Epigenome: A Biomarker or Screening Tool to Evaluate Health Impact of Cumulative Exposure to Chemical and Non-Chemical Stressors
Abstract
:1. Background
2. Public Health Significance
3. Conclusions
Author Contributions
Conflicts of Interest
Abbreviations
AHRR | AhR repressor |
CYP1A1 | cytochrome P450 1A1 |
DNA | deoxyribonucleic acid |
GWAS | genome wide association studies |
IGF2 | insulin-like growth factor 2 |
NIEHS | National Institute of Environmental Health Sciences |
NRC | National Research Council |
RNA | ribonucleic acid |
References
- Robert Wood Johnson Foundation Commission to Build a Healthier America. A Collection of Key Content and Lessons Learned from a National Initiative to Improve Health Equity: Neighborhoods That Are in Close Proximity May Have Shocking Life Expectancy Disparities; Robert Wood Johnson Foundation Commission to Build a Healthier America: Princeton, NJ, USA, 2013. [Google Scholar]
- New York City Department of Health and Mental Hygiene. New York City Community Health Profiles; New York City Department of Health and Mental Hygiene: New York, NY, USA, 2006.
- Murray, C.J.; Abraham, J.; Ali, M.K.; Alvarado, M.; Atkinson, C.; Baddour, L.M.; Bartels, D.H.; Benjamin, E.J.; Bhalla, K.; Birbeck, G.; et al. The State of US Health, 1990–2010: Burden of Diseases, Injuries, and Risk Factors. JAMA 2013, 310, 591–608. [Google Scholar] [PubMed]
- Whitfield, J.B. Genetic insights into cardiometabolic risk factors. Clin. Biochem. Rev. 2014, 35, 15–36. [Google Scholar] [PubMed]
- Visscher, P.M.; Brown, M.A.; McCarthy, M.I.; Yang, J. Five years of GWAS discovery. Am. J. Hum. Genet. 2012, 90, 7–24. [Google Scholar] [CrossRef] [PubMed]
- Athersuch, T.J. The role of metabolomics in characterizing the human exposome. Bioanalysis 2012, 4, 2207–2212. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (NRC). Emerging Science for Environmental Health Decisions Newsletter: Metabolomics as a Tool for Characterizing the Exposome; NRC: Washington, DC, USA, 2015. [Google Scholar]
- Lampe, J.W.; Stepaniants, S.B.; Mao, M.; Radich, J.P.; Dai, H.; Linsley, P.S.; Friend, S.H.; Potter, J.D. Signatures of environmental exposures using peripheral leukocyte gene expression: Tobacco smoke. Cancer Epidemiol. Biomarkers Prev. 2004, 13, 445–453. [Google Scholar] [PubMed]
- Nylund, R.; Leszczynski, D. Proteomics analysis of human endothelial cell line EA.hy926 after exposure to GSM 900 radiation. Proteomics 2004, 4, 1359–1365. [Google Scholar] [PubMed]
- Eden, A.; Gaudet, F.; Waghmare, A.; Jaenisch, R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science 2003, 300. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.M.; Johnson, A.; Tarapore, P.; Janakiram, V.; Zhang, X.; Leung, Y.K. Environmental epigenetics and its implication on disease risk and health outcomes. ILAR J. 2012, 53, 289–305. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Zhang, X.; Wang, D.; Baccarelli, A. Environmental chemical exposures and human epigenetics. Int. J. Epidemiol. 2012, 41, 79–105. [Google Scholar] [CrossRef] [PubMed]
- Ramsahoye, B.H.; Biniszkiewicz, D.; Lyko, F.; Clark, V.; Bird, A.P.; Jaenisch, R. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc. Natl. Acad. Sci. USA 2000, 97, 5237–5242. [Google Scholar] [CrossRef] [PubMed]
