Droplets for Sampling and Transport of Chemical Signals in Biosensing: A Review
Abstract
:1. Introduction
2. Theory
2.1. Taylor Dispersion
2.2. Biosensing with a Chemical, Spatial and Temporal Resolution
2.3. Interface Forces
3. Sampling Devices
3.1. Aqueous-Phase Sampling with Downstream Droplet Formation
3.1.1. Diffusion through a Membrane
3.1.2. Direct Fluid Extraction
3.2. Preformed Droplets for Sampling
3.3. Droplets Formed near the Analyte Source
3.3.1. Droplets Formed near a Source without a Barrier
3.3.2. Droplets Formed at the Source with a Hydrophilic Barrier
4. Droplet Extraction for Downstream Analysis
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Feng, S.L.; Dong, T. Applied technology in diaper-based UTI testing for elder people by using nitrite ion selective electrode. Mech. Eng. Mater. Inf. Technol. II 2014, 662, 225–228. [Google Scholar] [CrossRef]
- Feng, S.L.; Roseng, L.E.; Dong, T. Quantitative detection of Escherichia coli and measurement of urinary tract infection diagnosis possibility by use of a portable, handheld sensor. In Proceedings of the 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings, Turin, Italy, 7–9 May 2015; pp. 586–589. [Google Scholar]
- Lindholm-Sethson, B.; Nyström, J.; Geladi, P.; Koeppe, R.; Nelson, A.; Whitehouse, C. Are biosensor arrays in one membrane possible? A combination of multifrequency impedance measurements and chemometrics. Anal. Bioanal. Chem. 2003, 377, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Luka, G.; Ahmad, A.; Najjaran, H.; Alocilja, E.; DeRosa, M.; Wolthers, K.; Malki, A.; Aziz, H.; Althani, A.; Hoorfar, M. Microfluidics integrated biosensors: A leading technology towards lab-on-a-chip and sensing applications. Sensors 2015, 15, 30011–30031. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.L.; Dong, T. Design and characterization of a lab-on-chip for continuous bioluminescent measurements of ATP. In Proceedings of the 2014 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Lisboa, Portugal, 11–12 June 2014; pp. 298–301. [Google Scholar]
- Taylor, G. Dispersion of soluble matter in solvent flowing slowly through a Tube. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1953, 219, 186–203. [Google Scholar]
- Ostromohov, N.; Bercovici, M.; Kaigala, G. Delivery of minimally dispersed liquid interfaces for sequential surface chemistry. Lab Chip 2016, 16, 3015–3023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casadevall i Solvas, X.; deMallo, A. Droplet microfluidics: Recent developments and future applications. Chem. Commun. 2011, 47, 1936–1942. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Slaney, T.; Mabrouk, O.; Kennedy, R.T. Collection of nanoliter microdialysate fractions in plugs for off-line in vivo chemical monitoring with up to 2 s temporal resolution. J. Neurosci. Methods 2010, 190, 39–48. [Google Scholar] [CrossRef]
- Chen, D.; Du, W.; Liu, Y.; Liu, W.; Kuznetsov, A.; Mendez, F.E.; Philipson, L.H.; Ismagilov, R.F. The chemistrode: A droplet-based microfluidic device for stimulation and recording with high temporal, spatial, and chemical resolution. Proc. Natl. Acad. Sci. USA 2008, 105, 16843–16848. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Roman, G.T.; Schultz, K.; Jennings, C.; Kennedy, R.T. Improved temporal resolution for in vivo microdialysis by using segmented flow. Anal. Chem. 2008, 80, 5607–5615. [Google Scholar] [CrossRef]
- Anna, S.L.; Bontoux, N.; Stone, H.A. Formation of dispersions using “flow focusing” in microchannels. Appl. Phys. Lett. 2003, 82, 364–366. [Google Scholar] [CrossRef]
