Magnetic Nanoparticle-Based Biosensing Assay Quantitatively Enhances Acid-Fast Bacilli Count in Paucibacillary Pulmonary Tuberculosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Clinical Samples
2.3. Optimization of Digestion Reagent
2.4. NCBA versus SSM
2.5. Sputum Smear Microscopy (SSM)
2.6. NCBA Approach
2.7. Optimization of GMNP Concentration
2.8. Validation of the Optimized Parameters
2.9. Quantification of the AFB Count
2.10. Data Analysis
2.11. Capture Efficiency (CE) of GMNP for Mycobacterial Cells
2.12. Transmission Electron Microscope (TEM) Imaging
2.13. Ethics
3. Results
3.1. Effect of NaOH-NALC Treatments on AFB Count
3.2. Effect of GMNP Concentration on AFB Count
3.3. Validation of the Optimized Parameters
3.4. Effect of NCBA in Grading Smears
3.5. Effect of Homogenization and Magnetic Separation on AFB Count
3.6. Supplementary Study Using Msm
4. Discussion
Determining GMNP’s Capture Efficiency for Mycobacterial Cells
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. Tuberculosis: Key Facts. Available online: http://www.who.int/news-room/fact-sheets/detail/tuberculosis (accessed on 27 June 2018).
- Parsons, L.M.; Somoskövi, Á.; Gutierrez, C.; Lee, E.; Paramasivan, C.N.; Abimiku, A.; Spector, S.; Roscigno, G.; Nkengasong, J. Laboratory diagnosis of Tuberculosis in resource-poor Countries: Challenges and Opportunities. Clin. Microbiol. Rev. 2011, 24, 314–350. [Google Scholar] [CrossRef] [PubMed]
- American Thoracic Society. Diagnostic Standards and Classification of Tuberculosis in Adults and Children. This official statement of the American Thoracic Society and the Centers for Disease Control and Prevention was adopted by the ATS Board of Directors, July 1999. This statemen. Am. J. Respir. Crit. Care Med. 2000, 161, 1376–1395. [Google Scholar] [CrossRef]
- Mase, S.R.; Ramsay, A.; Ng, V.; Henry, M.; Hopewell, P.C.; Cunningham, J.; Urbanczik, R.; Perkins, M.D.; Aziz, M.A.; Pai, M. Yield of serial sputum specimen examinations in the diagnosis of pulmonary tuberculosis: A systematic review. Int. J. Tuberc. Lung Dis. 2007, 11, 485–495. [Google Scholar]
- WHO. Xpert MTB/RIF Assay for the Diagnosis of Pulmonary and Extrapulmonary TB in Adults and Children; Policy Update; WHO: Geneva, Switzerland, 2013. [Google Scholar]
- Ardizzoni, E.; Fajardo, E.; Saranchuk, P.; Casenghi, M.; Page, A.-L.; Varaine, F.; Kosack, C.S.; Hepple, P. Implementing the Xpert® MTB/RIF Diagnostic Test for Tuberculosis and Rifampicin Resistance: Outcomes and Lessons Learned in 18 Countries. PLoS ONE 2015, 10, e0144656. [Google Scholar] [CrossRef] [PubMed]
- Ocheretina, O.; Byrt, E.; Mabou, M.-M.; Royal-Mardi, G.; Merveille, Y.-M.; Rouzier, V.; Fitzgerald, D.W.; Pape, J.W. False-positive rifampin resistant results with Xpert MTB/RIF version 4 assay in clinical samples with a low bacterial load. Diagn. Microbiol. Infect. Dis. 2016, 85, 53–55. [Google Scholar] [CrossRef] [Green Version]
- Williamson, D.A.; Basu, I.; Bower, J.; Freeman, J.T.; Henderson, G.; Roberts, S.A. An evaluation of the Xpert MTB/RIF assay and detection of false-positive rifampicin resistance in Mycobacterium tuberculosis. Diagn. Microbiol. Infect. Dis. 2012, 74, 207–209. [Google Scholar] [CrossRef]
