The Use of Biosensors to Explore the Potential of Probiotic Strains to Reduce the SOS Response and Mutagenesis in Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains
2.2. Preparation of Fermentates
2.3. Biosensor Test
2.4. Determination of the Parameters for Spontaneous and Induced Mutagenesis
3. Results
3.1. Biosensor Tests
- -
- Six fermentates of Lactobacillus cultures (L. rhamnosus, L. lactis 6453, Lactobacillus sp. 6367, L. acidophilus 2647, Lactobacillus sp. 6379, L. plantarum B3242) showed the presence of potential antimutagenic properties;
- -
- metabolites of Lactobacillus sp. 6367 (the average value of the protective effect is 66.36%) have the highest indicators of protective activity;
3.2. Mutagenesis Assay
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cirz, R.T.; Chin, J.K.; Andes, D.R.; de Cre’cy-Lagard, V.; Craig, W.A.; Romesberg, F.E. Inhibition of mutation and combating the evolution of antibiotic resistance. PLoS Boil. 2005, 3, e176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, M.K.; Alhhazmi, A.; DeCoteau, J.F.; Luo, Y.; Geyer, C.R. RecA inhibitors potentiate antibiotic activity and block evolution of antibiotic resistance. Cell Chem. Biol. 2016, 23, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Wigle, T.J.; Sexton, J.Z.; Gromova, A.V.; Hadimani, M.B.; Hughes, M.A.; Smith, J.R.; Yeh, L.; Singleton, S.F. Inhibitors of RecA activity discovered by high-throughput screening: Cell-permeable small molecules attenuate the SOS response in Escherichia coli. J. Biomol. Screen. 2009, 14, 1092–1101. [Google Scholar] [CrossRef] [PubMed]
- Chistyakov, V.A.; Prazdnova, E.V.; Kharchenko, E.Y.; Kurbatov, S.V.; Batiushin, M.M.; Levitskaya, E.S.; Mazanko, M.S.; Churilov, M.N. 7-(1-Methyl-3-Pyrrolyl-)-4, 6-dinitrobenzofuroxan reduces the frequency of antibiotic resistance mutations induced by ciprofloxacin in bacteria. Int. J. BioMed. 2016, 6, 228–232. [Google Scholar] [CrossRef]
- Lee, A.M.; Ross, C.T.; Zeng, B.; Singleton, S.F. A molecular target for suppression of the evolution of antibiotic resistance: Inhibition of the Escherichia coli RecA protein by N6-(1-Naphthyl)-ADP. J. Med. Chem. 2005, 48, 5408–5411. [Google Scholar] [CrossRef] [PubMed]
- Wigle, T.J.; Singleton, S.F. Directed molecular screening for RecA ATPase Inhibitors. Bioorg. Med. Chem. Lett. 2007, 17, 3249–3253. [Google Scholar] [CrossRef] [PubMed]
- Peterson, E.J.R.; Janzen, W.P.; Kiree, D.; Singleton, S.F. High-throughput screening for RecA inhibitors using a transcreener adenosine 5′-O-diphosphate assay. Assay Drug Dev. Technol. 2012, 10, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.; Bandyopadhyay, S. De novo design of potential RecA inhibitors using multi objective optimization. IEEE/ACM Trans. Comput. Biol. Bioinform. 2012, 9, 1139–1154. [Google Scholar] [CrossRef] [PubMed]
