Assessing Upstream Determinants of Antibiotic Use in Small-Scale Food Animal Production through a Simulated Client Method
Abstract
:1. Introduction
2. Results
2.1. Survey Findings
2.2. Simulated Client Method Findings
2.2.1. Growth Promotion Scenario Findings
2.2.2. Disease Treatment Scenario Findings
3. Discussion
Limitations
4. Materials and Methods
4.1. Simulated Client Method Procedures
4.2. Survey Procedures
4.3. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Graham, J.P.; Eisenberg, J.N.S.; Trueba, G.; Zhang, L.; Johnson, T.J. Small-Scale Food Animal Production and Antimicrobial Resistance: Mountain, Molehill, or Something in-between? Environ. Health Perspect. 2017, 125, 104501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodwin, R.; Schley, D.; Lai, K.-M.; Ceddia, G.M.; Barnett, J.; Cook, N. Interdisciplinary approaches to zoonotic disease. Infect. Dis. Rep. 2012, 4, e37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowenstein, C.; Roess, A.; Leibler, J.H.; Graham, J.P.; Waters, W.F. Animal Husbandry Practices and Perceptions of Zoonotic Infectious Disease Risks Among Livestock Keepers in a Rural Parish of Quito, Ecuador. Am. J. Trop. Med. Hyg. 2016, 95, 1450–1458. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Bi, Z.; Ma, S.; Chen, B.; Cai, C.; He, J.; Schwarz, S.; Sun, C.; Zhou, Y.; Yin, J.; et al. Inter-host Transmission of Carbapenemase-Producing Escherichia coli among Humans and Backyard Animals. Environ. Health Perspect. 2019, 127, 107009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moser, K.A.; Zhang, L.; Spicknall, I.; Braykov, N.P.; Levy, K.; Marrs, C.F.; Foxman, B.; Trueba, G.; Cevallos, W.; Goldstick, J.; et al. The Role of Mobile Genetic Elements in the Spread of Antimicrobial-Resistant Escherichia coli from Chickens to Humans in Small-Scale Production Poultry Operations in Rural Ecuador. Am. J. Epidemiol. 2018, 187, 558–567. [Google Scholar] [CrossRef]
- Bacanlı, M.; Başaran, N. Importance of antibiotic residues in animal food. Food Chem. Toxicol. 2019, 125, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Pokharel, S.; Raut, S.; Adhikari, B. Tackling antimicrobial resistance in low-income and middle-income countries. BMJ Glob. Health 2019, 4, e002104. [Google Scholar] [CrossRef]
- Kaur, M.; Graham, J.P.; Eisenberg, J.N.S. Livestock Ownership among Rural Households and Child Morbidity and Mortality: An Analysis of Demographic Health Survey Data from 30 Sub-Saharan African Countries (2005–2015). Am. J. Trop. Med. Hyg. 2017, 96, 741–748. [Google Scholar] [CrossRef] [Green Version]
- Vasco, K.; Graham, J.P.; Trueba, G. Detection of Zoonotic Enteropathogens in Children and Domestic Animals in a Semirural Community in Ecuador. Appl. Environ. Microbiol. 2016, 82, 4218–4224. [Google Scholar] [CrossRef] [Green Version]
- Ngure, F.M.; Humphrey, J.H.; Mbuya, M.N.N.; Majo, F.; Mutasa, K.; Govha, M.; Mazarura, E.; Chasekwa, B.; Prendergast, A.J.; Curtis, V.; et al. Formative research on hygiene behaviors and geophagy among infants and young children and implications of exposure to fecal bacteria. Am. J. Trop. Med. Hyg. 2013, 89, 709–716. [Google Scholar] [CrossRef] [Green Version]
- Penakalapati, G.; Swarthout, J.; Delahoy, M.J.; McAliley, L.; Wodnik, B.; Levy, K.; Freeman, M.C. Exposure to Animal Feces and Human Health: A Systematic Review and Proposed Research Priorities. Environ. Sci. Technol. 2017, 51, 11537–11552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelley, J.L. Backyard Bacterial Exchange: A One Health Approach to Studying Antibiotic Resistance Transmission. Environ. Health Perspect. 2020, 128, 074002. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.J.; Thottathil, S.E.; Newman, T.B. Antibiotics Overuse in Animal Agriculture: A Call to Action for Health Care Providers. Am. J. Public Health 2015, 105, 2409–2410. [Google Scholar] [CrossRef] [PubMed]