- Torres-Chavolla, E.; Alocilja, E.C. Nanoparticle based DNA biosensor for tuberculosis detection using thermophilic helicase-dependent isothermal amplification. Biosens. Bioelectron. 2011, 26, 4614–4618. [Google Scholar] [CrossRef]
- Gao, L.; He, X.; Ju, L.; Liu, X.; Li, F.; Cui, H. A label-free method for the detection of specific DNA sequences using gold nanoparticles bifunctionalized with a chemiluminescent reagent and a catalyst as signal reporters. Anal. Bioanal. Chem. 2016, 408, 8747–8754. [Google Scholar] [CrossRef]
- He, F.; Xiong, Y.; Liu, J.; Tong, F.; Yan, D. Construction of Au-IDE/CFP10-ESAT6 aptamer/DNA-AuNPs MSPQC for rapid detection of Mycobacterium tuberculosis. Biosens. Bioelectron. 2016, 77, 799–804. [Google Scholar] [CrossRef]
- Qin, D.; He, X.; Wang, K.; Zhao, X.J.; Tan, W.; Chen, J. Fluorescent Nanoparticle-Based Indirect Immunofluorescence Microscopy for Detection of Mycobacterium tuberculosis. J. Biomed. Biotechnol. 2007, 2007, 89364. [Google Scholar] [CrossRef]
- Qin, D.; He, X.; Wang, K.; Tan, W. Using fluorescent nanoparticles and SYBR Green I based two-color flow cytometry to determine Mycobacterium tuberculosis avoiding false positives. Biosens. Bioelectron. 2008, 24, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Ekrami, A.; Samarbaf-Zadeh, A.R.; Khosravi, A.; Zargar, B.; Alavi, M.; Amin, M.; Kiasat, A. Validity of bioconjugated silica nanoparticles in comparison with direct smear, culture, and polymerase chain reaction for detection of Mycobacterium tuberculosis in sputum specimens. Int. J. Nanomed. 2011, 6, 2729–2735. [Google Scholar] [CrossRef] [PubMed]
- Loewenberg, S. Chiapas, Mexico: From Tuberculosis to Insurgent Bureaucracy. Available online: https://pulitzercenter.org/reporting/chiapas-mexico-tuberculosis-insurgent-bureaucracy (accessed on 27 June 2018).
- Sánchez-Pérez, H.J.; Gómez-velasco, A.; Leal, G.; Bencomo-Alerm, A.; Romero-Sandoval, N.; Martín-Mateo, M. Tuberculosis (TB) and Human Rights in Chiapas, Mexico. In Tuberculosis-Expanding Knowledge; Ribón, W., Ed.; Intech Open: London, UK, 2015; pp. 1–42. [Google Scholar]
- Nájera-Ortiz, J.C.; Sánchez-Pérez, H.J.; Ochoa-Díaz, H.; Arana-Cedeño, M.; Lezama, M.; Mateo, M.M. Demographic, health services and socio-economic factors associated with pulmonary tuberculosis mortality in Los Altos Region of Chiapas, Mexico. Int. J. Epidemiol. 2008, 37, 786–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Pérez, H.J.; Hernán, M.A.; Díaz, S.H.; Jansá, J.M.; Halperin, D.; Ascherio, A. Detection of Pulmonary Tuberculosis in Chiapas, Mexico. Ann. Epidemiol. 2002, 12, 166–172. [Google Scholar] [CrossRef]
- Meza-Palmeros, J.A.; Sánchez-Pérez, H.J.; Freyermuth-Enciso, G.; Sánchez-Ramírez, G. El gradiente socioeconómico de la mortalidad por tuberculosis en México (2004-2008). Población y Salud en Mesoamérica 2013, 10, 5–16. [Google Scholar] [CrossRef]