- Nautiyal, A.; Patil, K.N.; Muniyappa, K. Suramin is a potent and selective inhibitor of Mycobacterium tuberculosis RecA protein and the SOS Response: RecA as a potential target for antibacterial drug discovery. J. Antimicrob. Chemother. 2014, 69, 1834–1843. [Google Scholar] [CrossRef] [PubMed]
- Zolotukhin, P.V.; Prazdnova, E.V.; Chistyakov, V.A. Methods to assess the antioxidative properties of probiotics. Probiotics Antimicrob. Proteins 2017, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Grimoud, J.; Durand, H.; De Souza, S.; Monsan, P.; Ouarné, F.; Theodorou, V.; Roques, C. In vitro screening of probiotics and synbiotics according to anti-inflammatory and anti-proliferative effects. Int. J. Food Microbiol. 2010, 144, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Persichetti, E.; De Michele, A.; Codini, M.; Traina, G. Antioxidative capacity of Lactobacillus fermentum LF31 evaluated in vitro by oxygen radical absorbance capacity assay. Nutrition 2014, 30, 936–938. [Google Scholar] [CrossRef] [PubMed]
- Zavilgelsky, G.B.; Kotova, V.Y.; Manukhov, I.V. Action of 1,1-dimethylhydrazine on bacterial cells is determined by hydrogen peroxide. Mutat. Res. 2007, 634, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Prazdnova, E.V.; Chistyakov, V.A.; Churilov, M.N.; Mazanko, M.S.; Bren, A.B.; Volski, A.; Chikindas, M.L. DNA-protection and antioxidant properties of fermentates from Bacillus amyloliquefaciens B-1895 and Bacillus subtilis KATMIRA1933. Lett. Appl. Microbiol. 2015, 61, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.; Marks, K.R.; Mustaev, A.; Zhao, X.; Chavda, K.; Kerns, R.J.; Drlica, K. Fluoroquinolone and quinazolinedione activities against wild-type and gyrase mutant strains of Mycobacterium smegmatis. Antimicrob. Agents Chemother. 2011, 55, 2335–2343. [Google Scholar] [CrossRef] [PubMed]
- Manukhov, I.V.; Eroshnikov, G.E.; Vissokikh, M.Y.; Zavilgelsky, G.B. Folding and refolding of thermolabile and thermostable bacterial luciferases: The role of DnaKJ heat-shock proteins. FEBS Lett. 1999, 448, 265–268. [Google Scholar] [CrossRef]
- Maniatis, T.; Fritsch, E.F.; Sambrook, J. Molecular Cloning, A Laboratory Manual; Cold Spring Harbor Laboratory: New York, NY, USA, 1982. [Google Scholar]
- Varhimo, E.; Savijoki, K.; Jefremoff, H.; Jalava, J.; Sukura, A.; Varmanen, P. Ciprofloxacin induces mutagenesis to antibiotic resistance independent of UmuC in Streptococcus uberis. Environ. Microbiol. 2008, 10, 2179–2183. [Google Scholar] [CrossRef] [PubMed]
- Pourahmad, J.R.; Pasand, S. Overexpression of SOS genes in ciprofloxacin resistant Escherichia coli mutants. Gene 2016, 576, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Foster, P.L. In vivo mutagenesis. Methods Enzymol. 1991, 204, 114–125. [Google Scholar] [PubMed]
- Patel, M.; Jiang, Q.; Woodgate, R.; Cox, M.M.; Goodman, M.F. A new model for SOS-induced mutagenesis: How RecA protein activates DNA polymerase V. Crit. Rev. Biochem. Mol. Biol. 2010, 45, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Walker, G.C. Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol. Rev. 1984, 48, 60–93. [Google Scholar] [PubMed]
