Multimodal Device for Real-Time Monitoring of Skin Oxygen Saturation and Microcirculation Function
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Prototype Device
2.2. Measurement Protocol
2.3. The Processing of Data
2.3.1. HSI Data Preprocessing
2.3.2. Feature Extraction from HSI Data
2.3.3. Diffuse Model
- B—the blood volume fraction (B = 1 for whole blood, 150 g hemoglobin/liter).
- SO2—the oxygen saturation of hemoglobin in blood.
- M—the volume fraction of typical cutaneous melanosomes in the epidermis.
- µ’s500 nm—the reduced scattering at 500 nm.
- fRay—the fraction of scattering at 500 nm due to structures much less than 500 nm (Rayleigh scattering).
- (1-fRay)—the fraction of scattering at 500 nm due to structures comparable or larger than 500 nm (Mie scattering).
- bMie—the scattering power for Mie scattering (bMie < 1)
2.3.4. The Diagnostic Parameters
3. Results
3.1. Sensor Calibration Data
3.2. Skin Oxygen Saturation
3.3. Skin Temperature Distribution
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Lima, A.; Bakker, J. Near-infrared spectroscopy for monitoring peripheral tissue perfusion in critically ill patients. Rev. Bras. Ter. Intensiva 2011, 23, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Dremin, V.V.; Sidorov, V.V.; Krupatkin, A.I.; Galstyan, G.R.; Novikova, I.N.; Zherebtsova, A.I.; Zherebtsov, E.A.; Dunaev, A.V.; Abdulvapova, Z.N.; Litvinova, K.S.; et al. The blood perfusion and NADH/FAD content combined analysis in patients with diabetes foot. In Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XIV, Proceedings of the SPIE 9698, San Francisco, CA, USA, 14–16 February 2016; SPIE: Bellingham, WA, USA, 2016; Volume 9698, p. 969810. [Google Scholar]
- Zherebtsov, E.A.; Zherebtsova, A.I.; Doronin, A.; Dunaev, A.; Podmasteryev, K.V.; Bykov, A.; Meglinski, I. Combined use of laser Doppler flowmetry and skin thermometry for functional diagnostics of intradermal finger vessels. J. Biomed. Opt. 2017, 22, 40502. [Google Scholar] [CrossRef] [PubMed]
- Zherebtsova, A.I.; Zherebtsov, E.A.; Dunaev, A.V.; Podmasteryev, K.V.; Pilipenko, O.V.; Krupatkin, A.I.; Khakhicheva, L.S.; Muradyan, V.F. Study of the functional state of peripheral vessels in fingers of rheumatological patients by means of laser Doppler flowmetry and cutaneous thermometry measurements. In Saratov Fall Meeting 2015, Proceedings of the SPIE—Third International Symposium on Optics and Biophotonics and Seventh Finnish-Russian Photonics and Laser Symposium, Saratov, Russia, 22–25 September 2015; SPIE: Bellingham, WA, USA, 2016; Volume 9917, p. 99170M. [Google Scholar]
- Roosterman, D.; Goerge, T.; Schneider, S.W.; Bunnett, N.W.; Steinhoff, M. Neuronal Control of Skin Function: The Skin as a Neuroimmunoendocrine Organ. Physiol. Rev. 2006, 86, 1309–1379. [Google Scholar] [CrossRef] [PubMed]
- Ait-Oufella, H.; Lemoinne, S.; Boelle, P.Y.; Galbois, A.; Baudel, J.L.; Lemant, J.; Joffre, J.; Margetis, D.; Guidet, B.; Maury, E.; et al. Mottling score predicts survival in septic shock. Intensive Care Med. 2011, 37, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Coudroy, R.; Jamet, A.; Frat, J.P.; Veinstein, A.; Chatellier, D.; Goudet, V.; Cabasson, S.; Thille, A.W.; Robert, R. Incidence and impact of skin mottling over the knee and its duration on outcome in critically ill patients. Intensive Care Med. 2015, 41, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Sangle, S.R.; D’Cruz, D.P. Livedo Reticularis: An Enigma. Isr. Med. Assoc. J. 2015, 17, 104–107. [Google Scholar] [PubMed]
- Lu, G.; Fei, B. Medical hyperspectral imaging: A review. J. Biomed. Opt. 2014, 19, 010901. [Google Scholar] [CrossRef] [PubMed]
- Lange, K.H.W.; Jansen, T.; Asghar, S.; Kristensen, P.L.; Skjønnemand, M.; Nørgaard, P. Skin temperature measured by infrared thermography after specific ultrasound-guided blocking of the musculocutaneous, radial, ulnar, and median nerves in the upper extremity. Br. J. Anaesth. 2011, 106, 887–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Weerd, L.; Weum, S.; Mercer, J.B. The value of dynamic infrared thermography (DIRT) in perforatorselection and planning of free DIEP flaps. Ann. Plast. Surg. 2009, 63, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Zetterman, E.; Salmi, A.; Suominen, S.; Karonen, A.; Asko-Seljavaara, S. Effect of cooling and warming on thermographic imaging of the perforating vessels of the abdomen. Eur. J. Plast. Surg. 1999, 22, 58–61. [Google Scholar] [CrossRef]
- De Weerd, L.; Mercer, J.B.; Weum, S. Dynamic Infrared Thermography. Clin. Plast. Surg. 2011, 38, 277–292. [Google Scholar] [CrossRef] [PubMed]
- HyperMed. HyperView. Hypermed. Available online: https://hypermed.com/products/ (accessed on 25 May 2019).
