Electrochemical Biosensors: A Solution to Pollution Detection with Reference to Environmental Contaminants
Abstract
:1. Introduction
2. Emerging Contaminants (ECs)
3. Electrochemical Biosensors—Development Strategies
- Cyclic voltammetry is a periodic voltage variation measuring the change in current. The voltage variations can be performed in a wide range of patterns that lead to many forms of voltammetry. Some of the differences are polarography, linear sweep, differential staircase, normal pulse, reverse pulse, and differential pulse [6].
- Chrono-amperometry is a current measure of the steady state at a time when a square-wave voltage signal is applied to the working electrode. Besides, chrono-potentiometry is the voltage measured as a function of time while a constant or square-wave current is applied. In chrono-amperometry, the relation between current and analyte diffusion to the electrode is described by the Cottrell equation [31].
- Electrochemical impedance spectroscopy (EIS) measures the current response to an applied sinusoidal varying voltage. Exploring the frequency of the sinusoidal signal, it is possible to calculate the impedance as the real and imaginary components of the electrochemical system. EIS is a powerful tool since this technique evaluates the intrinsic material or system property of impedance, which is of high importance to biosensor development and applications [34].
- Field effect transistor (FET) is a configuration of a channel between two electrodes made of a semiconductor material and a transistor. The mechanism controls the electric field inside the channel along with its conductivity. A third electrode plays the role of the gate to drain the charge. This configuration allows the control channel to attract charge or repel it. In general, the array operates as a switch between conductive or non-conductive states when a drain-source voltage is higher than the gate-source and as an amplifier when it has constant current source given by the gate-source voltage. The FET technique is best used for applications with a weak signal and high impedance [35].
3.1. Detection Mechanism of Screen-Printed Electrodes (SPEs)
3.2. Detection Mechanism of Nanowire Sensors
4. Electrochemical Biosensors—A Solution to Pollution Detection
4.1. SPEs and Environmental Contaminants
4.2. Nanowire-Based Sensors and Environmental Contaminants
5. Paper-Based Electrochemical Biosensors
6. Concluding Remarks and Future Perspectives
Acknowledgments
Conflicts of Interest
References
- Bilal, M.; Rasheed, T.; Sosa-Hernández, J.E.; Raza, A.; Nabeel, F.; Iqbal, H.M.N. Biosorption: An Interplay between Marine Algae and Potentially Toxic Elements—A Review. Mar. Drugs 2018, 16, 65. [Google Scholar] [CrossRef] [PubMed]
- El Harrad, L.; Bourais, I.; Mohammadi, H.; Amine, A. Recent Advances in Electrochemical Biosensors Based on Enzyme Inhibition for Clinical and Pharmaceutical Applications. Sensors 2018, 18, 164. [Google Scholar] [CrossRef] [PubMed]
- Arduini, F.; Cinti, S.; Scognamiglio, V.; Moscone, D.; Palleschi, G. How cutting-edge technologies impact the design of electrochemical (bio) sensors for environmental analysis. A review. Anal. Chim. Acta 2017, 959, 15–42. [Google Scholar] [CrossRef] [PubMed]
- Hughes, G.; Westmacott, K.; Honeychurch, K.C.; Crew, A.; Pemberton, R.M.; Hart, J.P. Recent advances in the fabrication and application of screen-printed electrochemical (bio) sensors based on carbon materials for biomedical, agri-food and environmental analyses. Biosensors 2016, 6, 50. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Mozaz, S.; de Alda, M.J.L.; Marco, M.P.; Barceló, D. Biosensors for environmental monitoring: A global perspective. Talanta 2005. [Google Scholar] [CrossRef]
- Ronkainen, N.J.; Halsall, H.B.; Heineman, W.R. Electrochemical biosensors. Chem. Soc. Rev. 2010, 39, 1747. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, T.; Bilal, M.; Nabeel, F.; Iqbal, H.M.N.; Li, C.; Zhou, Y. Fluorescent sensor based models for the detection of environmentally-related toxic heavy metals. Sci. Total Environ. 2018, 615, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Barrios-Estrada, C.; de Jesús Rostro-Alanis, M.; Muñoz-Gutiérrez, B.D.; Iqbal, H.M.N.; Kannan, S.; Parra-Saldívar, R. Emergent contaminants: Endocrine disruptors and their laccase-assisted degradation—A review. Sci. Total Environ. 2018, 612, 1516–1531. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.; Iqbal, H.M.N.; Dhama, K. Enzyme-based biodegradation of hazardous pollutants—An overview. J. Exp. Biol. Agric. Sci. 2017, 5, 402–411. [Google Scholar] [CrossRef]
- Naidu, R.; Espana, V.A.A.; Liu, Y.; Jit, J. Emerging contaminants in the environment: Risk-based analysis for better management. Chemosphere 2016, 154, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Asgher, M.; Iqbal, H.M.N.; Hu, H.; Zhang, X. Bio-based degradation of emerging endocrine-disrupting and dye-based pollutants using cross-linked enzyme aggregates. Environ. Sci. Pollut. Res. 2017, 24, 7035–7041. [Google Scholar] [CrossRef] [PubMed]
- Kidd, K.A.; Blanchfield, P.J.; Mills, K.H.; Palace, V.P.; Evans, R.E.; Lazorchak, J.M.; Flick, R.W. Collapse of a fish population after exposure to a synthetic estrogen. Proc. Nat. Acad. Sci. USA 2007, 104, 8897–8901. [Google Scholar] [CrossRef] [PubMed]
- Oaks, J.L.; Gilbert, M.; Virani, M.Z.; Watson, R.T.; Meteyer, C.U.; Rideout, B.A.; Mahmood, S. Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 2004, 427, 630–633. [Google Scholar] [CrossRef] [PubMed]
- Oberdörster, E.; Zhu, S.; Blickley, T.M.; McClellan-Green, P.; Haasch, M.L. Ecotoxicology of carbon-based engineered nanoparticles: Effects of fullerene (C60) on aquatic organisms. Carbon 2006, 44, 1112–1120. [Google Scholar] [CrossRef]
- Kim, S.-C.; Lee, D. Preparation of TiO2-coated hollow glass beads and their application to the control of algal growth in eutrophic water. Microchem. J. 2005, 80, 227–232. [Google Scholar] [CrossRef]
- Raghav, M.; Eden, S.; Mitchell, K.; Witte, B. Contaminants of Emerging Concern in Water. Available online: http://arizona.openrepository.com/arizona/bitstream/10150/325905/3/Arroyo_2013.pdf (accessed on 22 March 2018).
