In Vitro Antimicrobial Activity of the Siderophore Cephalosporin Cefiderocol against Acinetobacter baumannii Strains Recovered from Clinical Samples
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Organism Identification and Antimicrobial Susceptibility Testing
4.2. Phenotypic Detection of Carbapenemase OXA-23-Like
4.3. Molecular Characterization of the Isolates
4.3.1. Antibiotic Resistance Genes Investigation
4.3.2. Clonal Relatedness and Typing
Pulsed-Field Gel Electrophoresis (PFGE)
Multilocus Sequence Typing (MLST)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Antunes, L.C.; Visca, P.; Towner, K.J. Acinetobacter baumannii: Evolution of a global pathogen. Pathog. Dis. 2014, 71, 292–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gellings, P.S.; Wilkins, A.A.; Morici, L.A. Recent Advances in the Pursuit of an Effective Acinetobacter baumannii Vaccine. Pathogens 2020, 9, 1066. [Google Scholar] [CrossRef]
- Yagnik, K.J.; Kalyatanda, G.; Cannella, A.P.; Archibald, L.K. Outbreak of Acinetobacter baumannii associated with extrinsic contamination of ultrasound gel in a tertiary centre burn unit. Infect. Prev. Pract. 2019, 1, 100009. [Google Scholar] [CrossRef]
- Wong, D.; Nielsen, T.B.; Bonomo, R.A.; Pantapalangkoor, P.; Luna, B.; Spellberg, B. Clinical and Pathophysiological Overview of Acinetobacter Infections: A Century of Challenges. Clin. Microbiol. Rev. 2017, 30, 409–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shlaes, D.M.; Bradford, P.A. Antibiotics-From There to Where?: How the antibiotic miracle is threatened by resistance and a broken market and what we can do about it. Pathog. Immun. 2018, 3, 19–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front. Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef] [PubMed]
- Freire, M.P.; de Oliveira Garcia, D.; Garcia, C.P.; Campagnari Bueno, M.F.; Camargo, C.H.; Kono Magri, A.S.G.; Francisco, G.R.; Reghini, R.; Vieira, M.F.; Ibrahim, K.Y.; et al. Bloodstream infection caused by extensively drug-resistant Acinetobacter baumannii in cancer patients: High mortality associated with delayed treatment rather than with the degree of neutropenia. Clin. Microbiol. Infect. 2016, 22, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Morris, F.C.; Dexter, C.; Kostoulias, X.; Uddin, M.I.; Peleg, A.Y. The Mechanisms of Disease Caused by Acinetobacter baumannii. Front. Microbiol. 2019, 10, 1601. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.R.; Lee, J.H.; Park, M.; Park, K.S.; Bae, I.K.; Kim, Y.B.; Cha, C.J.; Jeong, B.C.; Lee, S.H. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Front. Cell Infect. Microbiol. 2017, 137, 55. [Google Scholar] [CrossRef] [Green Version]
