Faecal Scent as a Novel Non-Invasive Biomarker to Discriminate between Coeliac Disease and Refractory Coeliac Disease: A Proof of Principle Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample Collection
2.3. Sample Preparation
2.4. Faecal Volatile Organic Compound Analysis
2.5. Statistical Analysis
2.6. Ethical Considerations
3. Results
3.1. Baseline Characteristics
3.2. Faecal Volatile Organic Compound Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Coeliac vs. refractory 100 features |
Sparse logistic regression (ROC) |
AUC = 0.8 (0.6–1) |
sensitivity = 0.62 (0.32–0.86) |
specificity = 1 (0.59–1) |
PPV = 1 |
NPV = 0.58 |
p-Value = 0.013 |
Random forest (ROC) |
AUC = 0.81 (0.62–1) |
sensitivity = 0.62 (0.32–0.86) |
specificity = 1 (0.59–1) |
PPV = 1 |
NPV = 0.58 |
p-Value = 0.011 |
Gaussian process (ROC) |
AUC = 0.92 (0.81–1) |
sensitivity = 0.77 (0.46–0.95) |
specificity = 1 (0.59–1) |
PPV = 1 |
NPV = 0.7 |
p-Value = 0.000 |
Support vector machine (ROC) |
AUC = 0.91 (0.79–1) |
sensitivity = 0.85 (0.55–0.98) |
specificity = 0.86 (0.42–1) |
PPV = 0.92 |
NPV = 0.75 |
p-Value = 0.000 |
Neural net (ROC) |
AUC = 0.76 (0.54–0.98) |
sensitivity = 0.54 (0.25–0.81) |
specificity = 1 (0.59–1) |
PPV = 1 |
NPV = 0.54 |
p-Value = 0.028 |
Celiac vs. healthy 100 features |
Sparse logistic regression (ROC) |
AUC = 0.57 (0.34–0.79) |
sensitivity = 0.38 (0.14–0.68) |
specificity = 0.94 (0.71–1) |
PPV = 0.83 |
NPV = 0.67 |
p-Value = 0.268 |
Random forest (ROC) |
AUC = 0.51 (0.28 - 0.75) |
sensitivity = 0.38 (0.14 - 0.68) |
specificity = 0.88 (0.64 - 0.99) |
PPV = 0.71 |
NPV = 0.65 |
p-Value = 0.442 |
Gaussian process (ROC) |
AUC = 0.5 (0.26–0.74) |
sensitivity = 0.23 (0.05–0.54) |
specificity = 1 (0.8–1) |
PPV = 1 |
NPV = 0.63 |
p-Value = 0.5 |
Support vector machine (ROC) |
AUC = 0.71 (0.51–0.91) |
sensitivity = 0.92 (0.64–1) |
specificity = 0.65 (0.38–0.86) |
PPV = 0.67 |
NPV = 0.92 |
p-Value = 0.024 |
Neural net (ROC) |
AUC = 0.62 (0.39–0.85) |
sensitivity = 0.54 (0.25–0.81) |
specificity = 0.88 (0.64–0.99) |
PPV = 0.78 |
NPV = 0.71 |
p-Value = 0.129 |
Refractory vs. healthy 100 features |
Sparse logistic regression (ROC) |
AUC = 0.42 (0.13–0.71) |
sensitivity = 0.82 (0.57–0.96) |
specificity = 0.29 (0.037–0.71) |
PPV = 0.74 |
NPV = 0.4 |
p-Value = 0.284 |
Random forest (ROC) |
AUC = 0.42 (0.14–0.7) |
sensitivity = 0.59 (0.33–0.82) |
specificity = 0.57 (0.18–0.9) |
PPV = 0.77 |
NPV = 0.36 |
p-Value = 0.2834 |
Gaussian process (ROC) |
AUC = 0.59 (0.29–0.89) |
sensitivity = 0.82 (0.57–0.96) |
specificity = 0.57 (0.18–0.9) |
PPV = 0.82 |
NPV = 0.57 |
p-Value = 0.267 |
Support vector machine (ROC) |
AUC = 0.57 (0.29–0.86) |
sensitivity = 0.71 (0.44–0.9) |
specificity = 0.57 (0.18–0.9) |
PPV = 0.8 |
NPV = 0.44 |
p-Value = 0.310 |
Neural net (ROC) |
AUC = 0.6 (0.35–0.84) |
sensitivity = 0.35 (0.14–0.62) |
specificity = 1 (0.59–1) |
PPV = 1 |
NPV = 0.39 |
p-Value = 0.772 |
References
- West, J.; Logan, R.F.A.; Hill, P.G.; Lloyd, A.; Lewis, S.; Hubbard, R.; Reader, R.; Holmes, G.K.T.; Khaw, K. Seroprevalence, correlates, and characteristics of undetected coeliac disease in England. Gut 2003, 52, 960–965. [Google Scholar] [CrossRef] [Green Version]