- Modulated Imaging. Ox-Imager CTM–Modulated Imaging, Inc. Available online: http://modulatedimaging.com/products/medical/ox-imager-cs/ (accessed on 25 May 2019).
- Kim, S.; Cho, D.; Kim, J.; Kim, M.; Youn, S.; Jang, J.E.; Je, M.; Lee, D.H.; Lee, B.; Farkas, D.L.; et al. Smartphone-based multispectral imaging: System development and potential for mobile skin diagnosis. Biomed. Opt. Express 2016, 7, 5294–5307. [Google Scholar] [CrossRef] [PubMed]
- Vasefi, F.; MacKinnon, N.; Saager, R.; Durkin, A.J.; Chave, R.; Farkas, D.L. Quantifying the optical properties of turbid media using polarization sensitive hyperspectral imaging (skinspect): Two-layer optical phantom studies. In Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XIII, Proceedings of the SPIE 9328, San Francisco, CA, USA, 7–12 February 2015; SPIE: Bellingham, WA, USA, 2015; Volume 9328, p. 93280A. [Google Scholar]
- Spigulis, J. Multispectral, fluorescent and photoplethysmographic imaging for remote skin assessment. Sensors 2017, 17, 1165. [Google Scholar] [CrossRef] [PubMed]
- Goel, M.; Whitmire, E.; Mariakakis, A.; Saponas, T.S.; Joshi, N.; Morris, D.; Guenter, B.; Gavriliu, M.; Borriello, G.; Patel, S.N. Hypercam: Hyperspectral imaging for ubiquitous computing applications. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka, Japan, 7–11 September 2015; pp. 145–156. [Google Scholar]
- Belušiˇc, G.; Ilić, M.; Meglič, A.; Pirih, P. A fast multispectral light synthesiser based on LEDs and a diffraction grating. Sci. Rep. 2016, 6, 32012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrestha, R.; Hardeberg, J.Y. How are LED illumination based multispectral imaging systems influenced by different factors? In Proceedings of the International Conference on Image and Signal Processing, Cherburg, France, 30 June–2 July 2014; Volume 8509, pp. 61–71. [Google Scholar]
- Bernat, A.S.; Bolton, F.J.; Weiser, R.; Levitz, D. Cloud-based processing of multi-spectral imaging data. In Proceedings of the SPIE 10055, San Francisco, CA, USA, 28 Januray–2 February 2017; p. 1005505. [Google Scholar]
- Bolton, F.J.; Bernat, A.S.; Bar-Am, K.; Levitz, D.; Jacques, S. Portable, low-cost multispectral imaging system: Design, development, validation, and utilization. J. Biomed. Opt. 2018, 23, 121612. [Google Scholar] [CrossRef] [PubMed]
- Zherebtsov, E.; Popov, A.; Doronin, A.; Meglinski, I.; Bykov, A. Hyperspectral system for Imaging of skin chromophores and blood oxygenation. In Proceedings of the SPIE 10412—Diffuse Optical Spectroscopy and Imaging VI, Munich, Germany, 25–29 June 2017; p. 104120G. [Google Scholar]
- Rubins, U.; Marcinkevics, Z.; Cimurs, J.; Grabovskis, A.; Kviesis-Kipge, E. Snapshot hyperspectral system for noninvasive skin blood oxygen saturation monitoring. In Proceedings of the SPIE 10685—Biophotonics: Photonic Solutions for Better Health Care VI, Strasbourg, France, 22–26 April 2018; p. 106853Y. [Google Scholar] [CrossRef]
- Arthur, D.; Vassilvitskii, S. k-means++: The Advantages of Careful Seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms 8, New Orlenas, LA, USA, 7–9 January 2007; pp. 1027–1035. [Google Scholar] [CrossRef]
- Jacques, S.L.; McAuliffe, D.J. The melanosome: Threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation. Photochem. Photobiol. 1991, 53, 769–775. [Google Scholar] [CrossRef] [PubMed]
- Prahl, S.A. Optical Absorption of Hemoglobin. 1996. Available online: https://omlc.org/spectra/hemoglobin/ (accessed on 5 September 1999).