- Fidalgo, L.M.; Abell, C.; Huck, W.T. Surface-induced droplet fusion in microfluidic devices. Lab Chip 2007, 7, 984–986. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Tice, J.D.; Ismagilov, R.F. A microfluidic system for controlling reaction networks in time. Angew. Chem. Int. Ed. 2003, 42, 768–772. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, R.M.; Edgar, J.S.; Jeffries, G.D.; Chiu, D.T. Microfluidic and optical systems for the on-demand generation and manipulation of single femtoliter-volume aqueous droplets. Anal. Chem. 2006, 78, 6433–6439. [Google Scholar] [CrossRef] [PubMed]
- Garstecki, P.; Fuerstman, M.J.; Stone, H.A.; Whitesides, G.M. Formation of droplets and bubbles in a microfluidic T-junction—Scaling and mechanism of break-up. Lab Chip 2006, 6, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Link, D.R.; Grasland-Mongrain, E.; Duri, A.; Sarrazin, F.; Cheng, Z.; Cristobal, G.; Marquez, M.; Weitz, D.A. Electric control of droplets in microfluidic devices. Angew. Chem. Int. Ed. 2006, 45, 2556–2560. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, H.R.; Kralj, J.G.; Jensen, K.F. Multistep continuous-flow microchemical synthesis involving multiple reactions and separations. Angew. Chem. Int. Ed. 2007, 46, 5704–5708. [Google Scholar] [CrossRef] [PubMed]
- Huebner, A.; Sharma, S.; Srisa-Art, M.; Hollfelder, F.; Edel, J.B. Microdroplets: A sea of applications? Lab Chip 2008, 8, 1244–1254. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Chen, D.; Ismagilov, R. Reactions in droplets in microflulidic channels. Angew. Chem. Int. Ed. 2006, 45, 7336–7356. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, T.; Garstecki, P. Controlled droplet microfluidic systems for multistep chemical and biological assays. Chem. Soc. Rev. 2017, 46, 6210–6226. [Google Scholar] [CrossRef] [Green Version]
- Dressler, O.J.; Casadevall i Solvas, X.; deMello, A.J. Chemical and biological dynamics using droplet-based microfluidics. Ann. Rev. Anal. Chem. 2017, 10, 1–24. [Google Scholar] [CrossRef]
- Damiati, S.; Kompella, U.; Damiati, S.; Kodzius, R. Microfluidic devices for drug delivery systems and drug screening. Genes 2018, 9, 103. [Google Scholar] [CrossRef] [PubMed]
- Samiei, E.; Tabrizian, M.; Hoorfar, M. A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab Chip 2016, 16, 2376–2396. [Google Scholar] [CrossRef] [PubMed]
- Chiu, D.T.; Di Carlo, D.; Doyle, P.S.; Hansen, C.; Maceiczyk, R.M.; Wootton, R.C. Small but perfectly formed? Successes, challenges, and opportunities for microfluidics in the chemical and biological sciences. Chem 2017, 2, 201–223. [Google Scholar] [CrossRef]
- Robinson, D.L.; Hermans, A.; Seipel, A.T.; Wightman, R.M. Monitoring rapid chemical communication in the brain. Chem. Rev. 2008, 108, 2554–2584. [Google Scholar] [CrossRef] [PubMed]
- Shou, M.; Ferrario, C.R.; Schultz, K.N.; Robinson, T.E.; Kennedy, R.T. Monitoring dopamine in vivo by microdialysis sampling and on-line CE-laser-induced fluorescence. Anal. Chem. 2006, 78, 6717–6725. [Google Scholar] [CrossRef] [PubMed]
- Cesselin, F.; Hamon, M. Possible functional significance of the simultaneous release of several putative neurotransmitters by the same neuron. Annales D’endocrinologie 1984, 45, 207–213. [Google Scholar] [PubMed]
- Hökfelt, T.; Bean, A.; Ceccatelli, S.; Dagerlind, A.; Elde, R.P.; Goldstein, M.; Melander, T.; Nicholas, A.P.; Pelto-Huikko, M. Neuropeptides and classical transmitters. Localization and interaction. Arzneimittel-Forschung 1992, 42, 196–201. [Google Scholar]