- Petrie, B.; Barden, R.; Kasprzyk-Hordern, B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2015, 72, 3–27. [Google Scholar] [CrossRef] [PubMed]
- Sangion, A.; Gramatica, P. PBT assessment and prioritization of contaminants of emerging concern: Pharmaceuticals. Environ. Res. 2016, 147, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Sangion, A.; Gramatica, P. Hazard of pharmaceuticals for aquatic environment: Prioritization by structural approaches and prediction of ecotoxicity. Environ. Int. 2016, 95, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Hughes, S.R.; Kay, P.; Brown, L.E. Global synthesis and critical evaluation of pharmaceutical data sets collected from river systems. Environmen. Sci. Technol. 2013, 47, 661–677. [Google Scholar] [CrossRef] [PubMed]
- Ullah, S.; Zuberi, A.; Alagawany, M.; Farag, M.R.; Dadar, M.; Karthik, K.; Tiwari, R.; Dhama, K.; Iqbal, H.M.N. Cypermethrin induced toxicities in fish and adverse health outcomes: Its prevention and control measure adaptation. J. Environ. Manag. 2018, 206, 863–871. [Google Scholar] [CrossRef] [PubMed]
- Köhler, H.R.; Triebskorn, R. Wildlife ecotoxicology of pesticides: Can we track effects to the population level and beyond? Science 2013, 341, 759–765. [Google Scholar] [CrossRef] [PubMed]
- WHO. Agrochemicals, Health and Environment: Directory of Resources. 2017. Available online: http://www.who.int/heli/risks/toxics/chemicalsdirectory/en/index1.html (accessed on 24 January 2018).
- Emerging Contaminants from Industrial and Municipal Waste: Removal Technologies; Barceló, D.; Petrovic, M. (Eds.) Springer: Berlin/Heidelberg, Germay, 2008; Volume 5. [Google Scholar]
- Carvalho, F.P. Pesticides, environment, and food safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Moreno-Gonzalez, R.; Leon, V.M. Presence and distribution of current-use pesticides in surface marine sediments from a Mediterranean coastal lagoon (SE Spain). Environ. Sci. Pollut. Res. Int. 2017, 24, 8033–8048. [Google Scholar] [CrossRef] [PubMed]
- Riva, F.; Castiglioni, S.; Fattore, E.; Manenti, A.; Davoli, E.; Zuccato, E. Monitoring emerging contaminants in the drinking water of milan and assessment of the human risk. Int. J. Hyg. Environ. Health 2018. [Google Scholar] [CrossRef] [PubMed]
- Petrović, M.; Gonzalez, S.; Barceló, D. Analysis and removal of emerging contaminants in wastewater and drinking water. TrAC Trend. Anal. Chem. 2003, 22, 685–696. [Google Scholar] [CrossRef] [Green Version]
- Richardson, S.D. Water analysis: Emerging contaminants and current issues. Anal. Chem. 2009, 81, 4645–4677. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, Y.T.; Li, D.W.; Long, Y.T. Recent developments and applications of screen-printed electrodes in environmental assays—A review. Anal. Chim. Acta 2012, 734, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical Biosensors-Sensor Principles and Architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef] [PubMed]
- Buerk, D.G. Biosensors: Theory and Applications; Technomic Publish. Co. Inc.: Lancaster, UK, 1993. [Google Scholar]
- Bakker, E.; Pretsch, E. Potentiometric sensors for trace-level analysis. TrAC Trend. Anal. Chem. 2005, 243, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Chang, B.-Y.; Park, S.-M. Electrochemical Impedance Spectroscopy. Ann. Rev. Anal. Chem. 2010, 3, 207–229. [Google Scholar] [CrossRef] [PubMed]
- Torsi, L.; Magliulo, M.; Manoli, K.; Palazzo, G. Organic field-effect transistor sensors: A tutorial review. Chem. Soc. Rev. 2013, 42, 8612. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, K.; Vestergaard, M.C.; Tamiya, E. Printable electrochemical biosensors: A focus on screen-printed electrodes and their application. Sensors (Switzerland) 2016, 16, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Martínez-García, G.; Pérez-Julián, E.; Agüí, L.; Cabré, N.; Joven, J.; Yáñez-Sedeño, P.; Pingarrón, J.M. An Electrochemical Enzyme Biosensor for 3-Hydroxybutyrate Detection Using Screen-Printed Electrodes Modified by Reduced Graphene Oxide and Thionine. Biosensors 2017, 7, 50. [Google Scholar] [CrossRef] [PubMed]
- Vaseashta, A.; Dimova-Malinovska, D. Nanostructured and nanoscale devices, sensors and detectors. Sci. Technol. Adv. Mater. 2005, 6, 312–318. [Google Scholar] [CrossRef]
- Wanekaya, A.K.; Chen, W.; Myung, N.V.; Mulchandani, A. Nanowire-based electrochemical biosensors. Electroanalysis 2006, 18, 533–550. [Google Scholar] [CrossRef]
- Richardson, S.D.; Ternes, T.A. Water analysis: Emerging contaminants and current issues. Anal. Chem. 2011, 83, 4614–4648. [Google Scholar] [CrossRef] [PubMed]
- Kimmel, D.W.; LeBlanc, G.; Meschievitz, M.E.; Cliffel, D.E. Electrochemical sensors and biosensors. Anal. Chem. 2011, 84, 685–707. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Myung, N.V.; Yun, M.; Monbouquette, H.G. Glucose oxidase entrapped in polypyrrole on high-surface-area Pt electrodes: A model platform for sensitive electroenzymatic biosensors. J. Electroanal. Chem. 2005, 575, 139–146. [Google Scholar] [CrossRef]