- Korponay-Szabo, I.R.; Szabados, K.; Pusztai, J.; Uhrin, K.; Ludmány, E.; Nemes, E.; Kaukinen, K.; Kapitány, A.; Koskinen, L.; Sipka, S.; et al. Population screening for coeliac disease in primary care by district nurses using a rapid antibody test: Diagnostic accuracy and feasibility study. BMJ 2007, 335, 1244–1247. [Google Scholar] [CrossRef] [PubMed]
- Mustalahti, K.; Catassi, C.; Reunanen, A.; Fabiani, E.; Heier, M.; McMillan, S.; Murray, L.; Metzger, M.H.; Gasparin, M.; Bravi, E.; et al. The prevalence of celiac disease in Europe: Results of a centralized, international mass screening project. Ann. Med. 2010, 42, 587–595. [Google Scholar] [CrossRef]
- Singh, P.; Arora, A.; Strand, T.A.; Leffler, D.A.; Catassi, C.; Green, P.H.; Kelly, C.P.; Ahuja, V.; Makharia, G.K. Global Prevalence of Celiac Disease: Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2018, 16, 823–836. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.P.; Bai, J.C.; Liu, E.; Leffler, D.A. Advances in diagnosis and management of celiac disease. Gastroenterology 2015, 148, 1175–1186. [Google Scholar] [CrossRef]
- Rampertab, S.D.; Pooran, N.; Brar, P.; Singh, P.; Green, P.H. Trends in the presentation of celiac disease. Am. J. Med. 2006, 119, e355–e359. [Google Scholar]
- Lewis, N.R.; Scott, B.B. Meta-analysis: Deamidated gliadin peptide antibody and tissue transglutaminase antibody compared as screening tests for coeliac disease. Aliment. Pharmacol. 2010, 31, 73–81. [Google Scholar] [CrossRef]
- Corazza, G.R.; Villanacci, V. Coeliac disease. J. Clin. Pathol. 2005, 58, 573–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindfors, K.; Ciacci, C.; Kurppa, K.; Lundin, K.E.A.; Makharia, G.K.; Mearin, M.L.; Murray, J.A.; Verdu, E.F.; Kaukinen, K. Coeliac disease. Nat. Rev. Dis. Primers 2019, 5, 3. [Google Scholar] [CrossRef]
- Van Wanrooij, R.L.; Bouma, G.; Bontkes, H.J.; Neefjes-Borst, A.; van Grieken, N.C.; von Blomberg, B.M.; Mulder, C.J. Outcome of Referrals for Non-Responsive Celiac Disease in a Tertiary Center: Low Incidence of Refractory Celiac Disease in the Netherlands. Clin. Transl. Gastroenterol. 2017, 8, e218. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Tapia, A.; Murray, J.A. Classification and management of refractory coeliac disease. Gut 2010, 59, 547–557. [Google Scholar] [CrossRef]
- Malamut, G.; Cellier, C. Refractory Celiac Disease. Gastroenterol. Clin. N. Am. 2019, 48, 137–144. [Google Scholar] [CrossRef]
- Silvester, J.A.; Kurada, S.; Szwajcer, A.; Kelly, C.P.; Leffler, D.A.; Duerksen, D.R. Tests for Serum Transglutaminase and Endomysial Antibodies Do Not Detect Most Patients with Celiac Disease and Persistent Villous Atrophy on Gluten-free Diets: A Meta-analysis. Gastroenterology 2017, 153, 689–701. [Google Scholar] [CrossRef] [PubMed]
- Levy, I.; Gralnek, I.M. Complications of diagnostic colonoscopy, upper endoscopy, and enteroscopy. Best Pract. Res. Clin. Gastroenterol. 2016, 30, 705–718. [Google Scholar] [CrossRef]
- Shirasu, M.; Touhara, K. The scent of disease: Volatile organic compounds of the human body related to disease and disorder. J. Biochem. 2011, 150, 257–266. [Google Scholar] [CrossRef]