- Bert, L.; Parrot, S.; Robert, F.; Desvignes, C.; Denoroy, L.; Suaud-Chagny, M.F.; Renaud, B. In vivo temporal sequence of rat striatal glutamate, aspartate and dopamine efflux during apomorphine, nomifensine, NMDA and PDC in situ administration. Neuropharmacology 2002, 43, 825–835. [Google Scholar] [CrossRef]
- Song, P.; Mabrouk, O.S.; Hershey, N.D.; Kennedy, R.T. In vivo neurochemical monitoring using benzoyl chloride derivatization and liquid chromatography–mass spectrometry. Anal. Chem. 2011, 84, 412–419. [Google Scholar] [CrossRef]
- Huynh, B.H.; Fogarty, B.A.; Martin, R.S.; Lunte, S.M. On-line coupling of microdialysis sampling with microchip-based capillary electrophoresis. Anal. Chem. 2004, 76, 6440–6447. [Google Scholar] [CrossRef]
- Lada, M.W.; Vickroy, T.W.; Kennedy, R.T. High temporal resolution monitoring of glutamate and aspartate in vivo using microdialysis on-line with capillary electrophoresis with laser-induced fluorescence detection. Anal. Chem. 1997, 69, 4560–4565. [Google Scholar] [CrossRef] [PubMed]
- Parrot, S.; Sauvinet, V.; Riban, V.; Depaulis, A.; Renaud, B.; Denoroy, L. High temporal resolution for in vivo monitoring of neurotransmitters in awake epileptic rats using brain microdialysis and capillary electrophoresis with laser-induced fluorescence detection. J. Neurosci. Methods 2004, 140, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Tucci, S.; Rada, P.; Sepúlveda, M.J.; Hernandez, L. Glutamate measured by 6-s resolution brain microdialysis: capillary electrophoretic and laser-induced fluorescence detection application. J. Chromatogr. B Biomed. Sci. Appl. 1997, 694, 343–349. [Google Scholar] [CrossRef]
- Bert, L.; Robert, F.; Denoroy, L.; Stoppini, L.; Renaud, B. Enhanced temporal resolution for the microdialysis monitoring of catecholamines and excitatory amino acids using capillary electrophoresis with laser-induced fluorescence detection Analytical developments and in vitro validations. J. Chromatogr. A 1996, 755, 99–111. [Google Scholar] [CrossRef]
- Hogan, B.L.; Lunte, S.M.; Stobaugh, J.F.; Lunte, C.E. Online coupling of in vivo microdialysis sampling with capillary electrophoresis. Anal. Chem. 1994, 66, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Hershey, N.D.; Mabrouk, O.S.; Slaney, T.R.; Kennedy, R.T. Mass spectrometry “sensor” for in vivo acetylcholine monitoring. Anal. Chem. 2012, 84, 4659–4664. [Google Scholar] [CrossRef] [PubMed]
- Srisa-Art, M.; Dyson, E.C.; deMello, A.J.; Edel, J.B. Monitoring of real-time streptavidin–biotin binding kinetics using droplet microfluidics. Anal. Chem. 2008, 80, 7063–7067. [Google Scholar] [CrossRef]
- Srinivasan, V.; Pamula, V.; Pollack, M.; Fair, R. A digital microfluidic biosensor for multianalyte detection. In Proceedings of the Sixteenth Annual International Conference on Micro Electro Mechanical Systems (MEMS-03), Kyoto, Japan, 23 January 2003; IEEE: Piscataway, NJ, USA, 2003; pp. 327–330. [Google Scholar]
- Malic, L.; Veres, T.; Tabrizian, M. Two-dimensional droplet-based surface plasmon resonance imaging using electrowetting-on-dielectric microfluidics. Lab Chip 2009, 9, 473–475. [Google Scholar] [CrossRef]
- Malic, L.; Veres, T.; Tabrizian, M. Biochip functionalization using electrowetting-on-dielectric digital microfluidics for surface plasmon resonance imaging detection of DNA hybridization. Biosens. Bioelectr. 2009, 24, 2218–2224. [Google Scholar] [CrossRef]