- Chai, F.; Wang, C.; Wang, T.; Li, L.; Su, Z. Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACS Appl. Mater. Interface 2010, 2, 1466–1470. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Lian, C.; Zhou, Y.; Yan, L.; Li, Q.; Zhang, C.; Chen, K. Graphene oxide–DNA based sensors. Biosens. Bioelectron. 2014, 60, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Darbha, G.K.; Singh, A.K.; Rai, U.S.; Yu, E.; Yu, H.; Chandra Ray, P. Selective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticles. J. Am. Chem. Soc. 2008, 130, 8038–8043. [Google Scholar] [CrossRef] [PubMed]
- Darbha, G.K.; Ray, A.; Ray, P.C. Gold nanoparticle-based miniaturized nanomaterial surface energy transfer probe for rapid and ultrasensitive detection of mercury in soil, water, and fish. ACS Nano 2007, 1, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.C.; Yang, Z.; Lee, K.H.; Chang, H.T. Synthesis of highly fluorescent gold nanoparticles for sensing mercury (II). Angew. Chem. 2007, 119, 6948–6952. [Google Scholar] [CrossRef]
- Chang, J.; Huang, X.; Zhou, G.; Cui, S.; Hallac, P.B.; Jiang, J.; Chen, J. Multilayered Si Nanoparticle/Reduced Graphene Oxide Hybrid as a High-Performance Lithium-Ion Battery Anode. Adv. Mater. 2014, 26, 758–764. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Lu, G.; Chang, J.; Mao, S.; Yu, K.; Cui, S.; Chen, J. Hg (II) ion detection using thermally reduced graphene oxide decorated with functionalized gold nanoparticles. Anal. Chem. 2012, 84, 4057–4062. [Google Scholar] [CrossRef] [PubMed]
- Sudibya, H.G.; He, Q.; Zhang, H.; Chen, P. Electrical detection of metal ions using field-effect transistors based on micropatterned reduced graphene oxide films. ACS Nano 2011, 5, 1990–1994. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Lee, J.; Hong, S. Highly selective environmental nanosensors based on anomalous response of carbon nanotube conductance to mercury ions. J. Phys. Chem. C 2009, 113, 19393–19396. [Google Scholar] [CrossRef]
- Chouteau, C.; Dzyadevych, S.; Durrieu, C.; Chovelon, J.M. A bi-enzymatic whole cell conductometric biosensor for heavy metal ions and pesticides detection in water samples. Biosens. Bioelectron. 2005, 21, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Agarwal, A.; Yang, K.L. Oligopeptide-modified silicon nanowire arrays as multichannel metal ion sensors. Biosens. Bioelectron. 2009, 24, 3248–3251. [Google Scholar] [CrossRef] [PubMed]
- So, H.M.; Park, D.W.; Jeon, E.K.; Kim, Y.H.; Kim, B.S.; Lee, C.K.; Lee, J.O. Detection and Titer Estimation of Escherichia coli Using Aptamer-Functionalized Single-Walled Carbon-Nanotube Field-Effect Transistors. Small 2008, 4, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Dong, X.; Liu, Y.; Li, L.J.; Chen, P. Graphene-based biosensors for detection of bacteria and their metabolic activities. J. Mater. Chem. 2011, 21, 12358–12362. [Google Scholar] [CrossRef]
- Chen, Y.; Michael, Z.P.; Kotchey, G.P.; Zhao, Y.; Star, A. Electronic detection of bacteria using holey reduced graphene oxide. ACS Appl. Mater. Interface 2014, 6, 3805–3810. [Google Scholar] [CrossRef] [PubMed]
- Kumar Jena, B.; Retna Raj, C. Gold nanoelectrode ensembles for the simultaneous electrochemical detection of ultratrace arsenic, mercury, and copper. Anal. Chem. 2008, 80, 4836–4844. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Zhou, T.; Song, D.; Zhang, L.; Hu, X. Stripping voltammetric detection of mercury (II) based on a bimetallic Au-Pt inorganic-organic hybrid nanocomposite modified glassy carbon electrode. Anal. Chem. 2009, 82, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zeng, L.; Xing, S.; Xian, Y.; Shi, G.; Jin, L. Ultrasensitive voltammetric detection of trace lead (II) and cadmium (II) using MWCNTs-nafion/bismuth composite electrodes. Electroanalysis 2008, 20, 2655–2662. [Google Scholar] [CrossRef]
- Aragay, G.; Pons, J.; Merkoçi, A. Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem. Rev. 2011, 111, 3433–3458. [Google Scholar] [CrossRef] [PubMed]
- Injang, U.; Noyrod, P.; Siangproh, W.; Dungchai, W.; Motomizu, S.; Chailapakul, O. Determination of trace heavy metals in herbs by sequential injection analysis-anodic stripping voltammetry using screen-printed carbon nanotubes electrodes. Anal. Chim. Acta 2010, 668, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Hwang, G.H.; Han, W.K.; Park, J.S.; Kang, S.G. Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode. Talanta 2008, 76, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.X.; Yu, X.Y.; Gao, C.; Jiang, Y.J.; Han, D.D.; Liu, J.H.; Huang, X.J. Non-conductive nanomaterial enhanced electrochemical response in stripping voltammetry: The use of nanostructured magnesium silicate hollow spheres for heavy metal ions detection. Anal. Chim. Acta 2013, 790, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Xu, Y.; Liu, A.; Kong, N.; Shan, F.; Yang, W.; Liu, J. Graphene nanodots-encaged porous gold electrode fabricated via ion beam sputtering deposition for electrochemical analysis of heavy metal ions. Sens. Actuators B Chem. 2015, 206, 592–600. [Google Scholar] [CrossRef]