- Lister, R.; Pelizzola, M.; Dowen, R.H.; Hawkins, R.D.; Hon, G.; Tonti-Filippini, J.; Nery, J.R.; Lee, L.; Ye, Z.; Ngo, Q.M.; et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009, 462, 315–322. [Google Scholar] [PubMed]
- Clark, S.J.; Harrison, J.; Frommer, M. CpNpG methylation in mammalian cells. Nat. Genet. 1995, 10, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Olden, K.; Freudenberg, N.; Dowd, J.; Shields, A.E. Discovering how environmental exposures alter genes could lead to new treatments for chronic illnesses. Health Aff. 2011, 30, 833–841. [Google Scholar] [CrossRef] [PubMed]
- Olden, K.; Lin, Y.S.; Gruber, D.; Sonawane, B. Epigenome: Biosensor of Cumulative Exposure to Chemical and Nonchemical Stressors Related to Environmental Justice. Am. J. Public Health 2014, 104, 1816–1821. [Google Scholar] [CrossRef] [PubMed]
- Olden, K.; Olden, H.A.; Lin, Y.S. The Role of the Epigenome in Translating Neighborhood Disadvantage into Health Disparities. Curr. Environ. Health Rep. 2015, 2, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Olden, K.; Isaac, L.; Roberts, L. Neighborhood-specific epigenome analysis: The pathway forward to understanding gene-environment interactions. N. C. Med. J. 2011, 72, 125–127. [Google Scholar] [PubMed]
- Zhang, F.F.; Cardarelli, R.; Carroll, J.; Zhang, S.; Fulda, K.G.; Gonzalez, K.; Vishwanatha, J.K.; Morabia, A.; Santella, R.M. Physical activity and global genomic DNA methylation in a cancer-free population. Epigenetics 2011, 6, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.F.; Cardarelli, R.; Carroll, J.; Fulda, K.G.; Kaur, M.; Gonzalez, K.; Vishwanatha, J.K.; Santella, R.M.; Morabia, A. Significant differences in global genomic DNA methylation by gender and race/ethnicity in peripheral blood. Epigenetics 2011, 6, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Subramanyam, M.A.; Diez-Roux, A.V.; Pilsner, J.R.; Villamor, E.; Donohue, K.M.; Liu, Y.; Jenny, N.S. Social factors and leukocyte DNA methylation of repetitive sequences: The multi-ethnic study of atherosclerosis. PLoS ONE 2013, 8, e54018. [Google Scholar] [CrossRef] [PubMed]
- Joubert, B.R.; Haberg, S.E.; Nilsen, R.M.; Wang, X.; Vollset, S.E.; Murphy, S.K.; Huang, Z.; Hoyo, C.; Midttun, O.; Cupul-Uicab, L.A.; et al. 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ. Health Perspect. 2012, 120, 1425–1431. [Google Scholar] [PubMed]
- Lee, K.W.; Richmond, R.; Hu, P.; French, L.; Shin, J.; Bourdon, C.; Reischl, E.; Waldenberger, M.; Zeilinger, S.; Gaunt, T.; et al. Prenatal exposure to maternal cigarette smoking and DNA methylation: Epigenome-wide association in a discovery sample of adolescents and replication in an independent cohort at birth through 17 years of age. Environ. Health Perspect. 2015, 123, 193–199. [Google Scholar]
- Baccarelli, A.; Ghosh, S. Environmental exposures, epigenetics and cardiovascular disease. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Kelly, T.K.; Jones, P.A. Epigenetics in cancer. Carcinogenesis 2010, 31, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Tollefsbol, T.O. Epigenetics in Human Disease, 1st ed.; Elsevier/AP: Amsterdam, The Netherlands; Boston, MA, USA, 2012. [Google Scholar]
- Fraga, M.F.; Ballestar, E.; Paz, M.F.; Ropero, S.; Setien, F.; Ballestar, M.L.; Heine-Suner, D.; Cigudosa, J.C.; Urioste, M.; Benitez, J.; et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci. USA 2005, 102, 10604–10609. [Google Scholar] [CrossRef] [PubMed]