- Dijkshoorn, L.; Nemec, A.; Seifert, H. An increasing threat in hospitals: Multidrug-resistant Acinetobacter baumannii. Nat. Rev. Microbiol. 2007, 5, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Wu, M.L.; Feng, W.J.; Huang, S.F.; Yang, P. Accuracy and applicability of different phenotypic methods for carbapenemase detection in Enterobacteriaceae: A systematic review and meta-analysis. J. Glob. Antimicrob. Resist. 2020, 21, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Garnacho-Montero, J.; Timsit, J.F. Managing Acinetobacter baumannii infections. Curr. Opin. Infect. Dis. 2019, 32, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Nowak, P.; Paluchowska, P. Acinetobacter baumannii: Biology and drug resistance—role of carbapenemases. Folia Histochem. Cytobiol. 2016, 54, 61–74. [Google Scholar] [CrossRef] [Green Version]
- El-Lababidi, R.M.; Rizk, J.G. Cefiderocol: A Siderophore Cephalosporin. Ann Pharmacother. 2020, 54, 1215–1231. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.Y.; Srinivas, P.; Pogue, J.M. Cefiderocol: A Novel Agent for the Management of Multidrug-Resistant Gram-Negative Organisms. Infect. Dis. Ther. 2020, 9, 17–40. [Google Scholar] [CrossRef] [Green Version]
- Ito, A.; Sato, T.; Ota, M.; Takemura, M.; Nishikawa, T.; Toba, S.; Kohira, N.; Miyagawa, S.; Ishibashi, N.; Matsumoto, S.; et al. In Vitro Antibacterial Properties of Cefiderocol, a Novel Siderophore Cephalosporin, against Gram-Negative Bacteria. Antimicrob. Agents Chemother. 2018, 62, e01454-17. [Google Scholar] [CrossRef] [Green Version]
- Terreni, M.; Taccani, M.; Pregnolato, M. New Antibiotics for Multidrug-Resistant Bacterial Strains: Latest Research Developments and Future Perspectives. Molecules 2021, 26, 2671. [Google Scholar] [CrossRef] [PubMed]
- Antimicrobial Resistance Division; Partnership, G.C. 2020 Antibacterial Agents in Clinical and Preclinical Development; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters; Version 11.0; The European Committee on Antimicrobial Susceptibility Testing: Växjö, Sweden, 2021. [Google Scholar]
- Abdul-Mutakabbir, J.C.; Nguyen, L.; Maassen, P.T.; Stamper, K.C.; Kebriaei, R.; Kaye, K.S.; Castanheira, M.; Rybak, M.J. In Vitro Antibacterial Activity of Cefiderocol against Multidrug-Resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2021, 65, e0264620. [Google Scholar] [CrossRef]
- Yamano, Y. In Vitro Activity of Cefiderocol against a Broad Range of Clinically Important Gram-negative Bacteria. Clin. Infect. Dis. 2019, 69, S544–S551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhanel, G.G.; Golden, A.R.; Zelenitsky, S.; Wiebe, K.; Lawrence, C.K.; Adam, H.J.; Idowu, T.; Domalaon, R.; Schweizer, F.; Zhanel, M.A.; et al. Cefiderocol: A Siderophore Cephalosporin with Activity Against Carbapenem-Resistant and Multidrug-Resistant Gram-Negative Bacilli. Drugs 2019, 79, 271–289. [Google Scholar] [CrossRef] [PubMed]
- Falcone, M.; Tiseo, G.; Nicastro, M.; Leonildi, A.; Vecchione, A.; Casella, C.; Forfori, F.; Malacarne, P.; Guarracino, F.; Barnini, S.; et al. Cefiderocol as Rescue Therapy for Acinetobacter baumannii and Other Carbapenem-resistant Gram-negative Infections in Intensive Care Unit Patients. Clin. Infect. Dis. 2021, 72, 2021–2024. [Google Scholar] [CrossRef] [PubMed]
- Parsels, K.A.; Mastro, K.A.; Steele, J.M.; Thomas, S.J.; Kufel, W.D. Cefiderocol: A novel siderophore cephalosporin for multidrug-resistant Gram-negative bacterial infections. J. Antimicrob. Chemother. 2021, 76, 1379–1391. [Google Scholar] [CrossRef]