- Sánchez-Pérez, H.J.; Díaz-Vázquez, A.; Nájera-Ortiz, J.C.; Balandrano, S.; Martín-Mateo, M. Multidrug-resistant pulmonary tuberculosis in Los Altos, Selva and Norte regions, Chiapas, Mexico. Int. J. Tuberc. Lung Dis. 2010, 14, 34–39. [Google Scholar]
- Loewenberg, S. Tackling tuberculosis in southern Mexico. Lancet 2010, 375, 1768–1769. [Google Scholar] [CrossRef]
- Nájera-Ortiz, J.C.; Sánchez-Pérez, H.J.; Ochoa-Díaz-López, H.; Leal-Fernández, G.; Navarro-Giné, A. The Poor Survival among Pulmonary Tuberculosis Patients in Chiapas, Mexico: The Case of Los Altos Region. Tuberc. Res. Treat. 2012, 2012, 708423. [Google Scholar] [CrossRef]
- Kik, S.V.; Denkinger, C.M.; Chedore, P.; Pai, M. Replacing smear microscopy for the diagnosis of tuberculosis: What is the market potential? Eur. Respir. J. 2014, 43, 1793–1796. [Google Scholar] [CrossRef]
- World Health Organization; International Union Against Tuberculosis and Lung Disease (IUATLD). Technical guide for sputum examination for tuberculosis by direct smear microscopy in low income countries. Int. J. Tuberc Lung Dis. 2001, 5, 213–215. [Google Scholar]
- Mohan, A.; Padiadpu, J.; Baloni, P.; Chandra, N. Complete Genome Sequences of a Mycobacterium smegmatis Laboratory Strain (MC2 155) and Isoniazid-Resistant (4XR1/R2) Mutant Strains. Genome Announc. 2015, 3. [Google Scholar] [CrossRef]
- Tyagi, J.S.; Sharma, D. Mycobacterium smegmatis and tuberculosis. Trends Microbiol. 2002, 10, 68–69. [Google Scholar] [CrossRef]
- Yamada, H.; Mitarai, S.; Aguiman, L.; Matsumoto, H.; Fujiki, A. Preparation of mycobacteria-containing artificial sputum for TB panel testing and microscopy of sputum smears. Int. J. Tuberc. Lung Dis. 2006, 10, 899–905. [Google Scholar] [PubMed]
- Steingart, K.R.; Henry, M.; Ng, V.; Hopewell, P.C.; Ramsay, A.; Cunningham, J.; Urbanczik, R.; Perkins, M.; Aziz, M.A.; Pai, M. Fluorescence versus conventional sputum smear microscopy for tuberculosis: A systematic review. Lancet Infect. Dis. 2006, 6, 570–581. [Google Scholar] [CrossRef]
- Foddai, A.; Elliott, C.T.; Grant, I.R. Maximizing capture efficiency and specificity of magnetic separation for Mycobacterium avium subsp. paratuberculosis cells. Appl. Environ. Microbiol. 2010, 76, 7550–7558. [Google Scholar] [CrossRef] [PubMed]
- Roberts, B.; Hirst, R. Immunomagnetic separation and PCR for detection of Mycobacterium ulcerans. J. Clin. Microbiol. 1997, 35, 2709–2711. [Google Scholar]
- Lee, H.; Yoon, T.; Weissleder, R. Ultrasensitive Detection of Bacteria Using Core—Shell Nanoparticles and an NMR-Filter System. Angew. Chem. 2009, 121, 5657–5660. [Google Scholar] [CrossRef]
- Yang, H.; Qin, L.; Wang, Y.; Zhang, B.; Liu, Z.; Ma, H.; Lu, J.; Huang, X.; Shi, D.; Hu, Z. Detection of Mycobacterium tuberculosis based on H37Rv binding peptides using surface functionalized magnetic microspheres coupled with quantum dots—A nano detection method for Mycobacterium tuberculosis. Int. J. Nanomed. 2014, 10, 77–88. [Google Scholar] [CrossRef]
- Liandris, E.; Gazouli, M.; Andreadou, M.; Sechi, L.A.; Rosu, V.; Ikonomopoulos, J. Detection of pathogenic mycobacteria based on functionalized quantum dots coupled with immunomagnetic separation. PLoS ONE 2011, 6, e20026. [Google Scholar] [CrossRef]