- Pavlou, A.K.; Magan, N.; McNulty, C.; Jones, J.; Sharp, D.; Brown, J.; Turner, A.P. Use of an electronic nose system for diagnoses of urinary tract infections. Biosens. Bioelectron. 2002, 17, 893–899. [Google Scholar] [CrossRef]
- Roine, A.; Saviauk, T.; Kumpulainen, P.; Karjalainen, M.; Tuokko, A.; Aittoniemi, J.; Vuento, R.; Lekkala, J.; Lehtimaki, T.; Tammela, T.L.; et al. Rapid and accurate detection of urinary pathogens by mobile IMS-based electronic nose: A proof-of-principle study. PLoS ONE 2014, 9, e114279. [Google Scholar] [CrossRef] [PubMed]
- Roine, A.; Veskimae, E.; Tuokko, A.; Kumpulainen, P.; Koskimaki, J.; Keinanen, T.A.; Hakkinen, M.R.; Vepsalainen, J.; Paavonen, T.; Lekkala, J.; et al. Detection of prostate cancer by an electronic nose: A proof of principle study. J. Urol. 2014, 192, 230–234. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, A.; Pennazza, G.; Santonico, M.; Martinelli, E.; Roscioni, C.; Galluccio, G.; Paolesse, R.; Di Natale, C. An investigation on electronic nose diagnosis of lung cancer. Lung Cancer 2010, 68, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Wojnowski, W.; Dymerski, T.; Gebicki, J.; Namiesnik, J. Electronic Noses in Medical Diagnostics. Curr. Med. Chem. 2019, 26, 197–215. [Google Scholar] [CrossRef] [PubMed]
- Borsdorf, H.; Eiceman, G.A. Ion Mobility Spectrometry: Principles and Applications. Appl. Spectrosc. Rev. 2006, 41, 323–375. [Google Scholar] [CrossRef]
- Arasaradnam, R.P.; Ouaret, N.; Thomas, M.G.; Quraishi, N.; Heatherington, E.; Nwokolo, C.U.; Bardhan, K.D.; Covington, J.A. A novel tool for noninvasive diagnosis and tracking of patients with inflammatory bowel disease. Inflamm. Bowel Dis. 2013, 19, 999–1003. [Google Scholar] [CrossRef]
- Arasaradnam, R.P.; McFarlane, M.; Daulton, E.; Skinner, J.; O’Connell, N.; Wurie, S.; Chambers, S.; Nwokolo, C.; Bardhan, K.; Savage, R.; et al. Non-invasive exhaled volatile organic biomarker analysis to detect inflammatory bowel disease (IBD). Dig Liver Dis. 2016, 48, 148–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, I.; Greenwood, R.; Costello, B.; Ratcliffe, N.; Probert, C.S. Investigation of faecal volatile organic metabolites as novel diagnostic biomarkers in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2016, 43, 596–611. [Google Scholar] [CrossRef] [Green Version]
- Bomers, M.K.; Smulders, Y.M. An odour of disease and decay: The nose as a diagnostic instrument. Ned. Tijdschr. Geneeskd. 2015, 159, A9434. [Google Scholar]
- Tait, E.; Hill, K.A.; Perry, J.D.; Stanforth, S.P.; Dean, J.R. Development of a novel method for detection of Clostridium difficile using HS-SPME-GC-MS. J. Appl. Microbiol. 2014, 116, 1010–1019. [Google Scholar] [CrossRef]
- Berkhout, D.J.; Benninga, M.A.; van Stein, R.M.; Brinkman, P.; Niemarkt, H.J.; de Boer, N.K.; de Meij, T.G. Effects of Sampling Conditions and Environmental Factors on Fecal Volatile Organic Compound Analysis by an Electronic Nose Device. Sensors 2016, 16, 1976. [Google Scholar] [CrossRef] [PubMed]