- Baret, J.-C. Surfactants in droplet-based microfluidics. Lab Chip 2012, 12, 422–433. [Google Scholar] [CrossRef]
- Zheng, B.; Ismagilov, R.F. A microfluidic approach for screening submicroliter volumes against multiple reagents by using preformed arrays of nanoliter plugs in a three-phase liquid/liquid/gas flow. Angew. Chem. Int. Ed. 2005, 44, 2520–2523. [Google Scholar] [CrossRef] [PubMed]
- Baroud, C.N.; Gallaire, F.; Dangla, R. Dynamics of microfluidic droplets. Lab Chip 2010, 10, 2032–2045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamholz, A.E.; Weigl, B.H.; Finlayson, B.A.; Yager, P. Quantitative analysis of molecular interaction in a microfluidic channel: The T-sensor. Anal. Chem. 1999, 71, 5340–5347. [Google Scholar] [CrossRef] [PubMed]
- Macounova, K.; Cabrera, C.R.; Holl, M.R.; Yager, P. Generation of natural pH gradients in microfluidic channels for use in isoelectric focusing. Anal. Chem. 2000, 72, 3745–3751. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Huang, Y.; Wang, X.B.; Becker, F.F.; Gascoyne, P.R.C. Differential analysis of human leukocytes by dielectrophoretic field-flow-fractionation. Biophys. J. 2000, 78, 2680–2689. [Google Scholar] [CrossRef]
- Chen, Y.H.; Chen, S.H. Analysis of DNA fragments by microchip electrophoresis fabricated on poly(methyl methacrylate) substrates using a wire-imprinting method. Electrophoresis 2000, 21, 165–170. [Google Scholar] [CrossRef]
- Ehrlich, D.J.; Matsudaira, P. Microfluidic devices for DNA analysis. Trends Biotechnol. 1999, 17, 315–319. [Google Scholar] [CrossRef]
- Kamholz, A.E.; Yager, P. Theoretical analysis of molecular diffusion in pressure-driven laminar flow in microfluidic channels. Biophys. J. 2001, 80, 155–160. [Google Scholar] [CrossRef]
- Chan, J.H.; Timperman, A.T.; Qin, D.; Aebersold, R. Microfabricated polymer devices for automated sample delivery of peptides for analysis by electrospray ionization tandem mass spectrometry. Anal. Chem. 1999, 71, 4437–4444. [Google Scholar] [CrossRef]
- Li, J.J.; Kelly, J.F.; Chemushevich, I.; Harrison, D.J.; Thibault, P. Separation and identification of peptides from gel-isolated membrane proteins using a microfabricated device for combined capillary electrophoresis/nanoelectrospray mass spectrometry. Anal. Chem. 2000, 72, 599–609. [Google Scholar] [CrossRef]
- Pinto, D.M.; Ning, Y.B.; Figeys, D. An enhanced microfluidic chip coupled to an electrospray Qstar mass spectrometer for protein identification. Electrophoresis 2000, 21, 181–190. [Google Scholar] [CrossRef]
- Bernard, A.; Delamarche, E.; Schmid, H.; Michel, B.; Bosshard, H.R.; Biebuyck, H. Printing patterns of proteins. Langmuir 1998, 14, 2225–2229. [Google Scholar] [CrossRef]
- Chiu, D.T.; Jeon, N.L.; Huang, S.; Kane, R.S.; Wargo, C.J.; Choi, I.S.; Ingber, D.E.; Whitesides, G.M. Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. Proc. Natl. Acad. Sci. USA 2000, 97, 2408–2413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folch, A.; Toner, M. Cellular micropatterns on biocompatible materials. Biotechnol. Prog. 1998, 14, 388–392. [Google Scholar] [CrossRef] [PubMed]
- Kenis, P.J.A.; Ismagilov, R.F.; Whitesides, G.M. Microfabrication inside capillaries using multiphase laminar flow patterning. Science 1999, 285, 83–85. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Ghosal, S. Characterizing dispersion in microfluidic channels. Lab Chip 2009, 9, 2537–2550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aris, R. On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1956, 235, 67–77. [Google Scholar]