- Hackel, M.A.; Tsuji, M.; Yamano, Y.; Echols, R.; Karlowsky, J.A.; Sahm, D.F. Reproducibility of broth microdilution MICs for the novel siderophore cephalosporin, cefiderocol, determined using iron-depleted cation-adjusted Mueller-Hinton broth. Diagn. Microbiol. Infect. Dis. 2019, 94, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Lehtopolku, M.; Kotilainen, P.; Puukka, P.; Nakari, U.M.; Siitonen, A.; Eerola, E.; Huovinen, P.; Hakanen, A.J. Inaccuracy of the disk diffusion method compared with the agar dilution method for susceptibility testing of Campylobacter spp. J. Clin. Microbiol. 2012, 50, 52–56. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Taylor, T.H., Jr.; Pettus, K.; Johnson, S.; Papp, J.R.; Trees, D. Comparing the disk-diffusion and agar dilution tests for Neisseria gonorrhoeae antimicrobial susceptibility testing. Antimicrob. ResisT. Infect. Control. 2016, 5, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humphries, R.M.; Kircher, S.; Ferrell, A.; Krause, K.M.; Malherbe, R.; Hsiung, A.; Burnham, C.A. The Continued Value of Disk Diffusion for Assessing Antimicrobial Susceptibility in Clinical Laboratories: Report from the Clinical and Laboratory Standards Institute Methods Development and Standardization Working Group. J. Clin. Microbiol. 2018, 56, e00437-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uwizeyimana, J.D.; Kim, D.; Lee, H.; Byun, J.H.; Yong, D. Determination of Colistin Resistance by Simple Disk Diffusion Test Using Modified Mueller-Hinton Agar. Ann. Lab. Med. 2020, 40, 306–311. [Google Scholar] [CrossRef] [Green Version]
- Albano, M.; Karau, M.J.; Schuetz, A.N.; Patel, R. Comparison of Agar Dilution to Broth Microdilution for Testing In Vitro Activity of Cefiderocol against Gram-Negative Bacilli. J. Clin. Microbiol. 2020, 59, e00966-20. [Google Scholar] [CrossRef] [PubMed]
- Morris, C.P.; Bergman, Y.; Tekle, T.; Fissel, J.A.; Tamma, P.D.; Simner, P.J. Cefiderocol Antimicrobial Susceptibility Testing against Multidrug-Resistant Gram-Negative Bacilli: A Comparison of Disk Diffusion to Broth Microdilution. J. Clin. Microbiol. 2020, 59, e01649-20. [Google Scholar] [CrossRef]
- Delgado-Valverde, M.; Conejo, M.D.C.; Serrano, L.; Fernández-Cuenca, F.; Pascual, Á. Activity of cefiderocol against high-risk clones of multidrug-resistant Enterobacterales, Acinetobacter baumannii, Pseudomonas aeruginosa and Stenotrophomonas maltophilia. J. Antimicrob. Chemother. 2020, 75, 1840–1849. [Google Scholar] [CrossRef]
- Hackel, M.A.; Tsuji, M.; Yamano, Y.; Echols, R.; Karlowsky, J.A.; Sahm, D.F. In Vitro Activity of the Siderophore Cephalosporin, Cefiderocol, against Carbapenem-Nonsusceptible and Multidrug-Resistant Isolates of Gram-Negative Bacilli Collected Worldwide in 2014 to 2016. Antimicrob. Agents Chemother. 2018, 62, e01968-17. [Google Scholar] [CrossRef] [Green Version]