- Kuzawa, C.W.; Sweet, E. Epigenetics and the embodiment of race: Developmental origins of US racial disparities in cardiovascular health. Am. J. Hum. Biol. 2009, 21, 2–15. [Google Scholar] [CrossRef] [PubMed]
- Vineis, P.; Stringhini, S.; Porta, M. The environmental roots of non-communicable diseases (NCDs) and the epigenetic impacts of globalization. Environ. Res. 2014, 133, 424–430. [Google Scholar] [CrossRef] [PubMed]
- D’Addario, C.; Johansson, S.; Candeletti, S.; Romualdi, P.; Ogren, S.O.; Terenius, L.; Ekstrom, T.J. Ethanol and acetaldehyde exposure induces specific epigenetic modifications in the prodynorphin gene promoter in a human neuroblastoma cell line. FASEB J. 2011, 25, 1069–1075. [Google Scholar] [CrossRef] [PubMed]
- Marsit, C.J. Influence of environmental exposure on human epigenetic regulation. J. Exp. Biol. 2015, 218, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Baccarelli, A.; Wright, R.O.; Bollati, V.; Tarantini, L.; Litonjua, A.A.; Suh, H.H.; Zanobetti, A.; Sparrow, D.; Vokonas, P.S.; Schwartz, J. Rapid DNA methylation changes after exposure to traffic particles. Am. J. Respir. Crit. Care Med. 2009, 179, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Sen, A.; Heredia, N.; Senut, M.-C.; Land, S.; Hollocher, K.; Lu, X.; Dereski, M.O.; Ruden, D.M. Multigenerational epigenetic inheritance in humans: DNA methylation changes associated with maternal exposure to lead can be transmitted to the grandchildren. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Lund, G.; Andersson, L.; Lauria, M.; Lindholm, M.; Fraga, M.F.; Villar-Garea, A.; Ballestar, E.; Esteller, M.; Zaina, S. DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E. J. Biol. Chem. 2004, 279, 29147–29154. [Google Scholar] [CrossRef] [PubMed]
- Rakyan, V.K.; Beyan, H.; Down, T.A.; Hawa, M.I.; Maslau, S.; Aden, D.; Daunay, A.; Busato, F.; Mein, C.A.; Manfras, B.; et al. Identification of type 1 diabetes-associated DNA methylation variable positions that precede disease diagnosis. PLoS Genet. 2011, 7, e1002300. [Google Scholar]
- Rutten, B.P.; Mill, J. Epigenetic mediation of environmental influences in major psychotic disorders. Schizophr. Bull. 2009, 35, 1045–1056. [Google Scholar] [CrossRef] [PubMed]
- Rajesh, P.; Balasubramanian, K. Phthalate exposure in utero causes epigenetic changes and impairs insulin signalling. J. Endocrinol. 2014, 223, 47–66. [Google Scholar] [CrossRef] [PubMed]
- Talens, R.P.; Boomsma, D.I.; Tobi, E.W.; Kremer, D.; Jukema, J.W.; Willemsen, G.; Putter, H.; Slagboom, P.E.; Heijmans, B.T. Variation, patterns, and temporal stability of DNA methylation: Considerations for epigenetic epidemiology. FASEB J. 2010, 24, 3135–3144. [Google Scholar] [CrossRef] [PubMed]
- Kaminsky, Z.; Tochigi, M.; Jia, P.; Pal, M.; Mill, J.; Kwan, A.; Ioshikhes, I.; Vincent, J.B.; Kennedy, J.L.; Strauss, J.; et al. A multi-tissue analysis identifies HLA complex group 9 gene methylation differences in bipolar disorder. Mol. Psychiatry 2012, 17, 728–740. [Google Scholar] [PubMed]
- Davies, M.N.; Volta, M.; Pidsley, R.; Lunnon, K.; Dixit, A.; Lovestone, S.; Coarfa, C.; Harris, R.A.; Milosavljevic, A.; Troakes, C.; et al. Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol. 2012, 13. [Google Scholar] [CrossRef]
