Conjugation of Nanomaterials and Nematic Liquid Crystals for Futuristic Applications and Biosensors
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Nematic Liquid Crystal Molecular Alignment at the Interface of Nanoparticles
3.2. Self-Assembly of Nanoparticles through Nematic Liquid Crystals
3.3. Concept of Biosensing Using Nematic Liquid Crystalsvia Nanoparticles
3.4. Influence of Nanoparticles on the Biological Detection of Nematic Liquid Ccrystals
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Gennes, P.G.; Prost, J. The Physics of Liquid Crystals; Clarendon Press: Oxford, UK, 1993. [Google Scholar]
- Chandrashakher, S. Liquid Crystals; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Bahadur, B. Liquid Crystals: Applications and Uses, 3rd ed.; World Scientific: Singapore, 1992. [Google Scholar]
- Choudhary, A.; Singh, G.; Biradar, A.M. Advances in gold nanoparticle-liquid crystal composites. Nanoscale 2014, 6, 7743–7756. [Google Scholar] [CrossRef] [PubMed]
- Qui, H.; Hegmann, T. Multiple alignment modes for nematic liquid crystals doped with alkylthiol-capped gold nanoparticles. ACS Appl. Mater. Interface 2009, 1, 1731–1738. [Google Scholar] [CrossRef] [PubMed]
- Nayek, P.; Li, G. Superior electro-optic response in multiferroic bismuth ferrite nanoparticle doped nematic liquid crystal. Sci. Rep. 2015, 5, 10845–10853. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, K.G.G.; Wang, L.; Zheng, Z.G.; Bisoyi, H.K.; Li, G.; Tan, L.S.; Vaia, R.A.; Li, Q. Frequency-driven self-organized helical superstructures leaded with mesogen-grated silica nanoparticles. Ange. Chem. 2016, 55, 13090–13094. [Google Scholar] [CrossRef] [PubMed]
- Glushchenko, A.; Cheon, C.I.; West, J.; Li, F.; Büyüktanir, E.; Reznikov, Y.; Buchnev, A. Ferroelectric particles in liquid crystals: Recent frontiers. Mol. Cryst. Liq. Cryst. 2006, 453, 227–237. [Google Scholar] [CrossRef]
- Kurochkin, O.; Buchnev, O.; Iljin, A.; Park, S.K.; Kwon, S.B.; Grabar, O.; Reznikov, Y. A colloid of ferroelectric nanoparticles in a cholesteric liquid crystal. J. Opt. A Pure Appl. Opt. 2009, 11, 024003–024007. [Google Scholar] [CrossRef]
- Vardanyan, K.K.; Walton, R.D.; Bubb, D.M. Liquid crystal composite with high percentage of gold nanoparticles. Liq. Cryst. 2011, 38, 1279–1287. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, X.; Zhao, J.; Chai, Y.; Zhuang, W.; Wang, L. Electrophoretic deposition of silver nanoparticles in lamellar lytropic liquid crystal. Mater. Lett. 2006, 60, 2889–2892. [Google Scholar] [CrossRef]
- Terentjev, E.M. Disclination loops, standing alone and around solid particles, in nematic liquid crystals. Phys. Rev. E 1995, 51, 1330–1337. [Google Scholar] [CrossRef]
- Ramaswamy, S.; Nityananda, R.; Rgahunathan, V.A.; Prost, J. Power-law forces between particles in a nematic. Mol. Cryst. Liq. Cryst. 1996, 288, 175–180. [Google Scholar] [CrossRef]
- Monval, O.M.; Dedieu, J.C.; Krzywicki, T.G.; Poulin, P. Weak surface energy in nematic dispersions: Saturn ring defects and quadrupolar interactions. Eur. Phys. J. B 1999, 12, 167–170. [Google Scholar] [CrossRef]
- Ruhwandl, R.W.; Terentjev, E.M. Monte Carlo simulation of topological defects in the nematic liquid crystal matrix around a spherical colloid particle. Phys. Rev. E 1997, 56, 5561–5565. [Google Scholar] [CrossRef]
- Stark, H.; Stelzer, J.; Bernhard, R. Water droplets in a spherically confined nematic solvent: A numerical investigation. Eur. Phys. J. B 1999, 10, 515–523. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Abbott, N.L. Observation of saturn-ring defects around solid microspheres in nematic liquid crystals. Phys. Rev. Lett. 2000, 85, 4719–4722. [Google Scholar] [CrossRef] [PubMed]