- Kazmierczak, K.M.; Tsuji, M.; Wise, M.G.; Hackel, M.; Yamano, Y.; Echols, R.; Sahm, D.F. In vitro activity of cefiderocol, a siderophore cephalosporin, against a recent collection of clinically relevant carbapenem-non-susceptible Gram-negative bacilli, including serine carbapenemase- and metallo-β-lactamase-producing isolates (SIDERO-WT-2014 Study). Int. J. Antimicrob Agents. 2019, 53, 177–184. [Google Scholar] [PubMed]
- Isler, B.; Doi, Y.; Bonomo, R.A.; Paterson, D.L. New Treatment Options against Carbapenem-Resistant Acinetobacter baumannii Infections. Antimicrob. Agents Chemother. 2018, 63, e01110-18. [Google Scholar]
- Lee, Y.R.; Yeo, S. Cefiderocol, a New Siderophore Cephalosporin for the Treatment of Complicated Urinary Tract Infections Caused by Multidrug-Resistant Pathogens: Preclinical and Clinical Pharmacokinetics, Pharmacodynamics, Efficacy and Safety. Clin. Drug Investig. 2020, 40, 901–913. [Google Scholar] [CrossRef]
- Hsueh, S.C.; Lee, Y.J.; Huang, Y.T.; Liao, C.H.; Tsuji, M.; Hsueh, P.R. In vitro activities of cefiderocol, ceftolozane/tazobactam, ceftazidime/avibactam and other comparative drugs against imipenem-resistant Pseudomonas aeruginosa and Acinetobacter baumannii, and Stenotrophomonas maltophilia, all associated with bloodstream infections in Taiwan. J. Antimicrob. Chemother. 2019, 74, 380–386. [Google Scholar] [PubMed]
- Dobias, J.; Dénervaud-Tendon, V.; Poirel, L.; Nordmann, P. Activity of the novel siderophore cephalosporin cefiderocol against multidrug-resistant Gram-negative pathogens. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 2319–2327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Liu, F.; Zhang, Y.; Wang, X.; Zhao, C.; Chen, H.; Zhang, F.; Zhu, B.; Hu, Y.; Wang, H. Evolution of carbapenem-resistant Acinetobacter baumannii revealed through whole-genome sequencing and comparative genomic analysis. Antimicrob. Agents Chemother. 2015, 59, 1168–1176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moynié, L.; Luscher, A.; Rolo, D.; Pletzer, D.; Tortajada, A.; Weingart, H.; Braun, Y.; Page, M.G.; Naismith, J.H.; Köhler, T. Structure and Function of the PiuA and PirA Siderophore-Drug Receptors from Pseudomonas aeruginosa and Acinetobacter baumannii. Antimicrob. Agents Chemother. 2017, 61, e02531-16. [Google Scholar] [CrossRef] [Green Version]
- van Delden, C.; Page, M.G.; Köhler, T. Involvement of Fe uptake systems and AmpC β-lactamase in susceptibility to the siderophore monosulfactam BAL30072 in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2013, 57, 2095–2102. [Google Scholar] [CrossRef] [Green Version]
- Malik, S.; Kaminski, M.; Landman, D.; Quale, J. Cefiderocol Resistance in Acinetobacter baumannii: Roles of β-Lactamases, Siderophore Receptors, and Penicillin Binding Protein 3. Antimicrob. Agents Chemother. 2020, 64, e01221-20. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riccobono, E.; Bogaerts, P.; Antonelli, A.; Evrard, S.; Giani, T.; Rossolini, G.M.; Glupczynski, Y. Evaluation of the OXA-23 K-SeT® immunochromatographic assay for the rapid detection of OXA-23-like carbapenemase-producing Acinetobacter spp. J. Antimicrob. Chemother. 2019, 74, 1455–1457. [Google Scholar] [CrossRef] [PubMed]
