Construction of a Hydrogel Pectin-Based Triglyceride Optical Biosensor with Immobilized Lipase Enzymes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Reagent and Solution
2.3. Preparation of Triglyceride Optical Biosensor and Biosensor Response Optimization
2.4. Triglyceride Optical Biosensor Performance Characterization
3. Results and Discussion
3.1. Characterization of Pectin Hydrogel Membrane
3.2. The Response of a Triglyceride Optical Sensor Using a Pectin Hydrogel Membrane
3.3. The Effect of Buffer Concentration, pH, and Loading Enzyme Concentration against the Response of a Triglyceride Optical Biosensor
3.4. Characterization of Triglyceride Optical Biosensor
3.5. Determination of Linearity, the Limit of Detection, and Reproducibility
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mondal, K.; Ali, M.A.; Singh, C.; Sumana, G.; Malhotra, B.D.; Sharma, A. Highly sensitive porous carbon and metal/carbon conducting nanofiber based enzymatic biosensors for triglyceride detection. Sensors Actuators B Chem. 2017, 246, 202–214. [Google Scholar] [CrossRef]
- Dallongeville, J.; Meirhaeghe, A. Triglyceride-mediated pathways and coronary heart disease. Lancet (Lond. Engl.) 2010, 376, 956–958. [Google Scholar] [CrossRef]
- De Lourdes Higuchi, M. Diagnosis, Prevention and Treatment of Disorders Characterized by Undesirable Cell Proliferation. U.S. Patent No. 8,551,940, 8 October 2013. [Google Scholar]
- Solanki, P.R.; Dhand, C.; Kaushik, A.; Ansari, A.A.; Sood, K.N.; Malhotra, B.D. Nanostructured cerium oxide film for triglyceride sensor. Sens. Actuators B Chem. 2009, 141, 551–556. [Google Scholar] [CrossRef]
- Narang, J.; Pundir, C.S. Construction of a triglyceride amperometric biosensor based on chitosan-ZnO nanocomposite film. Int. J. Biol. Macromol. 2011, 49, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Narang, J.; Chauhan, N.; Pundir, C.S. Construction of triglyceride biosensor based on nickel oxide-chitosan/zinc oxide/zinc hexacyanoferrate film. Int. J. Biol. Macromol. 2013, 60, 45–51. [Google Scholar] [CrossRef]
- Panky, S.; Thandavan, K.; Sivalingam, D.; Sethuraman, S.; Krishnan, U.M.; Jeyaprakash, B.G.; Rayappan, J.B.B. Lipase immobilized on nanostructured cerium oxide thin film coated on transparent conducting oxide electrode for butyrin sensing. Mater. Chem. Phys. 2013, 137, 892–897. [Google Scholar] [CrossRef]
- Mamoru, S.; Tsutomu, O.; Kazuyuki, H.; Hidemi, M.; Hiroko, Y.; Masayasu, S.; Taeko, K. A simple colorimetric method for determination of serum triglycerides with lipoprotein lipase and glycerol dehydrogenase. Clin. Chim. Acta 1977, 81, 125–130. [Google Scholar] [CrossRef]
- Li, Z.; Suslick, K.S. Ultrasonic Preparation of Porous Silica-Dye Microspheres: Sensors for Quantification of Urinary Trimethylamine N -Oxide. ACS Appl. Mater. Interfaces 2018, 10, 15820–15828. [Google Scholar] [CrossRef]
- Callejo’n Mocho´n, M.; Muñoz Leyva, J.A. A new spectrophotometric method for determining triglycerides in serum. Clin. Chim. Acta 1984, 142, 281–285. [Google Scholar] [CrossRef]
- Lahna, K.; Idroes, R.; Idris, N.; Abdulmadjid, S.N.; Kurniawan, K.H.; Tjia, M.O.; Pardede, M.; Kagawa, K. Formation and emission characteristics of CN molecules in laser induced low pressure He plasma and its applications to N analysis in coal and fossilization study. Appl. Opt. 2016, 55, 1731. [Google Scholar] [CrossRef]
- Hedwig, R.; Lahna, K.; Idroes, R.; Karnadi, I.; Tanra, I.; Iqbal, J.; Kwaria, D.; Kurniawan, D.P.; Kurniawan, K.H.; Tjia, M.O.; et al. Food analysis employing high energy nanosecond laser and low pressure He ambient gas. Microchem. J. 2019, 147, 356–364. [Google Scholar] [CrossRef]
- Suhartono, E.; Noor, Z.; Edyson; Budianto, W.Y.; Idroes, R. Effect of Chronic Lead Exposure on Bone Using ATR-FTIR Spectroscopy. AIP Conf. Proc. 2019, 2108, 020025. [Google Scholar]
- Lee, D.-K.; Kang, J.-H.; Lee, J.-S.; Kim, H.-S.; Kim, C.; Hun Kim, J.; Lee, T.; Son, J.-H.; Park, Q.-H.; Seo, M. Highly sensitive and selective sugar detection by terahertz nano-antennas. Sci. Rep. 2015, 5, 15459. [Google Scholar] [CrossRef] [PubMed]