- Jacques, S.L.; Samatham, R.; Choudhury, N. Rapid spectral analysis for spectral imaging. Biomed. Opt. Express 2010, 1, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Spott, T.; Svaasand, L.O.; Anderson, R.E.; Schmedling, P.F. Application of optical diffusion theory to transcutaneous bilirubinometry. In Proceedings of the SPIE 3195—Laser-Tissue Interaction, Tissue Optics, and Laser Welding III, San Remo, Italy, 4–8 September 1997; pp. 234–245. [Google Scholar]
- Jacques, S.L. Optical properties of biological tissues: A review. Phys. Med. Biol. 2013, 58, R37–R61. [Google Scholar] [CrossRef] [PubMed]
- Ewerlöf, M.; Larsson, M.; Salerud, E.G. Spatial and temporal skin blood volume and saturation estimation using a multispectral snapshot imaging camera. In Proceedings of the SPIE 10068—Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XV, San Francisco, CA, USA, 28 Januray–2 February 2017; p. 1006814. [Google Scholar] [CrossRef]
- Saknite, I.; Grabovskis, A.; Kazune, S.; Rubins, U.; Marcinkevics, Z.; Volceka, K.; Kviesis-Kipge, E.; Spigulis, J. Novel hybrid technology for early diagnostics of sepsis. In Proceedings of the SPIE 10057—Multimodal Biomedical Imaging XII, San Francisco, CA, USA, 28 January–2 February 2017; p. 100570F. [Google Scholar] [CrossRef]
- Xu, R.X.; Huang, K.; Qin, R.; Huang, J.; Xu, J.S.; Ding, L.; Gnyawali, U.S.; Gordillo, G.M.; Gnyawali, S.C.; Sen, C.K. Dual-mode Imaging of Cutaneous Tissue Oxygenation and Vascular Function. J. Vis. Exp. 2010, 8, e2095. [Google Scholar] [CrossRef] [PubMed]
Skin Layer | B * | SO2* [%] | M * | µ’s500 nm | fRay | bMie | A | de [µm] |
---|---|---|---|---|---|---|---|---|
Epidermis | - | - | 10−3–103 | 48 | 0.4 | 0.7 | 0.2 | 60–120 |
Dermis | 10−8–10−2 | 0–100 | - | 48 | 0.4 | 0.7 | 0.2 | ∞ |
Baseline | Occlusion (minutes) | Hyperemia | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | H | |
SO2 (mean) | 99.8 ± 0.7 | 90.1 ± 5.2 | 69.8 ± 14.4 | 55.8 ± 9.2 | 49.1 ± 8.1 | 45.0 ± 8.3 | 42.9 ±9.4 | 40.6 ± 9.6 | 38.5 ± 9.7 | 37.6 ± 10.7 | 36.1 ± 12.2 | 100 ± 0.0 |
SO2 (Std) | 0.6 ± 0.7 | 13.9 ± 4.2 | 14.5 ± 7.0 | 9.4 ± 5.1 | 8.0 ± 4.3 | 8.0 ± 3.7 | 7.5 ± 3.5 | 7.6 ± 3.4 | 7.5 ± 2.5 | 6.5 ± 2.9 | 6.1 ± 2.9 | 0.1 ± 0.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubins, U.; Marcinkevics, Z.; Cimurs, J.; Saknite, I.; Kviesis-Kipge, E.; Grabovskis, A. Multimodal Device for Real-Time Monitoring of Skin Oxygen Saturation and Microcirculation Function. Biosensors 2019, 9, 97. https://doi.org/10.3390/bios9030097
Rubins U, Marcinkevics Z, Cimurs J, Saknite I, Kviesis-Kipge E, Grabovskis A. Multimodal Device for Real-Time Monitoring of Skin Oxygen Saturation and Microcirculation Function. Biosensors. 2019; 9(3):97. https://doi.org/10.3390/bios9030097
Chicago/Turabian StyleRubins, Uldis, Zbignevs Marcinkevics, Janis Cimurs, Inga Saknite, Edgars Kviesis-Kipge, and Andris Grabovskis. 2019. "Multimodal Device for Real-Time Monitoring of Skin Oxygen Saturation and Microcirculation Function" Biosensors 9, no. 3: 97. https://doi.org/10.3390/bios9030097
APA StyleRubins, U., Marcinkevics, Z., Cimurs, J., Saknite, I., Kviesis-Kipge, E., & Grabovskis, A. (2019). Multimodal Device for Real-Time Monitoring of Skin Oxygen Saturation and Microcirculation Function. Biosensors, 9(3), 97. https://doi.org/10.3390/bios9030097