink, M.J.; Sekota, M.M.C.; Baker, P.G.L.; Iwuoha, E.I. Polyaniline-Mercaptobenzothioazole Biosensor for Organophosphate and Carbamate Pesticides. Anal. Lett. 2006, 39, 1683–1698. [Google Scholar] [CrossRef]
- Bisetty, K.; Sabela, M.I.; Khulu, S.; Xhakaza, M.; Ramsarup, L. Multivariate Optimization of Voltammetric Parameters for the Determination of Total Polyphenolic Content in Wine Samples Using an Immobilized Biosensor. Int. J. Electrochem. Sci. 2011, 6, 3631–3643. [Google Scholar]
- Olaniran, A.O.; Motebejane, R.M.; Pillay, B. Bacterial biosensors for rapid and effective monitoring of biodegradation of organic pollutants in wastewater effluents. J. Environ. Monit. 2008, 10, 889–893. [Google Scholar] [CrossRef] [PubMed]
- Michira, I.; Akinyeye, R.; Baker, P.; Iwuoha, E. Synthesis and Characterization of Sulfonated Polyanilines and Application in Construction of a Diazinon Biosensor. Int. J. Polym. Mater. Polym. Biomater. 2011, 60, 469–489. [Google Scholar] [CrossRef]
- Songa, E.A.; Arotiba, O.A.; Owino, J.H.O.; Jahed, N.; Baker, P.G.L.; Iwuoha, E.I. Electrochemical detection of glyphosate herbicide using horseradish peroxidase immobilized on sulfonated polymer matrix. Bioelectrochemistry 2009, 75, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Songa, E.A.; Waryo, T.; Jahed, N.; Baker, P.G.L.; Kgarebe, B.V.; Iwuoha, E.I. Short Communication: Electrochemical Nanobiosensor for Glyphosate Herbicide and Its Metabolite. Electroanalysis 2008, 21, 671–674. [Google Scholar] [CrossRef]
- Ignaszak, A.; Hendricks, N.; Waryo, T.; Songa, E.; Jahed, N.; Ngece, R.; Al-Ahmed, A.; Kgarebe, B.; Baker, P.; Iwuoha, E.I. Short communication: Novel therapeutic biosensor for indinavir—A protease inhibitor antiretroviral drug. J. Pharm. Biomed. Anal. 2009, 49, 498–501. [Google Scholar] [CrossRef] [PubMed]
- Mangombo, Z.A.; Baker, P.; Iwuoha, E.; Key, D. Tyrosinase biosensor based on a boron-doped diamond electrode modified with a polyaniline-poly(vinyl sulfonate) composite film. Microchim. Acta 2010, 170, 267–273. [Google Scholar] [CrossRef]
- Somerset, V.; Baker, P.; Iwuoha, E. Mercaptobenzothiazole-on-gold organic phase biosensor systems: 1. Enhanced organophosphate pesticide determination. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2009, 44, 164–178. [Google Scholar] [CrossRef] [PubMed]
- Somerset, V.S.; Klink, M.J.; Baker, P.G.L.; Iwuoha, E.I. Acetylcholinesterase-polyaniline biosensor investigation of organophosphate pesticides in selected organic solvents. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2007, 42, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Fogel, R.; Limson, J.L. Electrochemically Predicting Phenolic Substrates’ Suitability for Detection by Amperometric Laccase Biosensors. Electroanalysis 2013, 25, 1237–1246. [Google Scholar] [CrossRef]
- Sabela, M.Y.; Gumede, N.J.; Singh, P.; Bisetty, K. Evaluation of Antioxidants in Herbal Tea with a Laccase Biosensor. Int. J. Electrochem. Sci. 2012, 7, 4918–4928. [Google Scholar]
- Ajayi, R.F.; Sidwaba, U.; Feleni, U.; Douman, S.F.; Tovide, O.; Botha, S.; Baker, P.; Fuku, X.G.; Hamid, S.; Waryo, T.T.; et al. Chemically amplified cytochrome P450–2E1 drug metabolism nanobiosensor for rifampicin anti-tuberculosis drug. Electrochim. Acta 2014, 128, 149–155. [Google Scholar] [CrossRef]