- Brunnekreeft, J.W.; Leijnse, B. Determination of serum triglycerides by capillary on-column gas chromatography. J. Clin. Chem. Clin. Biochem. 1986, 24, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Earlia, N.; Rahmad, R.; Amin, M.; Prakoeswa, C.R.S.; Khairan, K.; Idroes, R. The Potential Effect of Fatty Acids from Pliek U on Epidermal Fatty Acid Binding Protein: Chromatography and Bioinformatic Studies. Sains Malays. 2019, 48, 1019–1024. [Google Scholar] [CrossRef]
- Mendez, A.J.; Cabeza, C.; Hsia, S.L. A fluorometric method for the determination of triglycerides in nanomolar quantities. Anal. Biochem. 1986, 156, 386–389. [Google Scholar] [CrossRef]
- Klotzsch, S.G.; McNamara, J.R. Triglyceride measurements: A review of methods and interferences. Clin. Chem. 1990, 36, 1605–1613. [Google Scholar]
- Otvos, J. Measurement of triglyceride-rich lipoproteins by nuclear magnetic resonance spectroscopy. Clin. Cardiol. 1999, 22, II21–II27. [Google Scholar] [CrossRef]
- Kalia, V.; Pundir, C.S. Determination of serum triglycerides using lipase, glycerol kinase, glycerol-3-phosphate oxidase and peroxidase co-immobilized onto alkylamine glass beads. Indian J. Biochem. Biophys. 2004, 41, 326–328. [Google Scholar]
- Palchetti, I.; Laschi, S.; Mascini, M. Electrochemical biosensor technology: Application to pesticide detection. Methods Mol. Biol. 2009, 504, 115–126. [Google Scholar]
- Batra, B.; Narwal, V.; Pundir, C.S. An amperometric lactate biosensor based on lactate dehydrogenase immobilized onto graphene oxide nanoparticles-modified pencil graphite electrode. Eng. Life Sci. 2016, 16, 786–794. [Google Scholar] [CrossRef]
- Pundir, C.S.; Narwal, V. Biosensing methods for determination of triglycerides: A review. Biosens. Bioelectron. 2018, 100, 214–227. [Google Scholar] [CrossRef] [PubMed]
- Khanna, V.K. New-generation nano-engineered biosensors, enabling nanotechnologies and nanomaterials. Sens. Rev. 2008, 28, 39–45. [Google Scholar] [CrossRef]
- Yücel, A.; Özcan, H.M.; Sağıroğlu, A. A new multienzyme-type biosensor for triglyceride determination. Prep. Biochem. Biotechnol. 2016, 46, 78–84. [Google Scholar] [CrossRef]
- Preetha, R.; Rani, K.; Veeramani, M.S.S.; Fernandez, R.E.; Vemulachedu, H.; Sugan, M.; Bhattacharya, E.; Chadha, A. Potentiometric estimation of blood analytes—Triglycerides and urea: Comparison with clinical data and estimation of urea in milk using an electrolyte–insulator–semiconductor–capacitor (EISCAP). Sens. Actuators B Chem. 2011, 160, 1439–1443. [Google Scholar] [CrossRef]
- Fernandez, R.E.; Hareesh, V.; Bhattacharya, E.; Chadha, A. Comparison of a potentiometric and a micromechanical triglyceride biosensor. Biosens. Bioelectron. 2009, 24, 1276–1280. [Google Scholar] [CrossRef]
- Reddy, R.R.K.; Chadha, A.; Bhattacharya, E. Porous silicon based potentiometric triglyceride biosensor. Biosens. Bioelectron. 2001, 16, 313–317. [Google Scholar] [CrossRef]
- Narang, J.; Minakshi, B.M.; Pundir, C.S. Fabrication of an Amperometric Triglyceride Biosensor Based on PVC Membrane. Anal. Lett. 2009, 43, 1–11. [Google Scholar] [CrossRef]
- Sahudin, M.A.; Su’ait, M.S.; Tan, L.L.; Lee, Y.H.; Abd Karim, N.H. Zinc(II) salphen complex-based fluorescence optical sensor for biogenic amine detection. Anal. Bioanal. Chem. 2019, 411, 6449–6461. [Google Scholar] [CrossRef]
- Muslem, M.; Kuncaka, A.; Himah, T.N.; Roto, R. Preparation of Char-Fe3O4 Composites from Polyvinyl Chloride with Hydrothermal and Hydrothermal-Pyrolysis Carbonization Methods as Co(II) Adsorbents. Indones. J. Chem. 2019, 19, 835. [Google Scholar] [CrossRef]
- Hasanah, U.; Setyowati, M.; Edwarsyah Efendi, R.; Safitri, E.; Idroes, R.; Heng, L.Y.; Sani, N.D. Isolation of Pectin from coffee pulp Arabica Gayo for the development of matrices membrane. IOP Conf. Ser. Mater. Sci. Eng. 2019, 523, 12014. [Google Scholar] [CrossRef]