- Woodford, N.; Ellington, M.J.; Coelho, J.M.; Turton, J.F.; Ward, M.E.; Brown, S.; Amyes, S.G.; Livermore, D.M. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int. J. Antimicrob. Agents. 2006, 27, 351–353. [Google Scholar] [CrossRef] [PubMed]
- Migliavacca, R.; Espinal, P.; Principe, L.; Drago, M.; Fugazza, G.; Roca, I.; Nucleo, E.; Bracco, S.; Vila, J.; Pagani, L.; et al. Characterization of resistance mechanisms and genetic relatedness of carbapenem-resistant Acinetobacter baumannii isolated from blood, Italy. Diagn. Microbiol. Infect. Dis. 2013, 75, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Turton, J.F.; Ward, M.E.; Woodford, N.; Kaufmann, M.E.; Pike, R.; Livermore, D.M.; Pitt, T.L. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol. Lett. 2006, 258, 72–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kidd, J.M.; Abdelraouf, K.; Nicolau, D.P. Development of Neutropenic Murine Models of Iron Overload and Depletion to Study the Efficacy of Siderophore-Antibiotic Conjugates. Antimicrob. Agents Chemother. 2019, 64, e01961-19. [Google Scholar] [CrossRef] [PubMed]
Isolates (Reference Number) | Source | OXA-23 K-SeT® | TZP | CIP | SXT | AN | LEV | GEM | MEM | CZA | CAZ | FDC (mg/L) | FDC Disk (mm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AB 1–268 OASIS | Tracheal swab | Negative | >128 | >1 | >8 | 8 | 4 | >8 | 32 | >64 | >64 | 1 | 22 |
AB 11–69 OASIS | Bronchoaspirate | Negative | 32 | >1 | >8 | >16 | 8 | 8 | 32 | >64 | >64 | 1 | 21 |
AB NV 132 SGR | Bronchoaspirate | Negative | >128 | >1 | >8 | >16 | 8 | >8 | 16 | >64 | >64 | 8 | 19 |
AB 2 RED | Bronchoaspirate | Negative | >128 | >1 | 4 | >16 | 8 | >8 | 16 | 8 | 32 | 0.5 | 25 |
AB 2 MG | Urine | Negative | 64 | >1 | 4 | 16 | 8 | >8 | 0.25 | 16 | 32 | 1 | 24 |
AB 3 BOL | Tracheal swab | Negative | >128 | >1 | >8 | >16 | 8 | >8 | 8 | 16 | 16 | 1 | 21 |
AB 24C18 | Tracheal swab | Negative | 16 | >1 | >8 | 16 | >8 | 8 | 16 | 64 | >64 | 8 | 18 |
AB 5 MO | Bronchoaspirate | Positive | 32 | 1 | 8 | >16 | >8 | >8 | 16 | 4 | 32 | 1 | 28 |
AB 560,380 HU | Urine | Positive | >128 | >1 | >8 | >16 | >8 | >8 | 64 | 8 | 64 | 16 | 28 |
AB 9691 | Wound | Positive | >128 | >1 | >8 | >16 | >8 | >8 | >64 | 64 | >64 | 1 | 21 |
AB 14C04 | Tracheal swab | Positive | ≤2 | 0.06 | ≤4 | ≤2 | 1 | ≤1 | 4 | 2 | 2 | 0.25 | 36 |
AB 5968 | Blood culture | Positive | >128 | >1 | >8 | >16 | >8 | >8 | >64 | >64 | >64 | 2 | 30 |
AB 9852 | Blood culture | Positive | >128 | >1 | >8 | >16 | >8 | >8 | 64 | 8 | 2 | 0.5 | 25 |
AB 3509 | Urine | Positive | >128 | >1 | >8 | >16 | >8 | >8 | 64 | 64 | >64 | 0.5 | 23 |
AB 6509 | Bronchoaspirate | Positive | >128 | >1 | >8 | >16 | >8 | >8 | 64 | 64 | 64 | 8 | 26 |
AB 3193 | Peritoneal fluid | Positive | >128 | >1 | >8 | >16 | >8 | >8 | >64 | 16 | 8 | 8 | 25 |
AB 334 HU | Bronchoaspirate | Positive | 128 | >1 | >8 | >16 | >8 | >8 | 32 | >64 | >64 | >32 | 15 |
AB 16 MO | Tracheal swab | Positive | >128 | >1 | >8 | >16 | 8 | >8 | 64 | 32 | 64 | >32 | 23 |