- Probstein, R.F. Physicochemical Hydrodynamics: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Kirby, B.J. Micro-and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Millington, D.; Norton, S.; Singh, R.; Sista, R.; Srinivasan, V.; Pamula, V. Digital microfluidics comes of age: High-throughput screening to bedside diagnostic testing for genetic disorders in newborns. Expert Rev. Mol. Diagn. 2018, 18, 701–712. [Google Scholar] [CrossRef]
- Hou, H.W.; Bhattacharyya, R.P.; Hung, D.T.; Han, J. Direct detection and drug-resistance profiling of bacteremias using inertial microfluidics. Lab Chip 2015, 15, 2297–2307. [Google Scholar] [CrossRef]
- Thongkhao-On, K.; Kottegoda, S.; Pulido, J.S.; Shippy, S.A. Determination of amino acids in rat vitreous perfusates by capillary electrophoresis. Electrophoresis 2004, 25, 2978–2984. [Google Scholar] [CrossRef]
- Pritchett, J.S.; Pulido, J.S.; Shippy, S.A. Measurement of region-specific nitrate levels of the posterior chamber of the rat eye using low-flow push–pull perfusion. Anal. Chem. 2008, 80, 5342–5349. [Google Scholar] [CrossRef] [PubMed]
- Thongkhao-on, K.; Wirtshafter, D.; Shippy, S.A. Feeding specific glutamate surge in the rat lateral hypothalamus revealed by low-flow push–pull perfusion. Pharmacol. Biochem. Behav. 2008, 89, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Kottegoda, S.; Shaik, I.; Shippy, S.A. Demonstration of low flow push–pull perfusion. J. Neurosci. Methods 2002, 121, 93–101. [Google Scholar] [CrossRef]
- Feng, S.L.; Liu, G.Z.; Jiang, L.M.; Zhu, Y.G.; Goldys, E.M.; Inglis, D.W. A microfluidic needle for sampling and delivery of chemical signals by segmented flows. Appl. Phys. Lett. 2017, 111. [Google Scholar] [CrossRef]
- Slaney, T.R.; Nie, J.; Hershey, N.D.; Thwar, P.K.; Linderman, J.; Burns, M.A.; Kennedy, R.T. Push–pull perfusion sampling with segmented flow for high temporal and spatial resolution in vivo chemical monitoring. Anal. Chem. 2001, 83, 5207–5213. [Google Scholar] [CrossRef]
- Berg, H.C. Random Walks in Biology; Princeton University Press: Princeton, NJ, USA, 1993. [Google Scholar]
- Córcoles, E.P.; Boutelle, M.G. Biosensors and Invasive Monitoring in Clinical Applications; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Hurley, J.P.; Garrod, C. Principles of physics. Phys. Teach. 1978, 16, 408. [Google Scholar] [CrossRef]
- Sanders, G.H.W.; Manz, A. Chip-based microsystems for genomic and proteomic analysis. Trac-Trends Anal. Chem. 2000, 19, 364–378. [Google Scholar] [CrossRef]
- Verpoorte, E. Microfluidic chips for clinical and forensic analysis. Electrophoresis 2002, 23, 677–712. [Google Scholar] [CrossRef]
- Rossier, J.; Reymond, F.; Michel, P.E. Polymer microfluidic chips for electrochemical and biochemical analyses. Electrophoresis 2002, 23, 858–867. [Google Scholar] [CrossRef]
- Juncker, D.; Schmid, H.; Drechsler, U.; Wolf, H.; Wolf, M.; Michel, B.; de Rooij, N.; Delamarche, E. Autonomous microfluidic capillary system. Anal. Chem. 2002, 74, 6139–6144. [Google Scholar] [CrossRef]
- Unger, M.A.; Chou, H.P.; Thorsen, T.; Scherer, A.; Quake, S.R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 2000, 288, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, R.T. Emerging trends in in vivo neurochemical monitoring by microdialysis. Curr. Opin. Chem. Biol. 2013, 17, 860–867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timofeev, I.; Carpenter, K.L.H.; Nortje, J.; Al-Rawi, P.G.; O’Connell, M.T.; Czosnyka, M.; Smielewski, P.; Pickard, J.D.; Menon, D.K.; Kirkpatrick, P.J.; et al. Cerebral extracellular chemistry and outcome following traumatic brain injury: A microdialysis study of 223 patients. Brain 2011, 134, 484–494. [Google Scholar] [CrossRef] [PubMed]