- Ally, M.S.; Al-Ghnaniem, R.; Pufulete, M. The relationship between gene-specific DNA methylation in leukocytes and normal colorectal mucosa in subjects with and without colorectal tumors. Cancer Epidemiol. Biomarkers Prev. 2009, 18, 922–928. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Cruz-Correa, M.; Giardiello, F.M.; Hutcheon, D.F.; Kafonek, D.R.; Brandenburg, S.; Wu, Y.; He, X.; Powe, N.R.; Feinberg, A.P. Loss of IGF2 imprinting: A potential marker of colorectal cancer risk. Science 2003, 299, 1753–1755. [Google Scholar] [CrossRef] [PubMed]
- Perera, F.; Herbstman, J. Prenatal environmental exposures, epigenetics, and disease. Reprod. Toxicol. 2011, 31, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Nelson, H.H.; Wiencke, J.K.; Zheng, S.; Christiani, D.C.; Wain, J.C.; Mark, E.J.; Kelsey, K.T. p16(INK4a) and histology-specific methylation of CpG islands by exposure to tobacco smoke in non-small cell lung cancer. Cancer Res. 2001, 61, 3419–3424. [Google Scholar] [PubMed]
- Jones, P. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 2012, 13, 484–492. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (NRC). Science and Decisions: Advancing Risk Assessment; The National Academies Press: Washington, DC, USA, 2009. [Google Scholar]
- National Library of Medicine (US). Genetics Home Reference: Insulin Like Growth Factor 2, IGF2; National Library of Medicine: Bethesda, MD, USA, 2015. Available online: https://ghr.nlm.nih.gov/gene/IGF2 (accessed on 24 March 2016).
- Faulk, C.; Dolinoy, D.C. Timing is everything: The when and how of environmentally induced changes in the epigenome of animals. Epigenetics 2011, 6, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Koestler, D.C.; Avissar-Whiting, M.; Houseman, E.A.; Karagas, M.R.; Marsit, C.J. Differential DNA methylation in umbilical cord blood of infants exposed to low levels of arsenic in utero. Environ. Health Perspect. 2013, 121, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.M.; Bird, A. DNA methylation landscapes: Provocative insights from epigenomics. Nat. Rev. Genet. 2008, 9, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.W.; Barrett, L.M.; Wong, A.; Kuh, D.; Smith, G.D.; Relton, C.L. The role of longitudinal cohort studies in epigenetic epidemiology: Challenges and opportunities. Genome Biol. 2012, 13. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olden, K.; Lin, Y.-S.; Bussard, D. Epigenome: A Biomarker or Screening Tool to Evaluate Health Impact of Cumulative Exposure to Chemical and Non-Chemical Stressors. Biosensors 2016, 6, 12. https://doi.org/10.3390/bios6020012
Olden K, Lin Y-S, Bussard D. Epigenome: A Biomarker or Screening Tool to Evaluate Health Impact of Cumulative Exposure to Chemical and Non-Chemical Stressors. Biosensors. 2016; 6(2):12. https://doi.org/10.3390/bios6020012
Chicago/Turabian StyleOlden, Kenneth, Yu-Sheng Lin, and David Bussard. 2016. "Epigenome: A Biomarker or Screening Tool to Evaluate Health Impact of Cumulative Exposure to Chemical and Non-Chemical Stressors" Biosensors 6, no. 2: 12. https://doi.org/10.3390/bios6020012
APA StyleOlden, K., Lin, Y. -S., & Bussard, D. (2016). Epigenome: A Biomarker or Screening Tool to Evaluate Health Impact of Cumulative Exposure to Chemical and Non-Chemical Stressors. Biosensors, 6(2), 12. https://doi.org/10.3390/bios6020012