Prolonged Corrosion Stability of a Microchip Sensor Implant during In Vivo Exposure
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jang, B.; Hassibi, A. Biosensor systems in standard CMOS processes: Fact or fiction? IEEE Trans. Ind. Electron. 2009, 56, 979–985. [Google Scholar] [CrossRef]
- Poghossian, A.; Schöning, M.J. Label-free sensing of biomolecules with field-effect devices for clinical applications. Electroanalysis 2014, 26, 1197–1213. [Google Scholar]
- Cavallini, A.; Jost, T.R.; Ghoreishizadeh, S.S.; Olivo, J.; de Beeck, M.O.; Gorissen, B.; Grassi, F.; De Micheli, G.; Carrara, S. A subcutaneous biochip for remote monitoring of human metabolism: Packaging and biocompatibility assessment. IEEE Sens. J. 2015, 15, 417–424. [Google Scholar]
- Birkholz, M.; Mai, A.; Wenger, C.; Meliani, C.; Scholz, R. Technology modules from micro- and nanoelectronics for the life sciences. WIREs Nanomed. Nanobiotechnol. 2016, 8, 355–377. [Google Scholar] [CrossRef] [PubMed]
- Koschwanez, H.E.; Reichert, W.M. In vitro, in vivo and post explantation testing of glucose-detecting biosensors: Current methods and recommendations. Biomaterials 2007, 28, 3687–3703. [Google Scholar] [CrossRef] [PubMed]
- Kubon, M.; Moschallski, M.; Link, G.; Ensslen, T.; Werner, S.; Burkhardt, C.; Nisch, W.; Scholz, B.; Schlosshauer, B.; Urban, G.; et al. A microsensor system to probe physiological environments and tissue response. In Proceedings of the 2010 IEEE Sensors, Kona, HI, USA, 1–4 November 2010; pp. 2607–2611. [Google Scholar]
- Birmingham, K.; Gradinaru, V.; Anikeeva, P.; Grill, W.M.; Pikov, V.; McLaughlin, B.; Pasricha, P.; Weber, D.; Ludwig, K.; Famm, K. Bioelectronic medicines: A research roadmap. Nat. Rev. Drug Discov. 2014, 13, 399–400. [Google Scholar] [CrossRef] [PubMed]
- Khodagholy, D.; Gelinas, J.N.; Thesen, T.; Doyle, W.; Devinsky, O.; Malliaras, G.G.; Buzsáki, G. Neurogrid: Recording action potentials from the surface of the brain. Nat. Neurosci. 2015, 18, 310. [Google Scholar] [CrossRef] [PubMed]
- Carrara, S.; Iniewski, K. Handbook of Bioelectronics: Directly Interfacing Electronics and Biological Systems; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Bogner, E.; Dominizi, K.; Hagl, P.; Bertagnolli, E.; Wirth, M.; Gabor, F.; Brezna, W.; Wanzenboeck, H.D. Bridging the gap-biocompatibility of microelectronic materials. Acta Biomater. 2006, 2, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Ben-Amor, S.; Vanhove, E.; Sékli Belaïdi, F.; Charlot, S.; Colin, D.; Rigoulet, M.; Devin, A.; Sojic, N.; Launay, J.; Temple-Boyer, P.; et al. Enhanced detection of hydrogen peroxide with platinized microelectrode arrays for analyses of mitochondria activities. Electrochimica Acta 2014, 126, 171–178. [Google Scholar] [CrossRef]
- Schindler, M.; Kim, S.K.; Hwang, C.S.; Schindler, C.; Offenhäusser, A.; Ingebrandt, S. Novel post-process for the passivation of a CMOS biosensor. Phys. Status Solidi Rapid Res. Lett. 2008, 2, 4–6. [Google Scholar] [CrossRef]
- Birkholz, M.; Ehwald, K.-E.; Wolansky, D.; Costina, I.; Baristiran-Kaynak, C.; Fröhlich, M.; Beyer, H.; Kapp, A.; Lisdat, F. Corrosion-resistant metal layers from a CMOS process for bioelectronic applications. Surface Coat. Technol. 2010, 204, 2055–2059. [Google Scholar] [CrossRef]