AB 9063 | Peritoneal fluid | Positive | >128 | >1 | >8 | >16 | >8 | >8 | >64 | >64 | >64 | >32 | 22 |
AB 4509 | Urine | Positive | >128 | >1 | >8 | >16 | >8 | >8 | >64 | >64 | 64 | >32 | 21 |
Isolates (Reference Number) | Resistance Determinants a | Clone | MLST b |
---|---|---|---|
AB 1–268 OASIS | blaOXA-58, ISAba1-blaOXA-51 | A1 | 4 |
AB 11–69 OASIS | ISAba1-blaOXA-51 | E | 109 |
AB NV 132 SGR | blaOXA-58, ISAba1-blaOXA-51, blaOXA-11 | A | new |
AB 2 RED | blaOXA-58, ISAba1-blaOXA-51 | C | 78 |
AB 2 MG | ISAba1-blaOXA-51 | SMAL | 78 |
AB 3 BOL | blaOXA-58, blaOXA-128, ISAba1-blaOXA-51, aphA6 | B | 10 |
AB 24C18 | ISAba1-blaOXA-51, aphA6 | F1 | 2 |
AB 5 MO | blaOXA-23, ISAba1-blaOXA-51, ISAba1-blaOXA-23 | SMAL | 1077 |
AB 560380 HU | blaOXA-23, ISAba1-blaOXA-51, ISAba1-blaOXA-23, armA | I | 2 |
AB 9691 | blaOXA-23, ISAba1-blaOXA-51, ISAba1-blaOXA-23, aphA6 | H | 2 |
AB 14C04 | blaOXA-23, ISAba1-blaOXA-51, armA | F | 2 |
AB 5968 | blaOXA-23, ISAba1-blaOXA-51, armA, aphA6 | L | 261 |
AB 9852 | blaOXA-23, ISAba1-blaOXA-51, ISAba1-blaOXA-23, aphA6 | G | 2 |
AB 3509 | blaOXA-23, ISAba1-blaOXA-51, armA | G | 2 |
AB 6509 | blaOXA-23, ISAba1-blaOXA-51, armA | G2 | - c |
AB 3193 | blaOXA-23, ISAba1-blaOXA-51, armA | G1 | - c |
AB 334 HU | blaOXA-23, ISAba1-blaOXA-51, ISAba1-blaOXA-23, aphA6 | I1 | 2 |
AB 16 MO | blaOXA-23, ISAba1-blaOXA-51, ISAba1-blaOXA-23, aphA6 | D | 19 |
AB 9063 | blaOXA-23, ISAba1-blaOXA-51, armA | G2 | 2 |
AB 4509 | blaOXA-23, ISAba1-blaOXA-51, armA | A2 | new |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carcione, D.; Siracusa, C.; Sulejmani, A.; Migliavacca, R.; Mercato, A.; Piazza, A.; Principe, L.; Clementi, N.; Mancini, N.; Leoni, V.; et al. In Vitro Antimicrobial Activity of the Siderophore Cephalosporin Cefiderocol against Acinetobacter baumannii Strains Recovered from Clinical Samples. Antibiotics 2021, 10, 1309. https://doi.org/10.3390/antibiotics10111309
Carcione D, Siracusa C, Sulejmani A, Migliavacca R, Mercato A, Piazza A, Principe L, Clementi N, Mancini N, Leoni V, et al. In Vitro Antimicrobial Activity of the Siderophore Cephalosporin Cefiderocol against Acinetobacter baumannii Strains Recovered from Clinical Samples. Antibiotics. 2021; 10(11):1309. https://doi.org/10.3390/antibiotics10111309
Chicago/Turabian StyleCarcione, Davide, Claudia Siracusa, Adela Sulejmani, Roberta Migliavacca, Alessandra Mercato, Aurora Piazza, Luigi Principe, Nicola Clementi, Nicasio Mancini, Valerio Leoni, and et al. 2021. "In Vitro Antimicrobial Activity of the Siderophore Cephalosporin Cefiderocol against Acinetobacter baumannii Strains Recovered from Clinical Samples" Antibiotics 10, no. 11: 1309. https://doi.org/10.3390/antibiotics10111309
APA StyleCarcione, D., Siracusa, C., Sulejmani, A., Migliavacca, R., Mercato, A., Piazza, A., Principe, L., Clementi, N., Mancini, N., Leoni, V., & Intra, J. (2021). In Vitro Antimicrobial Activity of the Siderophore Cephalosporin Cefiderocol against Acinetobacter baumannii Strains Recovered from Clinical Samples. Antibiotics, 10(11), 1309. https://doi.org/10.3390/antibiotics10111309