- Huang, H.; Chen, T.; Liu, X.; Ma, H. Ultrasensitive and simultaneous detection of heavy metal ions based on three-dimensional graphene-carbon nanotubes hybrid electrode materials. Anal. Chim. Acta 2014, 852, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Guo, S.; Zhai, Y.; Wang, E. High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film. Anal. Chim. Acta 2009, 649, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Yu, X.Y.; Xiong, S.Q.; Liu, J.H.; Huang, X.J. Electrochemical detection of arsenic (III) completely free from noble metal: Fe3O4 microspheres-room temperature ionic liquid composite showing better performance than gold. Anal. Chem. 2013, 85, 2673–2680. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Wang, Y.; Chen, Z.; Lou, T.; Qin, W. Nanomaterial/ionophore-based electrode for anodic stripping voltammetric determination of lead: An electrochemical sensing platform toward heavy metals. Anal. Chem. 2009, 81, 5088–5094. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Han, J.; Jang, A.; Bishop, P.L.; Ahn, C.H. A disposable on-chip phosphate sensor with planar cobalt microelectrodes on polymer substrate. Biosens. Bioelectron. 2007, 22, 1902–1907. [Google Scholar] [CrossRef] [PubMed]
- Apetrei, C.; Apetrei, I.M.; Saja, J.A.D.; Rodriguez-Mendez, M.L. Carbon paste electrodes made from different carbonaceous materials: Application in the study of antioxidants. Sensors 2011, 11, 1328–1344. [Google Scholar] [CrossRef] [PubMed]
- Güell, A.G.; Meadows, K.E.; Unwin, P.R.; Macpherson, J.V. Trace voltammetric detection of serotonin at carbon electrodes: Comparison of glassy carbon, boron doped diamond and carbon nanotube network electrodes. Phys. Chem. Chem. Phys. 2010, 12, 10108–10114. [Google Scholar]
- Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Karuwan, C.; Wisitsoraat, A.; Phokharatkul, D.; Sriprachuabwong, C.; Lomas, T.; Nacapricha, D.; Tuantranont, A. A disposable screen printed graphene–carbon paste electrode and its application in electrochemical sensing. RSC Adv. 2013, 3, 25792–25799. [Google Scholar] [CrossRef]
- Promphet, N.; Rattanarat, P.; Rangkupan, R.; Chailapakul, O.; Rodthongkum, N. An electrochemical sensor based on graphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium. Sens. Actuators B Chem. 2015, 207, 526–534. [Google Scholar] [CrossRef]
- Hayat, A.; Marty, J.L. Disposable screen printed electrochemical sensors: Tools for environmental monitoring. Sensors 2014, 14, 10432–10453. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.; Brinz, T.; Simon, U. Preparation and measurement of combinatorial screen printed libraries for the electrochemical analysis of liquids. J. Comb. Chem. 2008, 11, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Kampouris, D.K.; Kadara, R.O.; Jenkinson, N.; Banks, C.E. Screen printed electrochemical platforms for pH sensing. Anal. Methods 2009, 1, 25–28. [Google Scholar] [CrossRef]
- Hallam, P.M.; Kampouris, D.K.; Kadara, R.O.; Jenkinson, N.; Banks, C.E. Nickel oxide screen printed electrodes for the sensing of hydroxide ions in aqueous solutions. Anal. Methods 2010, 2, 1152–1155. [Google Scholar] [CrossRef]
- Zheng, R.J.; Fang, Y.M.; Qin, S.F.; Song, J.; Wu, A.H.; Sun, J.J. A dissolved oxygen sensor based on hot electron induced cathodic electrochemiluminescence at a disposable CdS modified screen-printed carbon electrode. Sens. Actuators B Chem. 2011, 157, 488–493. [Google Scholar] [CrossRef]
- Chang, J.L.; Zen, J.M. A poly (dimethylsiloxane)-based electrochemical cell coupled with disposable screen printed edge band ultramicroelectrodes for use in flow injection analysis. Electrochem. Commun. 2007, 9, 2744–2750. [Google Scholar] [CrossRef]
- Khairy, M.; Kadara, R.O.; Banks, C.E. Electroanalytical sensing of nitrite at shallow recessed screen printed microelectrode arrays. Anal. Methods 2010, 2, 851–854. [Google Scholar] [CrossRef]
- Khaled, E.; Hassan, H.N.A.; Girgis, A.; Metelka, R. Construction of novel simple phosphate screen-printed and carbon paste ion-selective electrodes. Talanta 2008, 77, 737–743. [Google Scholar] [CrossRef]
- Gilbert, L.; Jenkins, A.T.; Browning, S.; Hart, J.P. Development of an amperometric assay for phosphate ions in urine based on a chemically modified screen-printed carbon electrode. Anal. Biochem. 2009, 393, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, L.; Jenkins, A.T.A.; Browning, S.; Hart, J.P. Development of an amperometric, screen-printed, single-enzyme phosphate ion biosensor and its application to the analysis of biomedical and environmental samples. Sens. Actuators B Chem. 2011, 160, 1322–1327. [Google Scholar] [CrossRef]
- Karousos, N.; Chong, L.C.; Ewen, C.; Livingstone, C.; Davis, J. Evaluation of a multifunctional indicator for the electroanalytical determination of nitrite. Electrochim. Acta 2005, 50, 1879–1884. [Google Scholar] [CrossRef]
