Clinical Presentation and Incidence of Anaerobic Bacteria in Surgically Treated Biliary Tract Infections and Cholecystitis
Abstract
:1. Introduction
2. Results
2.1. Clinical Characteristics
2.2. Microbial Growth
2.3. Antibiotic Treatment
3. Discussion
Strengths and Limitations
4. Materials and Methods
4.1. Data Acquisition
4.2. Clinical Definitions
4.3. Isolation and Identification of Strains
4.4. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pisano, M.; Allievi, N.; Gurusamy, K.; Borzellino, G.; Cimbanassi, S.; Boerna, D.; Coccolini, F.; Tufo, A.; Di Martino, M.; Leung, J.; et al. 2020 World Society of Emergency Surgery updated guidelines for the diagnosis and treatment of acute calculus cholecystitis. World J. Emerg. Surg. 2020, 15, 61. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.B.; Gu, M.G.; Kim, K.H.; Kim, T.N. Long-term outcomes of acute acalculous cholecystitis treated by non-surgical management. Medicine 2020, 99, e19057. [Google Scholar] [CrossRef] [PubMed]
- Gutt, C.N.; Encke, J.; Köninger, J.; Harnoss, J.C.; Weigand, K.; Kipfmüller, K.; Schunter, O.; Götze, T.; Golling, M.T.; Menges, M.; et al. Acute cholecystitis: Early versus delayed cholecystectomy, a multicenter randomized trial (ACDC study, NCT00447304). Ann. Surg. 2013, 258, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Hajibandeh, S.; Popova, P.; Rehman, S. Extended Postoperative Antibiotics Versus No Postoperative Antibiotics in Patients Undergoing Emergency Cholecystectomy for Acute Calculous Cholecystitis: A Systematic Review and Meta-Analysis. Surg. Innov. 2019, 26, 485–496. [Google Scholar] [CrossRef] [PubMed]
- Gomi, H.; Solomkin, J.S.; Schlossberg, D.; Okamoto, K.; Takada, T.; Strasberg, S.M.; Ukai, T.; Endo, I.; Iwashita, Y.; Hibi, T.; et al. Tokyo Guidelines 2018: Antimicrobial therapy for acute cholangitis and cholecystitis. J. Hepatobiliary Pancreat. Sci. 2018, 25, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Gomi, H.; Solomkin, J.S.; Takada, T.; Strasberg, S.M.; Pitt, H.A.; Yoshida, M.; Kusachi, S.; Mayumi, T.; Miura, F.; Kiriyama, S.; et al. TG13 antimicrobial therapy for acute cholangitis and cholecystitis. J. Hepatobiliary Pancreat. Sci. 2013, 20, 60–70. [Google Scholar] [CrossRef]
- Yun, S.P.; Seo, H.I. Clinical aspects of bile culture in patients undergoing laparoscopic cholecystectomy. Medicine 2018, 97, e11234. [Google Scholar] [CrossRef]
- Dyrhovden, R.; Øvrebø, K.K.; Nordahl, M.V.; Nygaard, R.M.; Ulvestad, E.; Kommedal, Ø. Bacteria and fungi in acute cholecystitis. A prospective study comparing next generation sequencing to culture. J. Infect. 2020, 80, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Begley, M.; Gahan, C.G.; Hill, C. The interaction between bacteria and bile. FEMS Microbiol. Rev. 2005, 29, 625–651. [Google Scholar] [CrossRef] [Green Version]
- Aschenbrenner, D.S. New Warning for Fluoroquinolone Antibiotics. Am. J. Nurs. 2019, 119, 20. [Google Scholar] [CrossRef]
- US Food and Drug Administration. FDA Drug Safety Communication: FDA Updates Warnings for Oral and Injectable Fluoroquinolone Antibiotics due to Disabling Side Effects. 2018. Available online: https://www.fda.gov/news-events/press-announcements/fda-updates-warnings-fluoroquinolone-antibiotics-risks-mental-health-and-low-blood-sugar-adverse (accessed on 30 November 2020).