- Graham, A.H.D.; Bowen, C.R.; Royant, A.; Lalev, G.; Marken, F.; Taylor, J. Nanostructured electrodes for biocompatible CMOS integrated circuits. Sens. Actuators B 2010, 147, 697–706. [Google Scholar] [CrossRef]
- Morales, J.M.H.; Gaude, C.; Ratel, D.; Souriau, J.-C.; Simon, G.; Berger, F. Quantifying the biodegradation of packaging thin films intended for medical micro devices. In Proceedings of the World Congress on Electrical Engineering and Computer Systems and Science (EECSS 2015), Barcelona, Spain, 13–14 July 2015; pp. 322-1–322-7. [Google Scholar]
- Hämmerle, H.; Kobuch, K.; Kohler, K.; Nisch, W.; Sachs, H.; Stelzle, M. Biostability of micro-photodiode arrays for subretinal implantation. Biomaterials 2002, 23, 797–804. [Google Scholar] [CrossRef]
- Kotzar, G.; Freas, M.; Abel, P.; Fleischman, A.; Roy, S.; Zorman, C.; Moran, J.M.; Melzak, J. Evaluation of MEMS materials of construction for implantable medical devices. Biomaterials 2002, 23, 2737–2750. [Google Scholar] [CrossRef]
- Fröhlich, M.; Birkholz, M.; Ehwald, K.-E.; Kulse, P.; Fursenko, O.; Katzer, J. Biostability of an implantable glucose sensor chip. IOP Conf. Ser. Mater. Sci. Eng. 2012, 41, 012022. [Google Scholar] [CrossRef]
- Schultz, J.S.; Mansouri, S.; Goldstein, I.J. Affinity sensor: A new technique for developing implantable sensors for glucose and other metabolites. Diabetes Care 1982, 5, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Ballerstadt, R.; Evans, C.; Gowda, A.; McNichols, R. Fiber-coupled fluorescence affinity sensor for 3-day in vivo glucose sensing. J. Diabetes Sci. Technol. 2007, 1, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Ballerstadt, R.; Kholodnykh, A.; Evans, C.; Boretsky, A.; Motamedi, M.; Gowda, A.; McNichols, R. Affinity-based turbidity sensor for glucose monitoring by optical coherence tomography: Toward the development of an implantable sensor. Anal. Chem. 2007, 79, 6965–6974. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J.K.; Christiansen, J.S.; Kristensen, J.S.; Toft, H.O.; Hansen, L.L.; Aasmul, S.; Gregorius, K. Clinical evaluation of a transcutaneous interrogated fluorescence lifetime-based microsensor for continuous glucose reading. J. Diabetes Sci. Technol. 2009, 3, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Mortellaro, M.; DeHennis, A. Performance characterization of an abiotic and fluorescent-based continuous glucose monitoring system in patients with type 1 diabetes. Biosens. Bioelectron. 2014, 61, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Li, S.; Schultz, J.S.; Wang, Q.; Lin, Q. A MEMS affinity glucose sensor using a biocompatible glucose-responsive polymer. Sens. Actuators B Chem. 2009, 140, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Ballerstädt, R.; Ehwald, R. Suitability of aqueous dispersions of dextran and concanavalin a for glucose sensing in different variants of the affinity sensor. Biosens. Bioelectron. 1994, 9, 557–567. [Google Scholar] [CrossRef]
- Kuenzi, S.; Meurville, E.; Ryser, P. Automated characterization of dextran/concanavalin a mixtures—A study of sensitivity and temperature dependence at low viscosity as basis for an implantable glucose sensor. Sens. Actuators B 2010, 146, 1–7. [Google Scholar] [CrossRef]