- Janion, C. Inducible SOS response system of DNA repair and mutagenesis in Escherichia coli. Int. J. Biol. Sci. 2008, 4, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Fornelos, N.; Browning, D.F.; Butala, M. The use and abuse of LexA by mobile genetic elements. Trends Microbiol. 2016, 24, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Karlin, S.; Brocchieri, L. Evolutionary conservation of RecA genes in relation to protein structure and function. J. Bacteriol. 1996, 178, 1881–1894. [Google Scholar] [CrossRef] [PubMed]
- Caldini, G.; Trotta, F.; Corsetti, A.; Cenci, G. Evidence for in vitro anti-genotoxicity of cheese non-starter lactobacilli. Antonie Van Leeuwenhoek 2008, 93, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Caldini, G.; Trotta, F.; Cenci, G. Inhibition of 4-nitroquinoline-1-oxide genotoxicity by Bacillus strains. Res. Microbiol. 2002, 153, 165–171. [Google Scholar] [CrossRef]
- Raipulis, J.; Toma, M.M.; Semjonovs, P. The effect of probiotics on the genotoxicity of furazolidone. Int. J. Food Microbiol. 2005, 102, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Lyon, G.J.; Novick, R.P. Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides 2004, 25, 1389–1403. [Google Scholar] [CrossRef] [PubMed]
- Altuvia, S. Identification of bacterial small non-coding RNAs: Experimental approaches. Curr. Opin. Microbiol. 2007, 10, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Gottesman, S.; McCullen, C.A.; Guillier, M.; Vanderpool, C.K.; Majdalani, N.; Benhammou, J.; Thompson, K.M.; FitzGerald, P.C.; Sowa, N.A.; FitzGerald, D.J. Small RNA regulators and the bacterial response to stress. Cold Spring Harb. Symp. Quant. Biol. 2006, 71, 1–11. [Google Scholar] [CrossRef] [PubMed]
Strain | Anti-SOS Activity, % | ||||||
Volume of fraction in solution, % | 0.00001 | 0.0001 | 0.001 | 0.01 | 0.1 | 1 | 10 |
Lactobacillus rhamnosus | 53.11 ± 1.23 | 64.39 ± 2.64 | 51.66 ± 3.16 | 64.51 ± 3.55 | 63.42 ± 3.78 | 62.39 ± 7.11 | 51.49 ± 5.44 |
L. lactis 6453 | 23.95 ± 1.01 | 17.89 ± 0.89 | 33.89 ± 2.72 | 35.21 ± 2.16 | 31.26 ± 1.76 | 19.39 ± 0.25 | 41.92 ± 3.32 |
Lactobacillus sp. 6367 | 69.08 ± 2.44 | 60.26 ± 3.19 | 64.80 ± 2.46 | 66.61 ± 6.66 | 63.86 ± 3.49 | 76.31 ± 6.93 | 63.62 ± 6.78 |
L. acidophilus 2647 | 48.36 ± 1.44 | 46.83 ± 2.26 | 48.16 ± 1.43 | 40.83 ± 3.82 | 53.18 ± 2.99 | 53.30 ± 3.24 | Bactericidal |
Lactobacillus sp. 6379 | 59.21 ± 2.86 | 54.22 ± 3.08 | 50.19 ± 2.39 | 54.14 ± 4,13 | 56.97 ± 3.04 | 57.31 ± 5.24 | 63.08 ± 5.93 |
L. plantarum B3242 | 33.50 ± 1.51 | 78.27 ± 4.11 | 44.99 ± 1.28 | 46.30 ± 3,78 | 75.21 ± 5.28 | Bactericidal | Bactericidal |
Bacillus amyloliquefaciens B-1895 | 0 | 0 | 2.20 ± 0.71 | 12.23 ± 1.23 | 35.24 ± 2.34 | 41.04 ± 3.75 | 54.21 ± 4.89 |