- Shukla, S.K.; Mishra, A.K.; Mamba, B.B.; Arotiba, O.A. Zirconia-poly(propylene imine) dendrimer nanocomposite based electrochemical urea biosensor. Enzyme Microb. Technol. 2014, 66, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Stefan, R-I.; van Staden, J.F.; Aboul-Enein, H.Y. Determination of (+)-3,3′,5-Triiodo-l-thyronine (L-T3) from Serum Using a Sequential Injection Analysis/Immunosensor System. J. Immunoass. Immunochem. 2004, 25, 183–189. [Google Scholar]
- Thanyani, S.T.; Roberts, V.; Siko, D.G.R.; Vrey, P.; Verschoor, J.A. A novel application of affinity biosensor technology to detect antibodies to mycolic acid in tuberculosis patients. J. Immunol. Methods 2008, 332, 61–72. [Google Scholar] [CrossRef]
- West, N.; Baker, P.; Waryo, T.; Ngece, F.R.; Iwuoha, E.I.; O’Sullivan, C.; Katakis, I. Highly sensitive gold-overoxidized polypyrrole nanocomposite immunosensor for antitransglutaminase antibody. J. Bioact. Compat. Polym. 2013, 28, 167–177. [Google Scholar] [CrossRef]
- Togo, C.A.; Wutor, V.C.; Limson, J.L.; Pletschke, B.I. Novel detection of Escherichia coli β-d-glucuronidase activity using a microbially-modified glassy carbon electrode and its potential for faecal pollution monitoring. Biotechnol. Lett. 2007, 29, 531–537. [Google Scholar] [CrossRef]
- Stefan-van Staden, R.-I.; Bokretsion, R.G. Simultaneous Determination of Creatine and Creatinine Using Monocrystalline Diamond Paste-Based Amperometric Biosensors. Anal. Lett. 2006, 39, 2227–2233. [Google Scholar] [CrossRef]
- Stefan, R-I.; van Staden, J.F.; Bala, C.; Aboul-Enein, H.Y. Short communication: On-line assay of the S-enantiomers of enalapril, ramipril and pentopril using a sequential injection analysis/amperometric biosensor system. J. Pharm. Biomed. Anal. 2004, 36, 889–892. [Google Scholar]
- Ngece, R.F.; West, N.; Ndangili, P.M.; Olowu, R.A.; Williams, A.; Hendricks, N.; Mailu, S.; Baker, P.; Iwuoha, E. A Silver Nanoparticle/Poly (8-Anilino-1-Naphthalene Sulphonic Acid) Bioelectrochemical Biosensor System for the Analytical Determination of Ethambutol. Int. J. Electrochem. Sci. 2011, 6, 1820–1834. [Google Scholar]
- Iwuoha, E.I.; Wilson, A.; Howel, M.; Mathebe, N.G.R.; Montane-Jaime, K.; Narinesingh, D.; Guiseppi-Elia, A. Cytochrome P4502D6 (CYP2D6) Bioelectrode for Fluoxetine. Anal. Lett. 2005, 37, 929–941. [Google Scholar] [CrossRef]
- Shukla, S.K.; Mishra, A.K.; Mamba, B.B.; Arotiba, O.A. Amperometric and Photometric Responses of in Situ Coupled Glucose Oxidase-Poly (Propylene Imine) Dendrimer Based Glucose Biosensor. Int. J. Electrochem. Sci. 2013, 8, 11711–11722. [Google Scholar]
- Ozoemena, K.I.; Nyokong, T. Novel Amperometric glucose biosensor based on an ether-linked cobalt(II)phthalocyanine-cobalt(II)tetraphenylporphyrin pentamer as a redox mediator. Electrochim. Acta 2006, 51, 5131–5136. [Google Scholar] [CrossRef]
- Mashazi, P.N.; Ozoemena, K.I.; Nyokong, T. Tetracarboxylic acid cobalt phthalocyanine SAM on gold: Potential applications as amperometric sensor for H2O2 and fabrication of glucose biosensor. Electrochim. Acta 2006, 52, 177–186. [Google Scholar] [CrossRef]
- John, S.V.; Rotherham, L.S.; Khati, M.; Mamba, B.B.; Arotiba, O.A. Towards HIV detection: Novel poly(propylene imine) dendrimer-streptavidin platform for electrochemical DNA and gp120 aptamer biosensors. Int. J. Electrochem. Sci. 2014, 9, 5425–5437. [Google Scholar]