- Poulin, P.; Stark, H.; Lubensky, T.C.; Weitz, D.A. Novel Colloidal Interactions in anisotropic fluids. Science 1997, 275, 1770–1773. [Google Scholar] [CrossRef] [PubMed]
- Poulin, P.; Cabuil, V.; Weitz, D.A. Direct Measurement of Colloidal Forces in an Anisotropic Solvent. Phys. Rev. Lett. 1997, 79, 4862–4865. [Google Scholar] [CrossRef]
- Poulin, P.; Weitz, D.A. Inverted And Multiple Nematic Emulsions. Phys. Rev. E 1999, 57, 626–637. [Google Scholar] [CrossRef]
- Lubensky, T.C.; Pettey, D.; Currier, N.; Stark, H. Topological defects and interactions in nematic emulsions. Phys. Rev. E 1998, 57, 610–625. [Google Scholar] [CrossRef] [Green Version]
- Lev, B.I.; Tomchuket, P.M. Interaction of foreign macrodroplets in a nematic liquid crystal and induced supermolecular structures. Phys. Rev. E 1999, 59, 591–602. [Google Scholar] [CrossRef]
- Yamamoto, R. Simulating Particle dispersions in nematic liquid-crystal solvents. Phys. Rev. Lett. 2001, 87, 75502–75505. [Google Scholar] [CrossRef] [PubMed]
- Stark, H. Geometric view on colloidal interactions above the nematic-isotropic phase transition. Phys. Rev. E 2002, 66, 41705–41708. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, J.; Yoneya, M.; Yokoyama, H. Nematic liquid crystal around a spherical particle: Investigation of the defect structure and its stability using adaptive mesh refinement. Eur. Phys. J. E 2004, 13, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, J.; Stark, H.; Yoneya, M.; Yokoyama, H. Dynamics of a nematic liquid crystal around a spherical particle. J. Phys. Condens. Matter 2004, 16, 1957–1968. [Google Scholar] [CrossRef]
- Bates, M.A. Nanospheres in a nematic liquid crystal solvent: The influence of particle size. Liq. Cryst. 2005, 32, 1525–1529. [Google Scholar] [CrossRef]
- Loudet, J.C.; Barois, P.; Auroy, P.; Keller, P.; Richard, H.; Poulin, P. Colloidal structures from bulk demixing in liquid crystals. Langmuir 2004, 20, 11336–11347. [Google Scholar] [CrossRef] [PubMed]
- Smalyukh, I.I.; Lavrentovich, O.D.; Kuzmin, A.N.; Kachynski, A.V.; Prasad, P.N. Elasticity-Mediated Self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal. Phys. Rev. Lett. 2005, 95, 157801–157804. [Google Scholar] [CrossRef] [PubMed]
- Musevic, I.; Skarabot, M.; Tkalec, U.; Ravanik, M.; Zumer, S. Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science 2006, 313, 954–961. [Google Scholar] [CrossRef] [PubMed]
- Kanayama, N.; Tsutsumi, O.; Kanazawa, A.; Ikeda, T. Distinct thermodynamic behaviour of a mesomorphic gold nanoparticle covered with a liquid-crystalline compound. Chem. Commun. 2001, 2640–2641. [Google Scholar] [CrossRef]
- Kuksenok, O.V.; Ruhwandl, R.W.; Shiyanovski, S.V.; Terentjev, E.M. Long-range forces and aggregation of colloid particles in a nematic liquid crystal. Phys. Rev. E 1996, 54, 5198–5203. [Google Scholar] [CrossRef]
- Stark, H. Director field configurations around a spherical particle in a nematic liquid crystal. Eur. Phys. J. B 1999, 10, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Yoshikawa, H.; Maeda, K.; Shiraishi, Y.; Xu, J.; Shiraki, H.; Toshima, N.; Kobayashi, S. Frequency modulation response of a tunable birefringent mode nematic liquid crystal electrooptic device fabricated by doping nanoparticles of Pd covered with liquid-crystal molecules. Jpn. J. Appl. Phys. 2002, 41, L1315–L1317. [Google Scholar] [CrossRef]
- Buchnev, O.; Osukova, E.; Reznikov, Y.; Reshetnyak, V.; Kresse, H.; Grabar, A. Enhanced dielectric response of liquid crystal ferroelectric suspension. Mol. Cryst. Liq. Cryst. 2004, 422, 47–55. [Google Scholar] [CrossRef]