- Quan, D.; Shim, J.H.; Kim, J.D.; Park, H.S.; Cha, G.S.; Nam, H. Electrochemical determination of nitrate with nitrate reductase-immobilized electrodes under ambient air. Anal. Chem. 2005, 77, 4467–4473. [Google Scholar] [CrossRef] [PubMed]
- Plumeré, N.; Henig, J.; Campbell, W.H. Enzyme-catalyzed O2 removal system for electrochemical analysis under ambient air: Application in an amperometric nitrate biosensor. Anal. Chem. 2012, 84, 2141–2146. [Google Scholar] [CrossRef] [PubMed]
- Won, Y.H.; Jang, H.S.; Kim, S.M.; Stach, E.; Ganesana, M.; Andreescu, S.; Stanciu, L.A. Biomagnetic glasses: Preparation, characterization, and biosensor applications. Langmuir 2009, 26, 4320–4326. [Google Scholar] [CrossRef] [PubMed]
- Crew, A.; Lonsdale, D.; Byrd, N.; Pittson, R.; Hart, J.P. A screen-printed, amperometric biosensor array incorporated into a novel automated system for the simultaneous determination of organophosphate pesticides. Biosens. Bioelectron. 2011, 26, 2847–2851. [Google Scholar] [CrossRef] [PubMed]
- Arduini, F.; Guidone, S.; Amine, A.; Palleschi, G.; Moscone, D. Acetylcholinesterase biosensor based on self-assembled monolayer-modified gold-screen printed electrodes for organophosphorus insecticide detection. Sen. Actuators B Chem. 2013, 179, 201–208. [Google Scholar] [CrossRef]
- Alonso, G.A.; Muñoz, R.; Marty, J.L. Automatic electronic tongue for on-line detection and quantification of organophosphorus and carbamate pesticides using enzymatic screen printed biosensors. Anal. Lett. 2013, 46, 1743–1757. [Google Scholar] [CrossRef]
- Su, W.Y.; Wang, S.M.; Cheng, S.H. Electrochemically pretreated screen-printed carbon electrodes for the simultaneous determination of aminophenol isomers. J. Electroanal. Chem. 2011, 651, 166–172. [Google Scholar] [CrossRef]
- Baskeyfield, D.E.; Davis, F.; Magan, N.; Tothill, I.E. A membrane-based immunosensor for the analysis of the herbicide isoproturon. Anal. Chim. Acta 2011, 699, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Bhalla, V.; Zazubovich, V. Self-assembly and sensor response of photosynthetic reaction centers on screen-printed electrodes. Anal. Chim. Acta 2011, 707, 184–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanov, A.N.; Younusov, R.R.; Evtugyn, G.A.; Arduini, F.; Moscone, D.; Palleschi, G. Acetylcholinesterase biosensor based on single-walled carbon nanotubes—Co. phtalocyanine for organophosphorus pesticides detection. Talanta 2011, 85, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, J.; Yang, Z.; Xu, Q.; Hu, X. A novel photoelectrochemical sensor for the organophosphorus pesticide dichlofenthion based on nanometer-sized titania coupled with a screen-printed electrode. Anal. Chem. 2011, 83, 5290–5295. [Google Scholar] [CrossRef] [PubMed]
- Mayorga-Martinez, C.C.; Cadevall, M.; Guix, M.; Ros, J.; Merkoçi, A. Bismuth nanoparticles for phenolic compounds biosensing application. Biosens. Bioelectron. 2013, 40, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Mayorga-Martinez, C.C.; Pino, F.; Kurbanoglu, S.; Rivas, L.; Ozkan, S.A.; Merkoçi, A. Iridium oxide nanoparticle induced dual catalytic/inhibition based detection of phenol and pesticide compounds. J. Mater. Chem. B 2014, 2, 2233–2239. [Google Scholar] [CrossRef]
- Nadifiyine, S.; Haddam, M.; Mandli, J.; Chadel, S.; Blanchard, C.C.; Marty, J.L.; Amine, A. Amperometric Biosensor Based on Tyrosinase Immobilized on to a Carbon Black Paste Electrode for Phenol Determination in Olive Oil. Anal. Lett. 2013, 46, 2705–2726. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, L.; Zhang, X.; Huan, S.; Shen, G.; Yu, R. A novel tyrosinase biosensor based on hydroxyapatite–chitosan nanocomposite for the detection of phenolic compounds. Anal. Chim. Acta 2010, 665, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Maczuga, M.; Economou, A.; Bobrowski, A.; Prodromidis, M.I. Novel screen-printed antimony and tin voltammetric sensors for anodic stripping detection of Pb (II) and Cd (II). Electrochim. Acta 2013, 114, 758–765. [Google Scholar] [CrossRef]
- Andreuccetti, C.; Bettazzi, F.; Giorgi, C.; Laschi, S.; Marrazza, G.; Mascini, M.; Palchetti, I. Macrocyclic Polyamine Modified Screen-Printed Electrodes for Copper (II) Detection. In Sensors; Springer: New York, NY, USA, 2014; pp. 471–474. [Google Scholar]
- Bouden, S.; Bellakhal, N.; Chaussé, A.; Vautrin-Ul, C. Performances of carbon-based screen-printed electrodes modified by diazonium salts with various carboxylic functions for trace metal sensors. Electrochem. Commun. 2014, 41, 68–71. [Google Scholar] [CrossRef]
- Chen, C.; Niu, X.; Chai, Y.; Zhao, H.; Lan, M. Bismuth-based porous screen-printed carbon electrode with enhanced sensitivity for trace heavy metal detection by stripping voltammetry. Sens. Actuators B Chem. 2013, 178, 339–342. [Google Scholar] [CrossRef]