- Neveling, D.P.; van Den Heever, T.S.; Perold, W.J.; Dicks, L.M.T. A nanoforce ZnO nanowire-array biosensor for the detection and quantification of immunoglobulins. Sens. Actuators B Chem. 2014, 203, 102–110. [Google Scholar] [CrossRef]
- Mashazi, P.; Vilakazi, S.; Nyokong, T. Design and evaluation of an electrochemical immunosensor for measles serodiagnosis using measles-specific Immunoglobulin G antibodies. Talanta 2013, 115, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Arotiba, O.A.; Ignaszak, A.; Malgas, R.; Al-Ahmed, A.; Baker, P.G.L.; Mapolie, S.F.; Iwuoha, E.I. An electrochemical DNA biosensor developed on novel multinuclear nickel(II) salicyladimine metallodendrimer platform. Electrochim. Acta 2007, 53, 1689–1696. [Google Scholar] [CrossRef]
- Cao, S.; Mishra, R.; Pilla, S.; Tripathi, S.; Pandey, M.K.; Shah, G.; Mishra, A.K.; Prabaharan, M.; Mishra, S.B.; Xin, J.; et al. Novel chitosan/gold-MPA nanocomposite for sequence-specific oligonucleotide detection. Carbohydr. Polym. 2010, 82, 189–194. [Google Scholar] [CrossRef]
- Martinovic, J.; van Wyk, J.; Mapolie, S.; Jahed, N.; Baker, P.; Iwuoha, E. Electrochemical and spectroscopic properties of dendritic cobalto-salicylaldiimine DNA biosensor. Electrochim. Acta 2010, 55, 4296–4302. [Google Scholar] [CrossRef]
- Arotiba, O.; Owino, J.; Songa, E.; Hendricks, N.; Waryo, T.; Jahed, N.; Baker, P.; Iwuoha, E. An Electrochemical DNA Biosensor Developed on a Nanocomposite Platform of Gold and Poly(propyleneimine) Dendrimer. Sensors 2008, 8, 6791–6809. [Google Scholar] [CrossRef]
- Chen, D.; Tang, L.; Li, J. Critical Review: Graphene-based materials in electrochemistry. Chem. Soc. Rev. 2010, 39, 3157–3180. [Google Scholar] [CrossRef] [PubMed]
- Zagal, J.H.; Griveau, S.; Silva, J.F.; Nyokong, T.; Bedioui, F. Review: Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coord. Chem. Rev. 2010, 254, 2755–2791. [Google Scholar] [CrossRef]
- Zagal, J.H.; Griveau, S.; Ozoemena, K.I.; Nyokong, T.; Bedioui, F. Review: Carbon nanotubes, phthalocyanines and porphyrins: Attractive hybrid materials for electrocatalysis and electroanalysis (Review). J. Nanosci. Nanotechnol. 2009, 9, 2201–2214. [Google Scholar] [CrossRef] [PubMed]
- Fogel, R.; Mashazi, P.; Nyokong, T.; Limson, L. Critical assessment of the Quartz Crystal Microbalance with Dissipation as an analytical tool for biosensor development and fundamental studies: metallophthalocyanine—Glucose oxidase biocomposite sensors. Biosens. Bioelectron. 2007, 23, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Bhadra, S.; Khastgir, D.; Singha, N.K.; Lee, J.H. Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 2009, 34, 783–810. [Google Scholar] [CrossRef]
- Ates, M. A review study of (bio)sensor systems based on conducting polymers. Mater. Sci. Eng. C 2013, 33, 1853–1859. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.K.; Mishra, A.K.; Arotiba, O.A.; Mamba, B.B. Review: Chitosan-based nanomaterials: A state-of-the-art review. Int. J. Biol. Macromol. 2013, 59, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Dheda, K.; Ruhwald, M.; Theron, G.; Peter, J.; Yam, W.C. Point-of-case diagnosis of tuberculosis: Past, present and future. Respirology 2013, 18, 217–232. [Google Scholar] [CrossRef] [PubMed]