- Birkholz, M.; Ehwald, K.-E.; Basmer, T.; Reich, C.; Kulse, P.; Drews, J.; Genschow, D.; Haak, U.; Marschmeyer, S.; Matthus, E.; et al. Sensing glucose concentrations at GHz frequencies with a fully embedded BioMEMS. J. Appl. Phys. 2013, 113, 244904. [Google Scholar] [CrossRef] [PubMed]
- Birkholz, M.; Glogener, P.; Basmer, T.; Glös, F.; Genschow, D.; Welsch, C.; Ruff, R.; Hoffmann, K.P. System integration of a silicone-encapsulated glucose monitor implant. Biomed. Eng. Biomed. Tech. 2014, 59, S1089–S1092. [Google Scholar]
- Knoll, D.; Heinemann, B.; Barth, R.; Blum, K.; Borngräber, J.; Drews, J.; Ehwald, K.-E.; Fischer, G.; Fox, A.; Grabolla, T.; et al. A modular, low-cost SiGe:C BiCMOS process featuring high-ft and high-BVceo transistors. In Proceedings of the 2004 Meeting Bipolar/BiCMOS Circuits and Technology, Montreal, QC, Canada, 12–14 September 2004; pp. 241–244. [Google Scholar]
- Birkholz, M.; Ehwald, K.-E.; Kaynak, M.; Semperowitsch, T.; Holz, B.; Nordhoff, S. Separation of extremely miniaturized medical sensors by IR laser dicing. J. Optoelectron. Adv. Mater. 2010, 12, 479–483. [Google Scholar]
- Theuer, L.; Lehmann, M.; Junne, S.; Neubauer, P.; Birkholz, M. Micro-electromechanical affinity sensor for the monitoring of glucose in bioprocess media. Int. J. Mol. Sci. 2017, 18, 1235. [Google Scholar] [CrossRef] [PubMed]
- Ehwald, R.; Ballerstadt, R.; Dautzenberg, H. Viscosimetric affinity assay. Anal. Biochem. 1996, 234, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Patton, K.T.; Thibodeau, G.A. Structure and Function of the Body, 15th ed.; Elsevier Inc.: St. Louis, MO, USA, 2016. [Google Scholar]
- NuSil. Nusil Med-6015 Silicone, Low Consistency Elastomer—Restricted Medical Use. Available online: https://nusil.com/en/product/MED-6015_optically-clear-low-consistency-silicone-elastomer?h=6015 (accessed on 30 January 2018).
Device | Degree of Integration | Exposure |
---|---|---|
GS21 | sensor–probe integrated MEMS chip | None |
Imp3 | battery unplugged | >2 years in isotone saline |
Imp6 | battery connected to PCB | 17 months in vivo and hv sterilization |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glogener, P.; Krause, M.; Katzer, J.; Schubert, M.A.; Birkholz, M.; Bellmann, O.; Kröger-Koch, C.; Hammon, H.M.; Metges, C.C.; Welsch, C.; et al. Prolonged Corrosion Stability of a Microchip Sensor Implant during In Vivo Exposure. Biosensors 2018, 8, 13. https://doi.org/10.3390/bios8010013
Glogener P, Krause M, Katzer J, Schubert MA, Birkholz M, Bellmann O, Kröger-Koch C, Hammon HM, Metges CC, Welsch C, et al. Prolonged Corrosion Stability of a Microchip Sensor Implant during In Vivo Exposure. Biosensors. 2018; 8(1):13. https://doi.org/10.3390/bios8010013
Chicago/Turabian StyleGlogener, Paul, Michael Krause, Jens Katzer, Markus A. Schubert, Mario Birkholz, Olaf Bellmann, Claudia Kröger-Koch, Harald M. Hammon, Cornelia C. Metges, Christine Welsch, and et al. 2018. "Prolonged Corrosion Stability of a Microchip Sensor Implant during In Vivo Exposure" Biosensors 8, no. 1: 13. https://doi.org/10.3390/bios8010013
APA StyleGlogener, P., Krause, M., Katzer, J., Schubert, M. A., Birkholz, M., Bellmann, O., Kröger-Koch, C., Hammon, H. M., Metges, C. C., Welsch, C., Ruff, R., & Hoffmann, K. P. (2018). Prolonged Corrosion Stability of a Microchip Sensor Implant during In Vivo Exposure. Biosensors, 8(1), 13. https://doi.org/10.3390/bios8010013