- Zaman, S.B.; Hussain, M.A.; Nye, R.; Mehta, V.; Mamun, K.T.; Hossain, N. A Review on Antibiotic Resistance: Alarm Bells are Ringing. Cureus 2017. [Google Scholar] [CrossRef] [Green Version]
- Graham, J.P.; Boland, J.J.; Silbergeld, E. Growth promoting antibiotics in food animal production: An economic analysis. Public Health Rep. 2007, 122, 79–87. [Google Scholar] [CrossRef]
- Wise, R. An overview of the Specialist Advisory Committee on Antimicrobial Resistance (SACAR). J. Antimicrob. Chemother. 2007, 60, i5–i7. [Google Scholar] [CrossRef]
- Jiang, N.M.; Tofail, F.; Moonah, S.N.; Scharf, R.J.; Taniuchi, M.; Ma, J.Z.; Hamadani, J.D.; Gurley, E.S.; Houpt, E.R.; Azziz-Baumgartner, E.; et al. Febrile illness and pro-inflammatory cytokines are associated with lower neurodevelopmental scores in Bangladeshi infants living in poverty. BMC Pediatrics 2014, 14, 50. [Google Scholar] [CrossRef] [Green Version]
- Aarestrup, F.M. Veterinary Drug Usage and Antimicrobial Resistance in Bacteria of Animal Origin. Basic Clin. Pharmacol. Toxicol. 2005, 96, 271–281. [Google Scholar] [CrossRef]
- Braykov, N.P.; Eisenberg, J.N.S.; Grossman, M.; Zhang, L.; Vasco, K.; Cevallos, W.; Muñoz, D.; Acevedo, A.; Moser, K.A.; Marrs, C.F.; et al. Antibiotic Resistance in Animal and Environmental Samples Associated with Small-Scale Poultry Farming in Northwestern Ecuador. mSphere 2016, 1. [Google Scholar] [CrossRef] [Green Version]
- Dyar, O.J.; Zhang, T.; Peng, Y.; Sun, M.; Sun, C.; Yin, J.; Ding, L.; Sun, C.; Wang, Y.; Sun, Q.; et al. Knowledge, attitudes and practices relating to antibiotic use and antibiotic resistance among backyard pig farmers in rural Shandong province, China. Prev. Vet. Med. 2020, 175, 104858. [Google Scholar] [CrossRef]
- Sherry, N.; Howden, B. Emerging Gram negative resistance to last-line antimicrobial agents fosfomycin, colistin and ceftazidime-avibactam - epidemiology, laboratory detection and treatment implications. Expert Rev. Anti. Infect. Ther. 2018, 16, 289–306. [Google Scholar] [CrossRef] [PubMed]
- Pública, M.d.S. Agrocalidad en Coordinación con el Ministerio de Salud Pública Prohíbe el uso del Antibiótico Colistina en Animales. Bachelor’s Thesis, Universidad de Guayaquil, Guayaquil, Ecuador, 2019. [Google Scholar]
- Wang, Y.; Xu, C.; Zhang, R.; Chen, Y.; Shen, Y.; Hu, F.; Liu, D.; Lu, J.; Guo, Y.; Xia, X.; et al. Changes in colistin resistance and mcr-1 abundance in Escherichia coli of animal and human origins following the ban of colistin-positive additives in China: An epidemiological comparative study. Lancet Infect. Dis. 2020, 20, 1161–1171. [Google Scholar] [CrossRef]
- Tang, K.L.; Caffrey, N.P.; Nóbrega, D.B.; Cork, S.C.; Ronksley, P.E.; Barkema, H.W.; Polachek, A.J.; Ganshorn, H.; Sharma, N.; Kellner, J.D.; et al. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: A systematic review and meta-analysis. Lancet Planet Health 2017, 1, e316–e327. [Google Scholar] [CrossRef]
- Chauhan, A.S.; George, M.S.; Chatterjee, P.; Lindahl, J.; Grace, D.; Kakkar, M. The social biography of antibiotic use in smallholder dairy farms in India. Antimicrob. Resist. Infect. Control 2018, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gehlert, S.; Sohmer, D.; Sacks, T.; Mininger, C.; McClintock, M.; Olopade, O. Targeting Health Disparities: A Model Linking Upstream Determinants to Downstream Interventions. Health Aff. 2008, 27, 339–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Commitee for Medicinal Products for Veterinary Use. Categorisation of Antibiotics in the European Union; European Medicines Agency: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Smith, F. The quality of private pharmacy services in low and middle-income countries: A systematic review. Pharm. World Sci. 2009, 31, 351–361. [Google Scholar] [CrossRef]