- Birkemeyer, C.S.; Thomsen, R.; Janig, S.; Kucklich, M.; Slama, A.; Weiss, B.M.; Widdig, A. Sampling the Body Odor of Primates: Cotton Swabs Sample Semivolatiles Rather Than Volatiles. Chem. Senses. 2016, 41, 525–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gratton, J.; Phetcharaburanin, J.; Mullish, B.H.; Williams, H.R.; Thursz, M.; Nicholson, J.K.; Holmes, E.; Marchesi, J.R.; Li, J.V. Optimized Sample Handling Strategy for Metabolic Profiling of Human Feces. Anal. Chem. 2016, 88, 4661–4668. [Google Scholar] [CrossRef]
- Di Cagno, R.; Rizzello, C.G.; Gagliardi, F.; Ricciuti, P.; Ndagijimana, M.; Francavilla, R.; Guerzoni, M.E.; Crecchio, C.; Gobbetti, M.; De Angelis, M. Different fecal microbiotas and volatile organic compounds in treated and untreated children with celiac disease. Appl. Environ. Microbiol. 2009, 75, 3963–3971. [Google Scholar] [CrossRef] [PubMed]
- Bosch, S.; Berkhout, D.J.; Ben Larbi, I.; de Meij, T.G.; de Boer, N.K. Fecal volatile organic compounds for early detection of colorectal cancer: Where are we now? J. Cancer Res. Clin. Oncol. 2019, 145, 223–234. [Google Scholar] [CrossRef]
- Bosch, S.; El Manouni El Hassani, S.; Covington, J.A.; Wicaksono, A.N.; Bomers, M.K.; Benninga, M.A.; Mulder, C.J.J.; de Boer, N.K.H.; de Meij, T.G.J. Optimized Sampling Conditions for Fecal Volatile Organic Compound Analysis by Means of Field Asymmetric Ion Mobility Spectrometry. Anal. Chem. 2018, 90, 7972–7981. [Google Scholar] [CrossRef] [PubMed]
- Eiceman, G.A.K.; Karpas, Z.; Hill, H.H., Jr. Ion Mobility Spectrometry, 2nd ed.; CRC press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Valentine, S.J.; Clemmer, D.E. Treatise on the measurement of molecular masses with ion mobility spectrometry. Anal. Chem. 2009, 81, 5876–5880. [Google Scholar] [CrossRef] [PubMed]
- Bosch, S.; Wintjens, D.; Wicaksono, A.; Kuijvenhoven, J.; Stokkers, P.; van der Hulst, R.; Daulton, E.; Pierik, M.; Covington, J.A.; De Boer, N.K.; et al. Detection and monitoring of IBD based on faecal volatile organic compounds. J. Crohn’s Colitis 2019, 13, S154. [Google Scholar] [CrossRef]
- Berkhout, D.J.C.; van Keulen, B.J.; Niemarkt, H.J.; Bessem, J.R.; de Boode, W.P.; Cossey, V.; Hoogenes, N.; Hulzebos, C.V.; Klaver, E.; Andriessen, P.; et al. Late-onset Sepsis in Preterm Infants Can Be Detected Preclinically by Fecal Volatile Organic Compound Analysis: A Prospective, Multicenter Cohort Study. Clin. Infect. Dis. 2019, 68, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Maier, L.; Pruteanu, M.; Kuhn, M.; Zeller, G.; Telzerow, A.; Anderson, E.E.; Brochado, A.R.; Fernandez, K.C.; Dose, H.; Mori, H.; et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 2018, 555, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Yun, Y.; Kim, S.J.; Lee, E.J.; Chang, Y.; Ryu, S.; Shin, H.; Kim, H.L.; Kim, H.N.; Lee, J.H. Association between Cigarette Smoking Status and Composition of Gut Microbiota: Population-Based Cross-Sectional Study. J. Clin. Med. 2018, 7. [Google Scholar] [CrossRef] [PubMed]
- Bonder, M.J.; Tigchelaar, E.F.; Cai, X.; Trynka, G.; Cenit, M.C.; Hrdlickova, B.; Zhong, H.; Vatanen, T.; Gevers, D.; Wijmenga, C.; et al. The influence of a short-term gluten-free diet on the human gut microbiome. Genome Med. 2016, 8, 45. [Google Scholar] [CrossRef]