- Bossers, S.M.; de Boer, R.D.; Boer, C.; Peerdeman, S.M. The diagnostic accuracy of brain microdialysis during surgery: A qualitative systematic review. Acta Neurochir. 2013, 155, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Helmy, A.; Hutchinson, P. Is Cerebral Microdialysis a Clinical Tool? Springer: Vienna, Austria, 2013. [Google Scholar]
- Weiss, D.J.; Lunte, C.E.; Lunte, S.M. In vivo microdialysis as a tool for monitoring pharmacokinetics. TrAC Trends Anal. Chem. 2000, 19, 606–616. [Google Scholar] [CrossRef]
- Hutchinson, P.J.; O’Connell, M.T.; Al-Rawi, P.G.; Maskell, L.B.; Kett-White, R.; Gupta, A.K.; Richards, H.K.; Hutchinson, D.B.; Kirkpatrick, P.J.; Pickard, J.D. Clinical cerebral microdialysis: A methodological study. J. Neurosurg. 2000, 93, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Roman, G.T.; Perry, M.L.; Kennedy, R.T. Microfluidic chip for high efficiency electrophoretic analysis of segmented flow from a microdialysis probe and in vivo chemical monitoring. Anal. Chem. 2009, 81, 9072–9078. [Google Scholar] [CrossRef]
- Croushore, C.A.; Sweedler, J.V. Microfluidic systems for studying neurotransmitters and neurotransmission. Lab Chip 2013, 13, 1666–1676. [Google Scholar] [CrossRef] [Green Version]
- Fang, Q.; Shi, X.-T.; Sun, Y.-Q.; Fang, Z.-L. A flow injection microdialysis sampling chemiluminescence system for in vivo on-line monitoring of glucose in intravenous and subcutaneous tissue fluid microdialysates. Anal. Chem. 1997, 69, 3570–3577. [Google Scholar] [CrossRef]
- Wang, M.; Hershey, N.D.; Mabrouk, O.S.; Kennedy, R.T. Collection, storage, and electrophoretic analysis of nanoliter microdialysis samples collected from awake animals in vivo. Anal. Bioanal. Chem. 2011, 400, 2013–2023. [Google Scholar] [CrossRef] [Green Version]
- Myers, R. An improved push-pull cannula system for perfusing an isolated region of the brain. Physiol. Behav. 1970, 5, 243–246. [Google Scholar] [CrossRef]
- Myers, R.; Adell, A.; Lankford, M. Simultaneous comparison of cerebral dialysis and push–pull perfusion in the brain of rats: A critical review. Neurosci. Biobehav. Rev. 1998, 22, 371–387. [Google Scholar] [CrossRef]
- Patterson, E.E., II; Pritchett, J.S.; Shippy, S.A. High temporal resolution coupling of low-flow push-pull perfusion to capillary electrophoresis for ascorbate analysis at the rat vitreoretinal interface. Analyst 2009, 134, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Cellar, N.A.; Kennedy, R.T. A capillary–PDMS hybrid chip for separations-based sensing of neurotransmitters in vivo. Lab Chip 2006, 6, 1205–1212. [Google Scholar] [CrossRef] [PubMed]
- Cellar, N.A.; Burns, S.T.; Meiners, J.-C.; Chen, H.; Kennedy, R.T. Microfluidic chip for low-flow push-pull perfusion sampling in vivo with on-line analysis of amino acids. Anal. Chem. 2005, 77, 7067–7073. [Google Scholar] [CrossRef] [PubMed]
- Van den Brink, F.T.G.; Phisonkunkasem, T.; Asthana, A.; Bomer, J.G.; van der Maagdenberg, A.M.J.M.; Tolner, E.A.; Odijk, M. A miniaturized push–pull-perfusion probe for few-second sampling of neurotransmitters in the mouse brain. Lab Chip 2019, 19, 1332–1343. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Li, H.-W.; Munson, M.S.; Van Ha, T.G.; Ismagilov, R.F. On-chip titration of an anticoagulant argatroban and determination of the clotting time within whole blood or plasma using a plug-based microfluidic system. Anal. Chem. 2006, 78, 4839–4849. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-F.; Drew, K.L. Droplet-based microdialysis—Concept, theory, and design considerations. J. Chromatogr. A 2008, 1209, 29–36. [Google Scholar] [CrossRef]