Bacillus subtilis KATMIRA1933 | 0 | 0 | 0 | 7.98 ± 1.09 | 26.84 ± 2.34 | 35.29 ± 4.96 | 50.84 ± 5.12 |
Strain | Anti-SOS Activity, % | ||||||
Volume of fraction in solution,% | 0.00001 | 0.0001 | 0.001 | 0.01 | 0.1 | 1 | 10 |
Lactobacillus rhamnosus | 53.11 ± 1.23 | 64.39 ± 2.64 | 51.66 ± 3.16 | 64.51 ± 3.55 | 63.42 ± 3.78 | 62.39 ± 7.11 | 51.49 ± 5.44 |
L. lactis 6453 | 23.95 ± 1.01 | 17.89 ± 0.89 | 33.89 ± 2.72 | 35.21 ± 2.16 | 31.26 ± 1.76 | 19.39 ± 0.25 | 41.92 ± 3.32 |
Lactobacillus sp. 6367 | 69.08 ± 2.44 | 60.26 ± 3.19 | 64.80 ± 2.46 | 66.61 ± 6.66 | 63.86 ± 3.49 | 76.31 ± 6.93 | 63.62 ± 6.78 |
L. acidophilus 2647 | 48.36 ± 1.44 | 46.83 ± 2.26 | 48.16 ± 1.43 | 40.83 ± 3.82 | 53.18 ± 2.99 | 53.30 ± 3.24 | Bactericidal |
Lactobacillus sp. 6379 | 59.21 ± 2.86 | 54.22 ± 3.08 | 50.19 ± 2.39 | 54.14± | 56.97 ± 3.04 | 57.31 ± 5.24 | 63.08 ± 5.93 |
L. plantarum B3242 | 33.50 ± 1.51 | 78.27 ± 4.11 | 44.99 ± 1.28 | 46.30± | 75.21 ± 5.28 | Bactericidal | Bactericidal |
Bacillus amyloliquefaciens B-1895 | 0 | 0 | 2.20 ± 0.71 | 12.23 ± 1.23 | 35.24 ± 2.34 | 41.04 ± 3.75 | 54.21 ± 4.89 |
Bacillus subtilis KATMIRA1933 | 0 | 0 | 0 | 7.98 ± 1.09 | 26.84 ± 2.34 | 35.29 ± 4.96 | 50.84 ± 5.12 |
Growth of Bacteria in Medium without Rifampicin | Growth of Bacteria on Medium with Rifampicin | |||||
---|---|---|---|---|---|---|
Dilution | Average Number of Colonies per Plate | Survival Rate | Dilution | Average Number of Colonies per Plate | Mutation Frequency | |
Control | 10−6 | 130 ± 15 | 100% | 10−1 | 39 ± 6 | (3.0 ± 0.3) × 10−5 |
Fermentate added | 10−6 | 152 ± 11 | 117% | 10−1 | 47 ± 9 | (3.1 ± 0.3) × 10−5 |
Inducer added | 10−5 | 220 ± 6 | 18% * | 10−1 | 22 ± 7 | (10 ± 0.2) × 10−5 * |
Fermentate and inducer are added | 10−5 | 228 ± 12 | 17% * | 10−1 | 10 ± 2 | (4.5 ± 0.3) × 10−5 * |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chistyakov, V.A.; Prazdnova, E.V.; Mazanko, M.S.; Bren, A.B. The Use of Biosensors to Explore the Potential of Probiotic Strains to Reduce the SOS Response and Mutagenesis in Bacteria. Biosensors 2018, 8, 25. https://doi.org/10.3390/bios8010025
Chistyakov VA, Prazdnova EV, Mazanko MS, Bren AB. The Use of Biosensors to Explore the Potential of Probiotic Strains to Reduce the SOS Response and Mutagenesis in Bacteria. Biosensors. 2018; 8(1):25. https://doi.org/10.3390/bios8010025
Chicago/Turabian StyleChistyakov, Vladimir Anatolievich, Evgeniya Valer’evna Prazdnova, Maria Sergeevna Mazanko, and Anzhelica Borisovna Bren. 2018. "The Use of Biosensors to Explore the Potential of Probiotic Strains to Reduce the SOS Response and Mutagenesis in Bacteria" Biosensors 8, no. 1: 25. https://doi.org/10.3390/bios8010025
APA StyleChistyakov, V. A., Prazdnova, E. V., Mazanko, M. S., & Bren, A. B. (2018). The Use of Biosensors to Explore the Potential of Probiotic Strains to Reduce the SOS Response and Mutagenesis in Bacteria. Biosensors, 8(1), 25. https://doi.org/10.3390/bios8010025