- Thabit, A.K. Antibiotics in the Biliary Tract: A Review of the Pharmacokinetics and Clinical Outcomes of Antibiotics Penetrating the Bile and Gallbladder Wall. Pharmacotherapy 2020, 40, 672–691. [Google Scholar] [CrossRef] [PubMed]
- Westphal, J.F.; Brogard, J.M. Biliary tract infections: A guide to drug treatment. Drugs 1999, 57, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Mazeh, H.; Mizrahi, I.; Dior, U.; Simanovsky, N.; Shapiro, M.; Freund, H.R.; Eid, A. Role of antibiotic therapy in mild acute calculus cholecystitis: A prospective randomized controlled trial. World J. Surg. 2012, 36, 1750–1759. [Google Scholar] [CrossRef] [PubMed]
- Fuks, D.; Cossé, C.; Régimbeau, J.M. Antibiotic therapy in acute calculous cholecystitis. J. Visc. Surg. 2013, 150, 3–8. [Google Scholar] [CrossRef]
- Morris-Stiff, G.J.; O’Donohue, P.; Ogunbiyi, S.; Sheridan, W.G. Microbiological assessment of bile during cholecystectomy: Is all bile infected? HPB 2007, 9, 225–228. [Google Scholar] [CrossRef] [Green Version]
- Csendes, A.; Burdiles, P.; Maluenda, F.; Diaz, J.C.; Csendes, P.; Mitru, N. Simultaneous bacteriologic assessment of bile from gallbladder and common bile duct in control subjects and patients with gallstones and common duct stones. Arch. Surg. 1996, 131, 389–394. [Google Scholar] [CrossRef]
- Blot, S.; Antonelli, M.; Arvaniti, K.; Blot, K.; Creagh-Brown, B.; de Lange, D.; De Waele, J.; Deschepper, M.; Dikmen, Y.; Dimopoulos, G.; et al. Epidemiology of intra-abdominal infection and sepsis in critically ill patients: “AbSeS”, a multinational observational cohort study and ESICM Trials Group Project. Intensive Care Med. 2019, 45, 1703–1717. [Google Scholar] [CrossRef] [Green Version]
- Hawser, S.P.; Bouchillon, S.K.; Hoban, D.J.; Badal, R.E. In vitro susceptibilities of aerobic and facultative anaerobic Gram-negative bacilli from patients with intra-abdominal infections worldwide from 2005–2007: Results from the SMART study. Int. J. Antimicrob Agents 2009, 34, 585–588. [Google Scholar] [CrossRef]
- Lu, Y.; Xiang, T.H.; Shi, J.S.; Zhang, B.Y. Bile anaerobic bacteria detection and antibiotic susceptibility in patients with gallstone. Hepatobiliary Pancreat. Dis. Int. 2003, 2, 431–434. [Google Scholar]
- Rodloff, A.C.; Dowzicky, M.J. In vitro activity of tigecycline and comparators against a European collection of anaerobes collected as part of the Tigecycline Evaluation and Surveillance Trial (T.E.S.T.) 2010–2016. Anaerobe 2018, 51, 78–88. [Google Scholar] [CrossRef]
- Westphal, J.F.; Brogard, J.M.; Caro-Sampara, F.; Adloff, M.; Blicklé, J.F.; Monteil, H.; Jehl, F. Assessment of biliary excretion of piperacillin-tazobactam in humans. Antimicrob. Agents Chemother. 1997, 41, 1636–1640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, J., Jr.; Thompson, M.I.; Russo, M.E.; Saxon, B.A.; Matsen, J.M.; Moody, F.G.; Rikkers, L.F. Piperacillin distribution into bile, gallbladder wall, abdominal skeletal muscle, and adipose tissue in surgical patients. Antimicrob. Agents Chemother. 1982, 22, 488–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, M.; Browning, A.K.; McFarland, R.J. Excretion of cefuroxime in biliary disease. Surg. Gynecol. Obstet. 1984, 158, 272–274. [Google Scholar] [PubMed]
- Orozco, H.; Sifuentes-Osornio, J.; Chan, C.; Medina-Franco, H.; Vargas-Vorackova, F.; Prado, E.; Arch, J. Comparison of ceftibuten vs. amoxicillin/clavulanic acid as antibiotic prophylaxis in cholecystectomy and/or biliary tract surgery. J. Gastrointest. Surg. 2000, 4, 606–610. [Google Scholar] [CrossRef]
- Yokoe, M.; Hata, J.; Takada, T.; Strasberg, S.M.; Asbun, H.J.; Wakabayashi, G.; Kozaka, K.; Endo, I.; Deziel, D.J.; Miura, F.; et al. Tokyo Guidelines 2018: Diagnostic criteria and severity grading of acute cholecystitis (with videos). J. Hepatobiliary Pancreat. Sci. 2018, 25, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Buhl, M.; Willmann, M.; Liese, J.; Autenrieth, I.B.; Marschal, M. Prevotella colorans sp. nov., isolated from a human wound. Int. J. Syst. Evol. Microbiol. 2016, 66, 3005–3009. [Google Scholar] [CrossRef]