- Sun, M.; Fang, Q. High-throughput sample introduction for droplet-based screening with an on-chip integrated sampling probe and slotted-vial array. Lab Chip 2010, 10, 2864–2868. [Google Scholar] [CrossRef]
- Gielen, F.; Burzska, T.; Van Vliet, L.; Butz, M.; Damborsky, J.; Prokop, Z.; Hollfelder, F. Interfacing microwells with nanoliter compartments: A sampler generating high-resolution concentration gradients for quantitative biochemical analyses in droplets. Anal. Chem. 2014, 87, 624–632. [Google Scholar] [CrossRef]
- Feng, S.; Clement, S.; Zhu, Y.; Goldys, E.M.; Inglis, D.W. Microfabricated needle for hydrogen peroxide detection. RSC Adv. 2019, 9, 18176–18181. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.L.; Nguyen, M.N.; Inglis, D.W. Microfluidic droplet extraction by hydrophilic membrane. Micromachines 2017, 8, 331. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Fang, Q. Analytical detection techniques for droplet microfluidics—A review. Anal. Chim. Acta 2013, 787, 24–35. [Google Scholar] [CrossRef] [PubMed]
- El Debs, B.; Utharala, R.; Balyasnikova, I.V.; Griffiths, A.D.; Merten, C.A. Functional single-cell hybridoma screening using droplet-based microfluidics. Proc. Natl. Acad. Sci. USA 2012, 109, 11570–11575. [Google Scholar] [CrossRef] [Green Version]
- Küster, S.K.; Fagerer, S.R.; Verboket, P.E.; Eyer, K.; Jefimovs, K.; Zenobi, R.; Dittrich, P.S. Interfacing droplet microfluidics with matrix-assisted laser desorption/ionization mass spectrometry: Label-free content analysis of single droplets. Anal. Chem. 2013, 85, 1285–1289. [Google Scholar] [CrossRef] [PubMed]
- Tirandazi, P. Droplet Formation and Entrainment in Liquid-Gas Microfluidic Systems. Master’s Thesis, Northeastern University, Boston, MA, USA, 2017. [Google Scholar]
- Martín-Banderas, L.; Flores-Mosquera, M.; Riesco-Chueca, P.; Rodrígez-Gill, A.; Cebolla, Á.; Chávez, S.; Gañán-Calvo, A.M. Flow focusing: A versatile technology to produce size-controlled and specific-morphology microparticles. Small 2005, 1, 688–692. [Google Scholar] [CrossRef]
- Pereira, F.; Niu, X. A nano LC-MALDI mass spectrometry droplet interface for the analysis of complex protein samples. PLoS ONE 2013, 8, e63087. [Google Scholar] [CrossRef]
- Van Kooten, X.F.; Autebert, J.; Kaigala, G.V. Passive removal of immiscible spacers from segmented flows in a microfluidic probe. Appl. Phys. Lett. 2015, 106, 074102. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, S.; Shirani, E.; Inglis, D.W. Droplets for Sampling and Transport of Chemical Signals in Biosensing: A Review. Biosensors 2019, 9, 80. https://doi.org/10.3390/bios9020080
Feng S, Shirani E, Inglis DW. Droplets for Sampling and Transport of Chemical Signals in Biosensing: A Review. Biosensors. 2019; 9(2):80. https://doi.org/10.3390/bios9020080
Chicago/Turabian StyleFeng, Shilun, Elham Shirani, and David W. Inglis. 2019. "Droplets for Sampling and Transport of Chemical Signals in Biosensing: A Review" Biosensors 9, no. 2: 80. https://doi.org/10.3390/bios9020080
APA StyleFeng, S., Shirani, E., & Inglis, D. W. (2019). Droplets for Sampling and Transport of Chemical Signals in Biosensing: A Review. Biosensors, 9(2), 80. https://doi.org/10.3390/bios9020080