- Allen, V.; Nicol, M.P.; Tow, L.A. Sputum processing prior to Mycobacterium tuberculosis detection by culture or nucleic acid amplification testing: A narrative review. Res. Rev. J. Microbiol. Biotechnol. 2016, 5, 120–130. [Google Scholar]
- Desikan, P. Sputum smear microscopy in tuberculosis: Is it still relevant? Indian J. Med. Res. 2013, 137, 442–444. [Google Scholar] [PubMed]
Concentration of NALC Solution | Number of AFB by SSM | Number of AFB by NCBA | No. Fields Observed | % Increase (NCBA-SSM) |
---|---|---|---|---|
0.025% | 6525 | 3958 | 300 | −39% |
1% | 903 | 1216 | 300 | 35% |
2% | 7677 | 9353 | 300 | 22% |
4% | 3160 | 7682 | 300 | 143% |
Concentration of GMNP | Number of AFB by SSM | Number of AFB by NCBA | No. Fields Observed | % Increase (NCBA-SSM) |
---|---|---|---|---|
0.5 mg/mL MNP | 876 | 391 | 300 | −55% |
10 mg/mL MNP | 1958 | 2575 | 300 | 32% |
20 mg/mL MNP | 3979 | 5169 | 300 | 30% |
1+ Grade a | 2+ Grade a | 3+ Grade a | |
---|---|---|---|
SSM, Total AFB counts | 685 | 28,504 | |
NCBA, Total AFB counts | 977 | 35,344 | |
No. Fields | 700 | 1700 | |
Percent increase by NCBA | 43% | 24% | |
SSM, AFB per 100 HPF | 98 | 1677 | |
NCBA, AFB per 100 HPF | 140 | 140 | 2079 |
SSM, AFB/mL | 4.9 × 103 | 8.4 × 104 | |
NCBA, AFB/mL | 7.0 × 103 | 1.0 × 105 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gordillo-Marroquín, C.; Gómez-Velasco, A.; Sánchez-Pérez, H.J.; Pryg, K.; Shinners, J.; Murray, N.; Muñoz-Jiménez, S.G.; Bencomo-Alerm, A.; Gómez-Bustamante, A.; Jonapá-Gómez, L.; et al. Magnetic Nanoparticle-Based Biosensing Assay Quantitatively Enhances Acid-Fast Bacilli Count in Paucibacillary Pulmonary Tuberculosis. Biosensors 2018, 8, 128. https://doi.org/10.3390/bios8040128
Gordillo-Marroquín C, Gómez-Velasco A, Sánchez-Pérez HJ, Pryg K, Shinners J, Murray N, Muñoz-Jiménez SG, Bencomo-Alerm A, Gómez-Bustamante A, Jonapá-Gómez L, et al. Magnetic Nanoparticle-Based Biosensing Assay Quantitatively Enhances Acid-Fast Bacilli Count in Paucibacillary Pulmonary Tuberculosis. Biosensors. 2018; 8(4):128. https://doi.org/10.3390/bios8040128
Chicago/Turabian StyleGordillo-Marroquín, Cristina, Anaximandro Gómez-Velasco, Héctor J. Sánchez-Pérez, Kasey Pryg, John Shinners, Nathan Murray, Sergio G. Muñoz-Jiménez, Allied Bencomo-Alerm, Adriana Gómez-Bustamante, Letisia Jonapá-Gómez, and et al. 2018. "Magnetic Nanoparticle-Based Biosensing Assay Quantitatively Enhances Acid-Fast Bacilli Count in Paucibacillary Pulmonary Tuberculosis" Biosensors 8, no. 4: 128. https://doi.org/10.3390/bios8040128
APA StyleGordillo-Marroquín, C., Gómez-Velasco, A., Sánchez-Pérez, H. J., Pryg, K., Shinners, J., Murray, N., Muñoz-Jiménez, S. G., Bencomo-Alerm, A., Gómez-Bustamante, A., Jonapá-Gómez, L., Enríquez-Ríos, N., Martín, M., Romero-Sandoval, N., & Alocilja, E. C. (2018). Magnetic Nanoparticle-Based Biosensing Assay Quantitatively Enhances Acid-Fast Bacilli Count in Paucibacillary Pulmonary Tuberculosis. Biosensors, 8(4), 128. https://doi.org/10.3390/bios8040128