- Jian, J.M.; Liu, Y.Y.; Zhang, Y.L.; Guo, X.S.; Cai, Q. Fast and sensitive detection of Pb2+ in foods using disposable screen-printed electrode modified by reduced graphene oxide. Sensors 2013, 13, 13063–13075. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Li, X.; Yu, J.; Ye, J. Facile and Simultaneous Stripping Determination of Zinc, Cadmium and Lead on Disposable Multiwalled Carbon Nanotubes Modified Screen-Printed Electrode. Electroanalysis 2013, 25, 567–572. [Google Scholar] [CrossRef]
- Wei, Y.; Yang, R.; Liu, J.H.; Huang, X.J. Selective detection toward Hg (II) and Pb (II) using polypyrrole/carbonaceous nanospheres modified screen-printed electrode. Electrochim. Acta 2013, 105, 218–223. [Google Scholar] [CrossRef]
- Gich, M.; Fernández-Sánchez, C.; Cotet, L.C.; Niu, P.; Roig, A. Facile synthesis of porous bismuth–carbon nanocomposites for the sensitive detection of heavy metals. J. Mater. Chem. A 2013, 1, 11410–11418. [Google Scholar] [CrossRef]
- Chen, C.; Niu, X.; Chai, Y.; Zhao, H.; Lan, M.; Zhu, Y.; Wei, G. Determination of Lead (II) Using Screen-Printed Bismuth-Antimony Film Electrode. Electroanalysis 2013, 25, 1446–1452. [Google Scholar] [CrossRef]
- Bouden, S.; Chaussé, A.; Dorbes, S.; El Tall, O.; Bellakhal, N.; Dachraoui, M.; Vautrin-Ul, C. Trace lead analysis based on carbon-screen-printed-electrodes modified via 4-carboxy-phenyl diazonium salt electroreduction. Talanta 2013, 106, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Punrat, E.; Chuanuwatanakul, S.; Kaneta, T.; Motomizu, S.; Chailapakul, O. Method development for the determination of arsenic by sequential injection/anodic stripping voltammetry using long-lasting gold-modified screen-printed carbon electrode. Talanta 2013, 116, 1018–1025. [Google Scholar] [CrossRef] [PubMed]
- Khairy, M.; Kampouris, D.K.; Kadara, R.O.; Banks, C.E. Gold nanoparticle modified screen printed electrodes for the trace sensing of arsenic (III) in the presence of copper (II). Electroanalysis 2010, 22, 2496–2501. [Google Scholar] [CrossRef]
- Sanllorente-Méndez, S.; Domínguez-Renedo, O.; Arcos-Martínez, M.J. Immobilization of acetylcholinesterase on screen-printed electrodes. Application to the determination of arsenic (III). Sensors 2010, 10, 2119–2128. [Google Scholar] [CrossRef] [PubMed]
- Aragay, G.; Pons, J.; Merkoçi, A. Enhanced electrochemical detection of heavy metals at heated graphite nanoparticle-based screen-printed electrodes. J. Mater. Chem. 2011, 21, 4326–4331. [Google Scholar] [CrossRef]
- Bernalte, E.; Sánchez, C.M.; Gil, E.P. Gold nanoparticles-modified screen-printed carbon electrodes for anodic stripping voltammetric determination of mercury in ambient water samples. Sens. Actuators B Chem. 2012, 161, 669–674. [Google Scholar] [CrossRef]
- Song, W.; Zhang, L.; Shi, L.; Li, D.W.; Li, Y.; Long, Y.T. Simultaneous determination of cadmium (II), lead (II) and copper (II) by using a screen-printed electrode modified with mercury nano-droplets. Microchim. Acta 2010, 169, 321–326. [Google Scholar] [CrossRef]
- Fang, H.L.; Zheng, H.X.; Ou, M.Y.; Meng, Q.; Fan, D.H.; Wang, W. One-step sensing lead in surface waters with screen printed electrode. Sens. Actuators B Chem. 2011, 153, 369–372. [Google Scholar] [CrossRef]
- Henríquez, C.; Laglera, L.M.; Alpizar, M.J.; Calvo, J.; Arduini, F.; Cerdà, V. Cadmium determination in natural water samples with an automatic multisyringe flow injection system coupled to a flow-through screen printed electrode. Talanta 2012, 96, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Wen, D.; Dong, S.; Wang, E. Gold nanowire assembling architecture for H2O2 electrochemical sensor. Talanta 2009, 77, 1510–1517. [Google Scholar] [CrossRef] [PubMed]
- Ramgir, N.S.; Yang, Y.; Zacharias, M. Nanowire-Based Sensors. Small 2010, 6, 1705–1722. [Google Scholar] [CrossRef] [PubMed]
- Govindhan, M.; Adhikari, B.R.; Chen, A. Nanomaterials-based electrochemical detection of chemical contaminants. RSC Adv. 2014, 4, 63741–63760. [Google Scholar] [CrossRef]
- Huo, D.; Li, Q.; Zhang, Y.; Hou, C.; Lei, Y. A highly efficient organophosphorus pesticides sensor based on CuO nanowires–SWCNTs hybrid nanocomposite. Sens. Actuators B Chem. 2014, 199, 410–417. [Google Scholar] [CrossRef]
- Khoang, N.D.; Van Duy, N.; Hoa, N.D.; Van Hieu, N. Design of SnO 2/ZnO hierarchical nanostructures for enhanced ethanol gas-sensing performance. Sens. Actuators B Chem. 2012, 174, 594–601. [Google Scholar] [CrossRef]
- Liana, D.D.; Raguse, B.; Gooding, J.J.; Chow, E. Recent advances in paper-based sensors. Sensors 2012, 12, 11505–11526. [Google Scholar] [CrossRef] [PubMed]
- Cinti, S.; Talarico, D.; Palleschi, G.; Moscone, D.; Arduini, F. Novel reagentless paper-based screen-printed electrochemical sensor to detect phosphate. Anal. Chim. Acta 2016, 919, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Medina-Sánchez, M.; Cadevall, M.; Ros, J.; Merkoçi, A. Eco-friendly electrochemical lab-on-paper for heavy metal detection. Anal. Bioanal. Chem. 2015, 407, 8445–8449. [Google Scholar] [CrossRef] [PubMed]
- Carvalhal, R.F.; Carrilho, E.; Kubota, L.T. The potential and application of microfluidic paper-based separation devices. Bioanalysis 2010, 2, 1663–1665. [Google Scholar] [CrossRef] [PubMed]