- Reznikov, Y.; Buchnev, O.; Tereshchenko, O.; Reshetnyak, V.; Glushchenko, A.; West, J. Ferroelectric nematic suspension. Appl. Phys. Lett. 2003, 82, 1917–1919. [Google Scholar] [CrossRef]
- Barmatov, E.B.; Pebalk, D.A.; Barmatova, M.V. Influence of silver nanoparticles on the phase behavior of side-chain liquid crystalline polymers. Langmuir 2004, 20, 10868–10871. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.K.; Sandhya, K.L.; Nair, G.G.; Hiremath, U.S.; Yelamaggad, C.V.; Sampath, S. Electrical conductivity and dielectric constant measurements of liquid crystal-gold nanoparticle composites. Liq. Cryst. 2006, 33, 1121–1125. [Google Scholar] [CrossRef]
- Qi, H.; Hegmann, T. Formation of periodic stripe patterns in nematic liquid crystals doped with functionalized gold nanoparticles. J. Mater. Chem. 2006, 16, 4197–4205. [Google Scholar] [CrossRef]
- Kaur, S.; Singh, S.P.; Biradar, A.M.; Choudhary, A.; Sreenivas, K. Enhanced electro-optical properties in gold nanoparticles doped ferroelectric liquid crystal. Appl. Phys. Lett. 2007, 91, 23120–23122. [Google Scholar] [CrossRef]
- Prakash, J.; Choudhary, A.; Kumar, A.; Mehta, D.S.; Biradar, A.M. Nonvolatile memory effect based on gold nanoparticles doped ferroelectric liquid crystal. Appl. Phys. Lett. 2008, 93, 112904–112906. [Google Scholar] [CrossRef]
- Hinojosa, A.; Sharma, S.C. Effects of gold nanoparticles on electro-optical properties of a polymer-dispersed liquid crystal. Appl. Phys. Lett. 2010, 97, 81114–81116. [Google Scholar] [CrossRef]
- Podgornov, F.V.; Ryzhkova, A.V.; Haase, W. Influence of gold nanorods size on electro-optical and dielectric properties of ferroelectric liquid crystals. Appl. Phys. Lett. 2010, 97, 212903–212905. [Google Scholar] [CrossRef]
- Choudhary, A.; Li, G. Anisotropic shift of surface plasmon resonance of gold nanoparticles doped in nematic liquid crystal. Opt. Exp. 2014, 22, 24348–24357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pratibha, R.; Park, K.; Smalyukh, I.; Park, W. Tunable optical metamaterial based on liquid crystal-gold nanosphere composite. Opt. Exp. 2009, 17, 19459–19469. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.R.; Abbott, N.L. Orientational transitions of liquid crystals driven by binding of organoamines to carboxylic acids presented at surfaces with nanometer-scale topography. Langmuir 2003, 19, 275–284. [Google Scholar] [CrossRef]
- Yang, S.Y.; Wu, C.; Tan, H.; Wu, Y.; Liao, S.Z.; Wu, Z.Y.; Shen, G.L.; Yu, R.Q. Label-free liquid crystal biosensor based on specific oligonucleotide probes for heavy metal ions. Anal. Chem. 2013, 85, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.; Qiao, Y.; Han, W.; Xie, Z.; Wu, Z.; Shen, G.; Yu, R. Acetylcholinesterase liquid crystal biosensor based on modulated growth of gold nanoparticles for amplified detection of acetylcholine and inhibitor. Anal. Chem. 2012, 84, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Han, G.R.; Song, Y.J.; Jang, C.H. Label-free detection of viruses on a polymeric surface using liquid crystals. Coll. Surf. B Biointerfaces 2014, 116, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Jang, C.H.; Cheng, L.L.; Olsen, C.W.; Abbott, N.L. Anchoring of nematic liquid crystals on viruses with different envelope structures. Nano Lett. 2006, 6, 1053–1058. [Google Scholar] [CrossRef] [PubMed]
- Hartono, D.; Qin, W.J.; Yang, K.L.; Yung, L.Y.L. Imaging the disruption of phospholipid monolayer by protein-coated nanoparticles using ordering transitions of liquid crystals. Biomaterials 2009, 30, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, M.; Chandran, A.; Joshi, T.; Prakash, J.; Agrawal, V.V.; Biradar, A.M. Self assembled monolayer based liquid crystal biosensor for free cholesterol detection. Appl. Phys. Lett. 2014, 104, 154104–154107. [Google Scholar] [CrossRef]