Overall Patient Characteristics (n = 365) | ||
---|---|---|
Gender m/f | 185/180 | 50.7%/49.3% |
Median age in years | 66 | Range 20–97 |
BMI in kg/m2 | 27 | Range 17–60 |
Diagnosis | ||
Acute Cholecystitis | 245 | 31.5% |
Chronic Cholecystitis | 115 | 67.1% |
Tumor | 5 | 1.5% |
Preoperative endoscopic retrograde cholangiopancreaticography (ERCP) | 79 | 21.6% |
Urgent cases * | 212 | 66.3% |
Median operating time in minutes | 98 | Range 28–302 |
Median length of stay in days | 3 | Range 1–51 |
Laparoscopic cholecystectomy (CCE) | 280 | 76.7% |
Conversion to Open CCE | 31 | 8.5% |
Primary Open CCE | 54 | 14.8% |
Anaerobic vs. Aerobic Patients | |||
---|---|---|---|
Anaerobes (n = 42) | No Anaerobes (n = 323) | p | |
Gender m (Percentage) | 21 (50%) | 164 (51%) | 1.000 |
Median age in years | 72 | 66 | 0.095 |
Body mass index (BMI) in kg/m2 | 27 | 27 | 0.788 |
Preoperative ERCP | 19 (45%) | 60 (19%) | 0.000 |
Surgical Diagnosis | |||
Acute Cholecystitis | 29 | 216 | 0.778 |
Non-acute Cholecystectomy | 13 | 30 | |
Perforation or Abscess | 18 (43%) | 85 (27%) | 0.028 |
Median operating time in minutes | 96 | 98 | 0.178 |
Median length of stay in days | 4.5 | 3 | 0.151 |
Laparoscopic CCE | 32 (76%) | 248 (77%) | 1.000 |
Conversion to Open CCE | 3 (7%) | 28 (8%) | |
Primary Open CCE | 7 (17%) | 47 (15%) | |
Complications | 7 (17%) | 36 (11%) | 0.296 |
Diabetes | 9 (21%) | 73 (23%) | 1.000 |
Hypercholesterinemia | 14 (33%) | 62 (19%) | 0.034 |
Microorganisms Isolated from Biliary Specimens | ||
---|---|---|
n | % | |
Bacteroides fragilis | 8 | 17.0 |
Bacteroides uniformis | 4 | 8.5 |
Bacteroides thetaiotaomicron | 4 | 8.5 |
Bacteroides ovatus | 1 | 2.1 |
Bacteroides intestinalis | 1 | 2.1 |
Bacteroides vulgatus | 1 | 2.1 |
Clostridium perfringens | 7 | 14.9 |
Clostridium hatewayi | 1 | 2.1 |
Actinomyces odontolyticus | 7 | 14.9 |
Actinomyces naeslundii | 1 | 2.1 |
Cutibacterium acnes | 4 | 8.5 |
Prevotella spec. | 3 | 6.3 |
Bilophila wadsworthia | 1 | 2.1 |
Fusobacterium nucleatus | 1 | 2.1 |
Slackia exigua | 1 | 2.1 |
Bifidobacterium breve | 1 | 2.1 |
Alloscardovia omnicolens | 1 | 2.1 |
Total | 47 | 100 |
Local Susceptibility Rates by Microorganisms in % | ||||||
---|---|---|---|---|---|---|
Penicillin G | Amox./Clav. | Clindamycin | Meropenem | Metronidazole | n | |
Actinomyces spec. | n.t. | 100 | 100 | 100 | 0 | 34 |
Cutibacterium acnes | 95.8 | 100 | 98.6 | 98.6 | 0 | 72 |
B. fragilis | 0 | 94.1 | 70,6 | 85.7 | 97.1 | 35 |
B. species | 0 | 88.8 | 77.8 | 100 | 100 | 9 |
C. perfringens | 83.3 | 100 | 66.7 | 100 | 100 | 12 |
C. species | 71.9 | 100 | 66.7 | 100 | 100 | 33 |
Prevotella species | 33.3 | 100 | 55.6 | 100 | 55.6 | 9 |
Fusobacterium nucl. | 100 | 100 | 20 | 100 | 100 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strohäker, J.; Wiegand, L.; Beltzer, C.; Königsrainer, A.; Ladurner, R.; Meier, A. Clinical Presentation and Incidence of Anaerobic Bacteria in Surgically Treated Biliary Tract Infections and Cholecystitis. Antibiotics 2021, 10, 71. https://doi.org/10.3390/antibiotics10010071
Strohäker J, Wiegand L, Beltzer C, Königsrainer A, Ladurner R, Meier A. Clinical Presentation and Incidence of Anaerobic Bacteria in Surgically Treated Biliary Tract Infections and Cholecystitis. Antibiotics. 2021; 10(1):71. https://doi.org/10.3390/antibiotics10010071
Chicago/Turabian StyleStrohäker, Jens, Lisa Wiegand, Christian Beltzer, Alfred Königsrainer, Ruth Ladurner, and Anke Meier. 2021. "Clinical Presentation and Incidence of Anaerobic Bacteria in Surgically Treated Biliary Tract Infections and Cholecystitis" Antibiotics 10, no. 1: 71. https://doi.org/10.3390/antibiotics10010071
APA StyleStrohäker, J., Wiegand, L., Beltzer, C., Königsrainer, A., Ladurner, R., & Meier, A. (2021). Clinical Presentation and Incidence of Anaerobic Bacteria in Surgically Treated Biliary Tract Infections and Cholecystitis. Antibiotics, 10(1), 71. https://doi.org/10.3390/antibiotics10010071