- De Swart, J.; van Gaal, N.; Berkhout, D.J.C.; de Meij, T.G.J.; de Boer, N.K. Smoking Influences Fecal Volatile Organic Compounds Composition. Clin. Gastroenterol. Hepatol. 2018, 16, 1168–1169. [Google Scholar] [CrossRef] [Green Version]
Coeliac Disease (n = 13) | Refractory Coeliac Disease (n = 7) | Healthy Controls (n = 10) | p-Value ALL | p-Value CD vs. HC | p-Value RCD vs HC | p-Value CD vs. RCD | |
---|---|---|---|---|---|---|---|
Sex, female (n, [%]) | 10 [76%] | 3 [42%] | 6 [60%] | 0.314 | 0.650 | 0.637 | 0.174 |
Age (median [IQR]) | 69 [44–78] | 78 [76–80] | 59 [46–71] | 0.025 * | 0.085 | 0.001 ** | 0.085 |
BMI (median [IQR]) | 23 [20–28] | 23 [20–24] | 28 [26–33] | 0.027 * | 0.588 | 0.010 * | 0.588 |
BSS (median [IQR]) | 4 [1.5–4.5] | 4 [3.0–6.0] | 3 [3.0–5.0] | 0.628 | 0.371 | 0.470 | 0.371 |
Currently Smoking (n, [%]) | 1 [7.7%] | 0 | 1 [10%] | 1.000 | 1.000 | 1.000 | 1.000 |
Proton Pump Inhibitors (n, [%]) | 5 [39%] | 6 [86%] | 4 [40%] | 0.130 | 1.000 | 0.134 | 0.070 |
Antibiotics (n, [%]) | 4 [31%] | 2 [29%] | 0 | 0.121 | 0.104 | 0.154 | 1.000 |
Immunosuppressive therapy | 2 [15%] $ | 5 [71%] # | 0 | 0.002 * | 0.486 | 0.003 ** | 0.022 * |
Comparison | AUC (95% CI) | Sensitivity | Specificity | PPV | NPV | P-Value |
---|---|---|---|---|---|---|
Coeliac disease vs. refractory coeliac disease | 0.91 (0.79–1) | 0.85 | 0.86 | 0.92 | 0.75 | 0.000 |
Coeliac disease vs. healthy controls | 0.71 (0.51–0.91) | 0.92 | 0.65 | 0.67 | 0.92 | 0.024 |
Refractory coeliac disease vs. healthy controls | 0.57 (0.29–0.86) | 0.71 | 0.57 | 0.80 | 0.44 | 0.310 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rouvroye, M.D.; Wicaksono, A.; Bosch, S.; Savelkoul, E.; Covington, J.A.; Beaumont, H.; Mulder, C.J.; Bouma, G.; de Meij, T.G.J.; de Boer, N.K.H. Faecal Scent as a Novel Non-Invasive Biomarker to Discriminate between Coeliac Disease and Refractory Coeliac Disease: A Proof of Principle Study. Biosensors 2019, 9, 69. https://doi.org/10.3390/bios9020069
Rouvroye MD, Wicaksono A, Bosch S, Savelkoul E, Covington JA, Beaumont H, Mulder CJ, Bouma G, de Meij TGJ, de Boer NKH. Faecal Scent as a Novel Non-Invasive Biomarker to Discriminate between Coeliac Disease and Refractory Coeliac Disease: A Proof of Principle Study. Biosensors. 2019; 9(2):69. https://doi.org/10.3390/bios9020069
Chicago/Turabian StyleRouvroye, Maxine D., Alfian Wicaksono, Sofie Bosch, Edo Savelkoul, James A. Covington, Hanneke Beaumont, Chris J. Mulder, Gerd Bouma, Tim G.J. de Meij, and Nanne K.H. de Boer. 2019. "Faecal Scent as a Novel Non-Invasive Biomarker to Discriminate between Coeliac Disease and Refractory Coeliac Disease: A Proof of Principle Study" Biosensors 9, no. 2: 69. https://doi.org/10.3390/bios9020069
APA StyleRouvroye, M. D., Wicaksono, A., Bosch, S., Savelkoul, E., Covington, J. A., Beaumont, H., Mulder, C. J., Bouma, G., de Meij, T. G. J., & de Boer, N. K. H. (2019). Faecal Scent as a Novel Non-Invasive Biomarker to Discriminate between Coeliac Disease and Refractory Coeliac Disease: A Proof of Principle Study. Biosensors, 9(2), 69. https://doi.org/10.3390/bios9020069