- Schadt, M. Liquid crystal materials and liquid crystal displays. Ann. Rev. Mater. Sci. 1997, 27, 305–379. [Google Scholar] [CrossRef]
- Uchida, T. 40 years research and development on liquid crystal displays. Jpn. J. Appl. Phys. 2014, 53, 03CA02. [Google Scholar] [CrossRef]
- Li, G.; Mathine, D.L.; Valley, P.; Ayras, P.; Haddock, J.; Giridhar, M.S.; Schwiegerling, J.; Meredith, G.; Kippelen, B.; Honkanen, S.; et al. Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications. Proc. Natl. Acad. Sci. USA 2006, 103, 6100–6104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Valley, P.; Giridhar, M.S.; Mathine, D.; Meredith, G.; Haddock, J.; Kippelen, B.; Peyghambarian, N. Large-aperture switchable thin diffractive lens with interleaved electrode patterns. Appl. Phys. Lett. 2006, 89, 141120–141122. [Google Scholar] [CrossRef]
- Li, G.; Valley, P.; Ayras, P.; Honkanen, S.; Peyghambarian, N. High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures. Appl. Phys. Lett. 2007, 90, 111105–111107. [Google Scholar] [CrossRef]
- Li, G. Adaptive Lens. Prog. Opt. 2010, 55, 199–283. [Google Scholar]
- Manna, S.K.; Le-Gall, S.; Dupont, L.; Li, G. Exploiting soft organic optical resonant structure towards large range electro-optic tunable devices. J. Mol. Liq. 2016, 220, 161–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chigrinov, V.G. Liquid crystal applications in photonics. Front. Optoelectron. China 2010, 3, 103–107. [Google Scholar] [CrossRef]
- Cadwell, K.D.; Alf, M.E.; Abbott, N.L. Infrared spectroscopy of competitive interactions between liquid crystals, metal salts, and dimethyl methylphosphonate at surfaces. J. Phys. Chem. B 2006, 110, 26081–26088. [Google Scholar] [CrossRef] [PubMed]
- Urbanski, M. On the impact of nanoparticle doping on the electro-optic response of nematic hosts. Liq. Cryst. Today 2014, 24, 102–115. [Google Scholar] [CrossRef]
- Qi, H.; Hegmann, T. Liquid crystal-gold nanoparticle composites. Liq. Cryst. Today 2011, 20, 102–114. [Google Scholar] [CrossRef]
- Choudhary, A.; George, T.F.; Li, G. Surface plasmon-induced variation in the properties of gold nanoparticle-doped nematic liquid crystals. In Surface Plasmon Resonance: Advances in Research and Applications; Howell, D., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2017; pp. 51–86. ISBN 978-1-53611-857-5. [Google Scholar]
- Price, A.D.; Schwartz, D.K. DNA hybridization-induced reorientation of liquid crystal anchoring at the nematic liquid crystal/aqueous interface. J. Am. Chem. Sci. 2008, 130, 8188–8194. [Google Scholar] [CrossRef] [PubMed]
- Kuhnau, U.; Petrov, A.G.; Klose, G.; Schmiedel, H. Measurements of anchoring energy of a nematic liquid crystal, 4-cyano-4′−n-pentylbiphenyl, on Langmuir-Blodgett films of dipalmitoyl phosphatidylcholine. Phys. Rev. E 1999, 59, 578–585. [Google Scholar] [CrossRef]
- Discher, D.E.; Janmey, P.; Wang, Y.L. Tissue cells feel and respond to the stiffness of their substrate. Science 2005, 310, 1139–1143. [Google Scholar] [CrossRef] [PubMed]
- Hiltrop, K.; Stegemeyer, H. Alignment of liquid crystals by amphiphilic monolayers. Bunsenges Phys. Chem. 1978, 82, 884–889. [Google Scholar] [CrossRef]
- Popov, P.; Honaker, L.W.; Kooijman, E.E.; Mann, E.K.; Jakli, A.I. A liquid crystal biosensor for specific detection of antigens. Sens. Bio-Sens. Res. 2016, 8, 31–35. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Peng, Y.; Xu, L.; Zhou, W.; Wang, Q.; Guo, L. Liquid-crystal biosensor based on nickel-nanosphere-induced homeotropic alignment for the amplified detection of thrombin. ACS Appl. Mater. Interfaces 2015, 7, 23418–23422. [Google Scholar] [CrossRef] [PubMed]