- Nie, Z.H.; Nijhuis, C.A.; Gong, J.L.; Chen, X.; Kumachev, A.; Martinez, A.W.; Narovlyansky, M.; Whitesides, G.M. Electrochemical sensing in paper-based microfluidic devices. Lab Chip 2010, 10, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Apilux, A.; Dungchai, W.; Siangproh, W.; Praphairaksit, N.; Henry, C.S.; Chailapakul, O. Lab-on-paper with dual electrochemical/colorimetric detection for simultaneous determination of gold and iron. Anal. Chem. 2010, 82, 1727–1732. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ge, L.; Ge, S.; Yan, M.; Yu, J.; Huang, J.; Liu, S. Three-dimensional paper-based electrochemiluminescence device for simultaneous detection of Pb2+ and Hg2+ based on potential-control technique. Biosens. Bioelectron. 2013, 41, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Shriver-Lake, L.C.; Zabetakis, D.; Dressick, W.J.; Stenger, D.A.; Trammell, S.A. Based Electrochemical Detection of Chlorate. Sensors 2018, 18, 328. [Google Scholar] [CrossRef] [PubMed]
- Rattanarat, P.; Dungchai, W.; Cate, D.; Volckens, J.; Chailapakul, O.; Henry, C.S. Multilayer paper-based device for colorimetric and electrochemical quantification of metals. Anal. Chem. 2014, 86, 3555–3562. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, J.C.; DeGregory, P.R.; Crooks, R.M. New functionalities for paper-based sensors lead to simplified user operation, lower limits of detection, and new applications. Ann. Rev. Anal. Chem. 2016, 9, 183–202. [Google Scholar] [CrossRef] [PubMed]
- Cinti, S.; Minotti, C.; Moscone, D.; Palleschi, G.; Arduini, F. Fully integrated ready-to-use paper-based electrochemical biosensor to detect nerve agents. Biosens. Bioelectron. 2017, 93, 46–51. [Google Scholar] [CrossRef] [PubMed]
Source | Examples of Main ECs | Distribution | Adverse Effects | Other detection Techniques | Reference |
---|---|---|---|---|---|
Pharmaceutical compounds | Fluoxetine (Prozac), Carbamazepine, Diphenhydramine Tetracycline, Erythromycin Sulfamethoxazole | Groundwater, surface water, wastewater treatment plant effluent, land applied biosolids, potable water, and recycled water. | Increased cancer rates, organ damage, Endocrine disruption, Antibiotic resistance in disease Environmental persistence Other Unknown health effects | Liquid chromatography coupled with mass spectrometry Gas chromatography | [8,16,27,28] |
Pesticides | Organochlorine, Carbon-14 (14C)-labeled compounds, Organophosphorus, Pyrethroids, Carbamates, Triazines | Agricultural soil, groundwater, surface water, potable water, recycled water. | Damage to biodiversity and ecosystems health by the attack of non-target organisms, environmental persistence, pest resistance, Endocrine disruption | Liquid chromatography coupled to mass spectrometry | [16,25,28,29] |
Sensing material | Contaminant | LOD | Working Range | Detection Time | Reference |
---|---|---|---|---|---|
Optical sensors | |||||
Au NP | Pb2+ | 3 nM | 3 nM to 1 μM | 6 min | [42] |
Au NP | Pb2+ | 100 nM | 0.1–50 μM | 25 min | [43] |
GO QD | Pb2+ | 0.09 nM | 0.1–1000 nM | 20 min | [44] |
Au NP | Hg2+ | 1 nM | 1 nM to 1 mM | 15 min | [45] |
Au NP | Hg2+ | 9.9 nM | 9.9–600 nM | 10 min | [46] |
Au NP | Hg2+ | 5 nM | 50 nM to 10 μM | 10 min | [47] |
Au NP/RGO | Pb2+ | 10 nM | 10 nM to 10 μM | few seconds | [48] |
Au NP/RGO | Hg2+ | 25 nM | 25 nM to 14.2 μM | few seconds | [49] |
RGO | Hg2+ | 1 nM | 1–28 nM | tens of seconds | [50] |
SWCNT (no probe) | Hg2+ | 10 nM | 10 nM to 1 mM | few seconds | [51] |
CNT | Cd2+ | 88 nM | 88 nM to 8.8 μM | 30 min | [52] |
SiNW | Pb2+ | 1 nM | 1–104 nM | few seconds | [53] |
SWCNT | E. coli DH5a | 3 × 103 CFU mL−1 | 3 × 103–1 × 106 CFU mL−1 | 20 min | [54] |
Graphene | E. coli K12 | 10 CFU mL−1 | 10–105 CFU mL−1 | 30 min | [55] |
RGO | E. coli O157:H7 | 803 CFU mL−1 | 803–107 CFU mL−1 | 25 min | [56] |
Electrochemical biosensors | |||||
Au | As3+ (1 M HCl) | 0.26 nM | 0.26–195 nM | 100 s | [57] |
Au–Pt NP | Hg2+ (1 M HCl) | 0.04 nM | 0.04–10 nM | 100 s | [58] |
Au NP/CNT | Hg2+ (0.1 M HClO4) | 0.3 nM | 0.5 nM to 1.25 μM | 2 min | [59] |
Carbon NP | Hg2+ (1 M HCl) | 4.95 nM | 4.95–49.5 nM | 2 min | [60] |
CNT | Pb2+ (1 M HCl) | 0.96 nM | 9.6–480 nM | 180 s | [61] |
Bi–CNT | Pb2+ (0.1 M acetate buffer) | 6.24 nM | 9.6–480 nM | 300 s | [62] |
MgSiO3 | Pb2+ (0.1 M NaAc–HAc) | 0.247 nM | 0.1–1.0 μM | tenths of seconds | [63] |
Graphene nanodots | Cu2+ (ammonium acetate solution) | 9 nM | 9 nM to 4 μM | 15 min | [64] |
MWCNT/GO | Pb2+ (0.1 M NaAc–HAc) | 0.96 nM | 0.96–144 nM | 3 min | [65] |
Graphene/nafion | Pb2+ (0.1 M acetate buffer) | 0.096 nM | 2.4–240 nM | 300 s | [66] |
Fe3O4/RTIL | As3+ (acetate buffer) | 0.01 nM | 13.3–133 nM | few min | [67] |
Nanosized hydroxyapatite | Pb2+ (0.2 M HAc-NaAc) | 1 nM | 5.0 nM to 0.8 μM | 10 min | [68] |
Nanosized Co. | H2PO4− (KH2PO4 solution) | 10−5 to 10−2 M | 1 min or less | [69] |
Analyte | Modifier | Detection Method | Reference |
---|---|---|---|
Liquids | Iridium and ruthenium oxide | pH sensor | [76] |