- Afakye, K.; Kiambi, S.; Koka, E.; Kabali, E.; Dorado-Garcia, A.; Amoah, A.; Kimani, T.; Adjei, B.; Caudell, M.A. The Impacts of Animal Health Service Providers on Antimicrobial Use Attitudes and Practices: An Examination of Poultry Layer Farmers in Ghana and Kenya. Antibiotics 2020, 9, 554. [Google Scholar] [CrossRef]
- Suárez, B.D.S. Determinantes para el uso de Antibióticos Según las Actitudes y Percepciones de Médicos Veterinarios en la Producción Avícola de Ecuador. Bachelor’s Thesis, Universidad Central Del Ecuador, Quito, Ecuador, 2019. [Google Scholar]
- Edwards, S.; Morel, C.; Busse, R.; Harbarth, S. Combatting Antibiotic Resistance Together: How Can We Enlist the Help of Industry? Antibiotics 2018, 7, 111. [Google Scholar] [CrossRef] [Green Version]
- Schar, D.; Sommanustweechai, A.; Laxminarayan, R.; Tangcharoensathien, V. Surveillance of antimicrobial consumption in animal production sectors of low- and middle-income countries: Optimizing use and addressing antimicrobial resistance. PLoS Med. 2018, 15, e1002521. [Google Scholar] [CrossRef] [Green Version]
- Ström, G.; Boqvist, S.; Albihn, A.; Fernström, L.L.; Andersson Djurfeldt, A.; Sokerya, S.; Sothyra, T.; Magnusson, U. Antimicrobials in small-scale urban pig farming in a lower middle-income country—Arbitrary use and high resistance levels. Antimicrob. Resist. Infect. Control 2018, 7. [Google Scholar] [CrossRef] [Green Version]
- Choisy, M.; Van Cuong, N.; Bao, T.D.; Kiet, B.T.; Hien, B.V.; Thu, H.V.; Chansiripornchai, N.; Setyawan, E.; Thwaites, G.; Rushton, J.; et al. Assessing antimicrobial misuse in small-scale chicken farms in Vietnam from an observational study. BMC Vet. Res. 2019, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzpatrick, A.; Tumlinson, K. Strategies for Optimal Implementation of Simulated Clients for Measuring Quality of Care in Low- and Middle-Income Countries. Glob. Health Sci. Pract. 2017, 5, 108–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lhermie, G.; Gröhn, Y.T.; Raboisson, D. Addressing Antimicrobial Resistance: An Overview of Priority Actions to Prevent Suboptimal Antimicrobial Use in Food-Animal Production. Front. Microbiol. 2017, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navidshad, B.; Darabighane, B.; Malecky, M. Garlic: An Alternative to Antibiotics in Poultry Production, A Review. Iran. J. Appl. Anim. Sci. 2018, 8, 9–17. [Google Scholar]
- Caudell, M.A.; Dorado-Garcia, A.; Eckford, S.; Creese, C.; Byarugaba, D.K.; Afakye, K.; Chansa-Kabali, T.; Fasina, F.O.; Kabali, E.; Kiambi, S.; et al. Towards a bottom-up understanding of antimicrobial use and resistance on the farm: A knowledge, attitudes, and practices survey across livestock systems in five African countries. PLoS ONE 2020, 15, e0220274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics of Small-Scale Food Animal Producers | n (%) |
---|---|
Number of food animals per household (n = 117) | |
1–10 animals | 63 (54%) |
11–20 animals | 24 (20%) |
21–30 animals | 9 (8%) |
31–40 animals | 8 (7%) |
41–50 animals | 4 (3%) |
>50 animals | 9 (8%) |
Household owns chickens (n = 117) | |
Yes | 94 (80%) |
No | 23 (20%) |
Number of chickens owned (n = 94) | |
1–10 | 73 (78%) |
11–20 | 13 (14%) |
>20 | 8 (8%) |
Household gave antibiotics to food animals in last 6 months (n = 117) | |
Yes | 24 (21%) |
No | 93 (79%) |
Food animal species reported to be treated with antibiotics (n = 24, not mutually exclusive) | |