- Khati, M. Review: The future of aptamers in medicine. J. Clin. Pathol. 2010, 63, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Rotherham, L.S.; Maserumule, C.; Dheda, K.; Theron, J.; Khati, M. Selection and Application of ssDNA Aptamers to Detect Active TB from Sputum Samples. PLoS ONE 2012, 7, e46862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dey, A.K.; Khati, M.; Tang, M.; Wyatt, R.; Lea, S.M.; James, W. An Aptamer that Neutralizes R5 Strains of Human Immunodeficiency Virus Type 1 Blocks gp120-CCR5 Interaction. J. Virol. 2005, 79, 13806–13810. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, S.; Fogel, R.; Limson, J. Fluorescent and Peroxidase Labeled Aptamer Assay Comparison of MUC1 Expressing MCF7 and SW620 Cancer Cells. In Proceedings of the 2014 IEEE Biomedical Circuits and Systems Conference, Lausanne, Swizerland, 22–24 October 2014; pp. 292–295.
- Zvinowanda, C.M.; Okonkwo, J.O.; Mpangela, V.; Phaleng, J.; Shabalala, P.N.; Dennis, T.; Forbes, P.; Agyei, N.M.; Ozoemena, K.I. Biosorption of toxic metals: The potential use of maize tassel for the removal of Pb (II) from aqueous solutions. Fresenius Environ. Bull. 2008, 17, 814–818. [Google Scholar]
- Mwangi, I.W.; Ngila, J.C.; Okonkwo, J.O. A comparative study of modified and unmodified maize tassels for removal of selected trace metals in contaminated water. Toxicol. Environ. Chem. 2012, 94, 20–39. [Google Scholar] [CrossRef]
- Fogel, R.; Limson, J. Probing fundamental film parameters of immobilized enzymes—Towards enhanced biosensor performance. Part I—QCM-D mass and rheological measurements. Enzyme Microb. Technol. 2011, 49, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Fogel, R.; Limson, J. Probing fundamental film parameters of immobilized enzymes—Towards enhanced biosensor performance. Part II—Electroanalytical estimation of immobilized enzyme performance. Enzyme Microb. Technol. 2011, 49, 153–159. [Google Scholar] [PubMed]
- Nyokong, T.; Limson, J. An Education in Progress. Nat. Nanotechnol. 2013, 8, 789–791. [Google Scholar] [CrossRef]
- McNerney, R.; Maeurer, M.; Abubakar, I.; Marais, B.; McHugh, T.D.; Ford, N.; Weyer, K.L.; Lawn, S.; Grobusch, M.P.; Memish, Z.; et al. Review: Tuberculosis diagnostics and biomarkers: Needs, challenges, recent advances, and opportunities. J. Infectious Dis. 2012, 205, S147–S158. [Google Scholar] [CrossRef] [PubMed]
- Ndimba, B.K.; Thomas, L.A. Proteomics in South Africa: Current status, challenges and prospects. Biotechnol. J. 2008, 3, 1368–1374. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fogel, R.; Limson, J. Developing Biosensors in Developing Countries: South Africa as a Case Study. Biosensors 2016, 6, 5. https://doi.org/10.3390/bios6010005
Fogel R, Limson J. Developing Biosensors in Developing Countries: South Africa as a Case Study. Biosensors. 2016; 6(1):5. https://doi.org/10.3390/bios6010005
Chicago/Turabian StyleFogel, Ronen, and Janice Limson. 2016. "Developing Biosensors in Developing Countries: South Africa as a Case Study" Biosensors 6, no. 1: 5. https://doi.org/10.3390/bios6010005
APA StyleFogel, R., & Limson, J. (2016). Developing Biosensors in Developing Countries: South Africa as a Case Study. Biosensors, 6(1), 5. https://doi.org/10.3390/bios6010005