- Hasanah, U.; Setyowati, M.; Efendi, R.; Muslem, M.; Md Sani, N.D.; Safitri, E.; Yook Heng, L.; Idroes, R. Preparation and Characterization of a Pectin Membrane-Based Optical pH Sensor for Fish Freshness Monitoring. Biosensors 2019, 9, 60. [Google Scholar] [CrossRef] [PubMed]
- Di Tocco, A.; Robledo, S.N.; Osuna, Y.; Sandoval-Cortez, J.; Granero, A.M.; Vettorazzi, N.R.; Martínez, J.L.; Segura, E.P.; Iliná, A.; Zon, M.A.; et al. Development of an electrochemical biosensor for the determination of triglycerides in serum samples based on a lipase/magnetite-chitosan/copper oxide nanoparticles/multiwalled carbon nanotubes/pectin composite. Talanta 2018, 190, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Pundir, C.S.; Sandeep Singh, B.; Narang, J. Construction of an amperometric triglyceride biosensor using PVA membrane bound enzymes. Clin. Biochem. 2010, 43, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M. Development of Triglyceride Biosensor Based on the Polydopamine-Gold Nanocomposite. Int. J. Electrochem. Sci. 2017, 12, 6863–6873. [Google Scholar] [CrossRef]
- Narang, J.; Chauhan, N.; Rani, P.; Pundir, C.S. Construction of an amperometric TG biosensor based on AuPPy nanocomposite and poly (indole-5-carboxylic acid) modified Au electrode. Bioprocess Biosyst. Eng. 2013, 36, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Rezvani, M.; Najafpour, G.D.; Mohammadi, M.; Zare, H. Amperometric biosensor for detection of triglyceride tributyrinbased on zero point charge of activated carbon. TURKISH J. Biol. 2017, 41, 268–277. [Google Scholar] [CrossRef]
- Safitri, E.; Heng, L.Y.; Ahmad, M.; Ling, T.L. Fluorescence bioanalytical method for urea determination based on water soluble ZnS quantum dots. Sens. Actuators B Chem. 2017, 240, 763–769. [Google Scholar] [CrossRef]
- Mazurenko, I.; Monsalve, K.; Infossi, P.; Giudici-Orticoni, M.-T.; Topin, F.; Mano, N.; Lojou, E. Impact of substrate diffusion and enzyme distribution in 3D-porous electrodes: A combined electrochemical and modelling study of a thermostable H2/O2 enzymatic fuel cell. Energy Environ. Sci. 2017, 10, 1966–1982. [Google Scholar] [CrossRef]
- Alqasaimeh, M.; Heng, L.; Ahmad, M.; Raj, A.S.; Ling, T. A Large Response Range Reflectometric Urea Biosensor Made from Silica-Gel Nanoparticles. Sensors 2014, 14, 13186–13209. [Google Scholar] [CrossRef] [Green Version]
- Minakshi; Pundir, C.S. Construction of an amperometric enzymic sensor for triglyceride determination. Sens. Actuators B Chem. 2008, 133, 251–255. [Google Scholar] [CrossRef]
Buffer Concentration (mM) | TP Concentration (mg/dL) | Sensitivity (∆A/mg/dL) | Determination Coefficient (R2) (n = 4) |
---|---|---|---|
10 | 100–400 | 0.0007 | 0.9612 |
50 | 100–400 | 0.001 | 0.9807 |
100 | 100–400 | 0.0008 | 0.9585 |
pH Buffer | TP Concentration (mg/dL) | Sensitivity (∆A/mg/dL) | Determination Coefficient (R2) (n = 4) |
---|---|---|---|
6 | 100–400 | 0.0006 | 0.9579 |
6.5 | 100–400 | 0.0008 | 0.9665 |
7 | 100–400 | 0.001 | 0.9809 |
7.5 | 100–400 | 0.0007 | 0.9513 |
8 | 100–400 | 0.0005 | 0.9165 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasanah, U.; Sani, N.D.M.; Heng, L.Y.; Idroes, R.; Safitri, E. Construction of a Hydrogel Pectin-Based Triglyceride Optical Biosensor with Immobilized Lipase Enzymes. Biosensors 2019, 9, 135. https://doi.org/10.3390/bios9040135
Hasanah U, Sani NDM, Heng LY, Idroes R, Safitri E. Construction of a Hydrogel Pectin-Based Triglyceride Optical Biosensor with Immobilized Lipase Enzymes. Biosensors. 2019; 9(4):135. https://doi.org/10.3390/bios9040135
Chicago/Turabian StyleHasanah, Uswatun, Nor Diyana Md Sani, Lee Yook Heng, Rinaldi Idroes, and Eka Safitri. 2019. "Construction of a Hydrogel Pectin-Based Triglyceride Optical Biosensor with Immobilized Lipase Enzymes" Biosensors 9, no. 4: 135. https://doi.org/10.3390/bios9040135
APA StyleHasanah, U., Sani, N. D. M., Heng, L. Y., Idroes, R., & Safitri, E. (2019). Construction of a Hydrogel Pectin-Based Triglyceride Optical Biosensor with Immobilized Lipase Enzymes. Biosensors, 9(4), 135. https://doi.org/10.3390/bios9040135