Liquids | Phenanthraquinone moiety | pH sensor | [77] |
Hydroxide ions | Nickel oxide bulk | pH sensor | [78] |
Dissolved oxygen | CdS modified | Cathodic electrochemiluminescence | [79] |
Nitrite | Poly(dimethylsiloxane) | Amperometric detection | [80] |
Nitrite | Shallow recessed unmodified | Amperometric detection | [81] |
Phosphate | Bisthiourea ionophores | Amperometric detection | [82] |
Nitrite | Carbon Black | Multi-electrochemical methods | [79] |
Phosphate | Electrocatalyst cobalt phthalocyanine | Amperometric | [83] |
Phosphate | Cobalt phthalocyanine | Amperometric | [84] |
Nitrate | Modified screen printed electrodes | Electrochemical detection | [85] |
Nitrate | polymer (poly(vinyl alcohol)) modified | Amperometric | [86] |
Nitrate | commercial screen-printed electrochemical cell | Amperometric | [87] |
Analyte | Modifier | Detection Method | Reference |
---|---|---|---|
Organophosphate | Poly(3,4-ethylenedioxythiophene) (PEDOT) | Amprometric | [88] |
Organophosphate pesticides | Cobalt phthalocyanine | Chronoamperometry | [89] |
Organophosphorus | Cysteamine self-assembled monolayer | Amperometric | [90] |
Organophosphorus and Carbamate Pesticides | Unmodified | Amperometry, flow system | [91] |
Aminophenol isomers | Untreated SPCE | Voltammetric | [92] |
Organophosphorus Pesticide | Single-walled carbon nanotubes—Co. phthalocyanine | Amperometry | [93] |
Organophosphorus Pesticide Dichlofenthion | Nanometer-Sized Titania | Photoelectrochemical | [94] |
Herbicide isoproturon | Unmodified | Amperometric | [95] |
Herbicide | Magnetic nanoparticles | Amperometric | [89] |
Picric acid and atrazine | Self-assembled monolayer | Photo-electrochemical | [96] |
Chlorsulfuron | Gold (Au) metal ions | Stripping voltammetry | [90] |
Phenol and catechol | Bismuth nanoparticles | Amperometric measurements | [97] |
Phenol and pesticide | Iridium oxide nanoparticles | Electrochemical measurement | [98] |
Phenol | Carbon Black Paste | Amperometric | [99] |
Phenolic compounds | Nano-HA-chitosan nanocomposite-modified gold electrode | Amperometric | [100] |
Analyte | Modifier | Detection Method | Reference |
---|---|---|---|
Pb2+ and Cd2+ | screen-printed antimony and tin | anodic stripping detection | [101] |
Cu2+ | Macrocyclic Polyamine Modified Screen-Printed Electrodes | Square wave anodic stripping voltammetry | [102] |
Cd2+, Cu2+ | Diazonium modified electtrodes | Amperometric detection | [103] |
Pb2+ and Cd2+ | Bismuth-coated | Stripping voltammetry | [104] |
Pb2+ | Reduced graphene oxide | Square wave anodic stripping voltammetry | [105] |
Zn2+, Cd2+ and Pb2+ | Multiwalled carbon nanotubes | Differential pulse stripping voltammetry | [106] |
Hg2+ and Pb2+ | Polypyrrole/carbonaceous nanospheres | Square wave anodic stripping voltammetry | [107] |
Pb2+ and Cd2+ | Bismuth–carbon nanocomposites | Differential electrochemical methods | [108] |
Pb2+ | Bismuth-antimony film | Stripping voltammetric | [109] |
Pb2+ | 4-carboxyphenyl-grafted | Anodic Square Wave Voltammetry | [110] |
As(III) | Gold electrode | Sequential injection/anodic stripping voltammetry | [111] |
As(III) | Nanoparticles | Linear sweep voltammetric | [112] |
As(III) | Modified screen printed electrodes | Amperometric | [113] |
Cd2+, Pb2+, Cu2+ and Hg2+ ions | Heated graphitenanoparticle | Electrochemical stripping | [114] |
Hg2+ | Gold nanoparticles-modified | Square wave anodic stripping voltammetry | [115] |
Pb2+, Cu2+ and Cd2+ | Mercury nano-droplets | Square wave anodic stripping voltammetry | [116] |
Pb2+ | Paper disk impregnated | One-step electrochemical detection | [117] |
Cd2+ | Nafion. Cd | Square Wave Anodic Stripping Voltammetry | [118] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernandez-Vargas, G.; Sosa-Hernández, J.E.; Saldarriaga-Hernandez, S.; Villalba-Rodríguez, A.M.; Parra-Saldivar, R.; Iqbal, H.M.N. Electrochemical Biosensors: A Solution to Pollution Detection with Reference to Environmental Contaminants. Biosensors 2018, 8, 29. https://doi.org/10.3390/bios8020029
Hernandez-Vargas G, Sosa-Hernández JE, Saldarriaga-Hernandez S, Villalba-Rodríguez AM, Parra-Saldivar R, Iqbal HMN. Electrochemical Biosensors: A Solution to Pollution Detection with Reference to Environmental Contaminants. Biosensors. 2018; 8(2):29. https://doi.org/10.3390/bios8020029
Chicago/Turabian StyleHernandez-Vargas, Gustavo, Juan Eduardo Sosa-Hernández, Sara Saldarriaga-Hernandez, Angel M. Villalba-Rodríguez, Roberto Parra-Saldivar, and Hafiz M. N. Iqbal. 2018. "Electrochemical Biosensors: A Solution to Pollution Detection with Reference to Environmental Contaminants" Biosensors 8, no. 2: 29. https://doi.org/10.3390/bios8020029
APA StyleHernandez-Vargas, G., Sosa-Hernández, J. E., Saldarriaga-Hernandez, S., Villalba-Rodríguez, A. M., Parra-Saldivar, R., & Iqbal, H. M. N. (2018). Electrochemical Biosensors: A Solution to Pollution Detection with Reference to Environmental Contaminants. Biosensors, 8(2), 29. https://doi.org/10.3390/bios8020029