- Bisoyi, H.K.; Kumar, S. Liquid-crystal nanoscience: An emerging avenue of soft self-assembly. Chem. Soc. Rev. 2011, 40, 306–319. [Google Scholar] [CrossRef] [PubMed]
- Phillips, P.M.; Mei, N.; Soule, E.R.; Reven, L.; Rey, A.D. Textures in polygonal arrangements of square nanoparticles in nematic liquid crystal matrices. Langmuir 2011, 27, 13335–13341. [Google Scholar] [CrossRef] [PubMed]
- Partibha, R.; Park, W.; Smalyukh, I.I. Colloidal gold nanosphere dispersions in smectic liquid crystals and thin nanoparticle-decorated smectic films. J. Appl. Phys. 2010, 107, 63511–63515. [Google Scholar] [CrossRef]
- Kim, D.S.; Honglawan, A.; Yang, S.; Yoon, D.K. Arrangement and SERS applications of nanoparticle clusters using liquid crystalline template. ACS Appl. Mater. Interfaces 2017, 9, 7787–7792. [Google Scholar] [CrossRef] [PubMed]
- Saliba, S.; Mingotaud, C.; Kahn, M.L.; Marty, J.D. Liquid crystalline thermotropic and lyotropic nanohybrids. Nanoscale 2013, 5, 6641–6661. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, W.; Lojewska, T.; Szustakiewicz, P.; Mieczkowski, J.; Pociecha, D. Reversible switching of structural and plasmonic properties of liquid-crystalline gold nanoparticle assemblies. Nanoscale 2016, 8, 2656–2663. [Google Scholar] [CrossRef] [PubMed]
- Bagiński, M.; Szmurło, A.; Andruszkiewicz, A.; Wojcik, M.; Lewandowski, W. Dynamic self-assembly of nanoparticles using thermotropic liquid crystals. Liq. Cryst. 2016, 43, 2391–2409. [Google Scholar] [CrossRef]
- Skarabot, M.; Musevic, I. Direct observation of interaction of nanoparticles in a nematic liquid crystal. Soft Matter 2010, 6, 5476–5481. [Google Scholar] [CrossRef]
- In, I.; Jun, Y.W.; Kim, Y.J.; Kim, S.Y. Spontaneous one dimensional arrangement of spherical Au nanoparticles with liquid crystal ligands. Chem. Commun. 2005, 800–801. [Google Scholar] [CrossRef] [PubMed]
- Umadevi, S.; Feng, X.; Hegmann, T. Large area self-assembly of nematic liquid-crystal-functionalized gold nanorods. Adv. Funct. Mater. 2013, 23, 1393–1403. [Google Scholar] [CrossRef]
- Zep, A.; Wojcik, M.M.; Lewandowski, W.; Sitkowska, K.; Prominski, A.; Mieczkowski, J.; Pociecha, D.; Gorecka, E. Phototunable liquid-crystalline phases made of nanoparticles. Angew. Chem. Int. Ed. 2014, 53, 13725–13728. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, W.; Jatczak, K.; Pociecha, D.; Mieczkowski, J. Control of gold nanoparticle superlattice properties via mesogenic ligand architecture. Langmuir 2013, 29, 3404–3410. [Google Scholar] [CrossRef] [PubMed]
- Burylov, S.V.; Raikher, Y.L. Orientation of a solid particle embedded in a monodomain nematic liquid crystal. Phys. Rev. E 1994, 50, 358–367. [Google Scholar] [CrossRef]
- Burylov, S.V.; Raikher, Y.L. On the orientation of an anisometric particle suspended in a bulk uniform nematic. Phys. Lett. A 1990, 149, 279–283. [Google Scholar] [CrossRef]
- Blanc, C.; Coutsault, D.; Emmanuelle, L. Ordering nano- and microparticles assemblies with liquid crystals. Liq. Cryst. Rev. 2013, 1, 83–109. [Google Scholar] [CrossRef]
- Yoshida, H.; Kawamoto, K.; Kubo, H.; Tsuda, T.; Fujii, A.; Kuwabata, S.; Ozaki, M. Nanoparticle-dispersed liquid crystals fabricated by sputter doping. Adv. Mater. 2010, 22, 622–626. [Google Scholar] [CrossRef] [PubMed]
- Tomar, V.; Roberts, T.F.; Abbott, N.L.; Ortiz, J.P.H.; de Pablo, J.J. Liquid crystal mediated interactions between nanoparticles in a nematic phase. Langmuir 2012, 28, 6124–6131. [Google Scholar] [CrossRef] [PubMed]