Poultry (chickens, ducks, and quail) | 21 (88%) |
Pigs | 5 (21%) |
Cows | 4 (17%) |
Other animals | 9 (37%) |
Purchasing location for antibiotics (n = 24) | |
Veterinarian | 18 (75%) |
Animal products store | 6 (25%) |
Instructions received for use of antibiotics (n = 24) | |
Written information | 9 (38%) |
Oral | 10 (42%) |
No information | 2 (8%) |
Other | 3 (12%) |
Characteristic | Growth Promotion Scenario (n = 38) | Disease Treatment Scenario (n = 40) | ||
---|---|---|---|---|
n | Proportion | n | Proportion | |
Neighborhood | ||||
Checa | 1 | 3% | 1 | 3% |
Pifo | 10 | 26% | 10 | 25% |
Puembo | 2 | 5% | 4 | 10% |
Quinche | 8 | 21% | 8 | 20% |
Tumbaco | 9 | 24% | 9 | 22% |
Yaruqui | 8 | 21% | 8 | 20% |
Store carried antibiotics | ||||
Yes | 31 | 82% | 33 | 83% |
No | 7 | 18% | 7 | 17% |
Sales agent role | ||||
Veterinarian | 3 | 8% | 3 | 8% |
Store Owner | 14 | 37% | 4 | 10% |
Employee | 21 | 55% | 33 | 82% |
Scenario | Recommendation | Initial Recommendation 1 | Final Recommendation 1 |
---|---|---|---|
Growth Promotion Scenario (n = 38, not mutually exclusive) | |||
Antibiotics | 37% | 61% | |
Medication (non-antibiotic) | 76% | 74% | |
Veterinary consultation | 11% | 8% | |
Improved food quality | 42% | 39% | |
Disease Treatment Scenario (n = 40, not mutually exclusive) | |||
Antibiotics | 75% | 62% | |
Medication (non-antibiotic) | 40% | 35% | |
Veterinary consultation | 22% | 18% | |
Improved food quality | 35% | 25% |
Growth Promotion Scenario 2 | Disease Treatment Scenario | ||||
---|---|---|---|---|---|
n | Proportion | n | Proportion | ||
Encouraged antibiotic use as initial or final recommendation | Yes | 25 | 66% | 33 | 83% |
No | 13 | 34% | 7 | 17% | |
Highest stewardship category antibiotic recommended | Highest caution | 0 | 0 | 1 | 3% |
High caution | 2 | 9% | 7 | 21% | |
Medium caution | 4 | 18% | 8 | 24% | |
Low caution | 16 | 73% | 17 | 52% |
Sales Agent Characteristic | Recommendation Number | Growth Promotion Scenario | Disease Treatment Scenario | ||
---|---|---|---|---|---|
χ2 Test Statistic | p-Value | χ2 Test Statistic | p-Value | ||
Veterinarian present | Initial | 1.138 | 0.286 | 2.413 | 0.299 |
Final | 4.316 | 0.038 * | 4.004 | 0.135 | |
Sales agent asked for more information | Initial | 0.17 | 0.68 | 0.139 | 0.709 |
Final | 0 | 1 | 1 | 0.317 | |
Sales agent appeared invested in the animals’ health | Initial | 0.005 | 0.945 | 0 | 1 |
Final | 0.398 | 0.528 | 0 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butzin-Dozier, Z.; Waters, W.F.; Baca, M.; Vinueza, R.L.; Saraiva-Garcia, C.; Graham, J. Assessing Upstream Determinants of Antibiotic Use in Small-Scale Food Animal Production through a Simulated Client Method. Antibiotics 2021, 10, 2. https://doi.org/10.3390/antibiotics10010002
Butzin-Dozier Z, Waters WF, Baca M, Vinueza RL, Saraiva-Garcia C, Graham J. Assessing Upstream Determinants of Antibiotic Use in Small-Scale Food Animal Production through a Simulated Client Method. Antibiotics. 2021; 10(1):2. https://doi.org/10.3390/antibiotics10010002
Chicago/Turabian StyleButzin-Dozier, Zachary, William F. Waters, Martin Baca, Rommel Lenin Vinueza, Carlos Saraiva-Garcia, and Jay Graham. 2021. "Assessing Upstream Determinants of Antibiotic Use in Small-Scale Food Animal Production through a Simulated Client Method" Antibiotics 10, no. 1: 2. https://doi.org/10.3390/antibiotics10010002
APA StyleButzin-Dozier, Z., Waters, W. F., Baca, M., Vinueza, R. L., Saraiva-Garcia, C., & Graham, J. (2021). Assessing Upstream Determinants of Antibiotic Use in Small-Scale Food Animal Production through a Simulated Client Method. Antibiotics, 10(1), 2. https://doi.org/10.3390/antibiotics10010002