- Brake, J.M.; Daschner, M.K.; Luk, Y.Y.; Abbott, N.L. Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals. Science 2003, 302, 2094–2097. [Google Scholar] [CrossRef] [PubMed]
- Lowe, A.M.; Abbott, N.L. Liquid crystalline materials for biological applications. Chem. Mater. 2012, 24, 746–758. [Google Scholar] [CrossRef] [PubMed]
- Carlton, R.J.; Hunter, J.T.; Miller, D.S.; Abbasi, R.; Mushenheim, P.C.; Tan, L.N.; Abbott, N.L. Chemical and biological sensing using liquid crystals. Liq. Cryst. Rev. 2013, 1, 29–51. [Google Scholar] [CrossRef] [PubMed]
- Govindaraju, T.; Bertics, P.J.; Raines, R.T.; Abbott, N.L. Using measurements of anchoring energies of liquid crystals on surfaces to quantify proteins captured by immobilized ligands. J. Am. Chem. Soc. 2007, 129, 11223–11231. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Skaife, J.J.; Dubrovsky, T.B.; Abbott, N.L. Optical amplification of ligand-receptor binding using liquid crystals. Science 1998, 279, 2077–2080. [Google Scholar] [CrossRef] [PubMed]
- Malone, S.M.; Schwartz, D.K. Macroscopic liquid crystal response to isolated DNA helices. Langmuir 2011, 27, 11767–11772. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.Q.; Abbott, N.L. Enantiomeric interactions between liquid crystals and organized monolayers of tyrosine-containing dipeptides. J. Am. Chem. Soc. 2012, 134, 548–558. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Jang, C.H. Liquid crystal-based detection of thrombin coupled to interactions between a polyelectrolyte and a phospholipid monolayer. Anal. Biochem. 2014, 455, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Zhou, W.; Cui, X.; Tian, Y.; Guo, L.; Yang, H. Alignment of liquid crystals doped with nickel nanoparticles containing different morphologies. Adv. Mater. 2011, 23, 5779–5784. [Google Scholar] [CrossRef] [PubMed]
- Haes, A.J.; Hall, W.P.; Chang, L.; Klein, W.L.; van Duyne, R.P. A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer’s disease. Nano Lett. 2004, 4, 1029–1034. [Google Scholar] [CrossRef]
- Katsura, Y.I.; Wazawa, T.; Ban, T.; Morigaki, K.; Aoyama, S. Biotin-containing phospholipid vesicle layer formed on self-assembled monolayer of a saccharide-terminated alkyl disulfide for surface plasmon resonance biosensing. J. Biosci. Bioeng. 2008, 105, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Su, K.H.; Wei, Q.H.; Zhang, X.; Mock, J.J.; Smith, D.R.; Schultz, S. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 2003, 3, 1087–1090. [Google Scholar] [CrossRef]
- Chen, J.; Albella, P.; Pirzadeh, Z.; González, P.A.; Huth, F.; Bonetti, S.; Bonanni, V.; Åkerman, J.; Nogués, J.; Vavassori, P. Plasmonic nickel nanoantennas. Small 2011, 7, 2341–2347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choudhary, A.; George, T.F.; Li, G. Conjugation of Nanomaterials and Nematic Liquid Crystals for Futuristic Applications and Biosensors. Biosensors 2018, 8, 69. https://doi.org/10.3390/bios8030069
Choudhary A, George TF, Li G. Conjugation of Nanomaterials and Nematic Liquid Crystals for Futuristic Applications and Biosensors. Biosensors. 2018; 8(3):69. https://doi.org/10.3390/bios8030069
Chicago/Turabian StyleChoudhary, Amit, Thomas F. George, and Guoqiang Li. 2018. "Conjugation of Nanomaterials and Nematic Liquid Crystals for Futuristic Applications and Biosensors" Biosensors 8, no. 3: 69. https://doi.org/10.3390/bios8030069
APA StyleChoudhary, A., George, T. F., & Li, G. (2018). Conjugation of Nanomaterials and Nematic Liquid Crystals for Futuristic Applications and Biosensors. Biosensors, 8(3), 69. https://doi.org/10.3390/bios8030069