Heteroaryl-Ethylenes as New Lead Compounds in the Fight against High Priority Bacterial Strains
Abstract
:1. Introduction
2. Results
2.1. VolSurf+ Analysis
2.2. Synthesis of PBn Compounds
2.3. Antimicrobial Activity of PBn Compounds against Control Strains
2.3.1. Antimicrobial Activity of PBn Compounds against Gram-Positive Strains
2.3.2. Antimicrobial Activity of PB Compounds against Gram-Negative Strains
2.4. Evaluation of Cell Cytotoxicity by MTT Assay
3. Discussion and Conclusions
4. Materials and Methods
4.1. General
4.2. Microorganisms and Growth Conditions
4.3. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
4.4. Evaluation of the Anticarcinogenic Activity of the PB Series on Human Colorectal Adenocarcinoma Cells
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 12 May 2021).
- Tang, J.; Chu, B.; Wang, J.; Song, B.; Su, Y.; Wang, H.; He, Y. Multifunctional nanoagents for ultrasensitive imaging and photoactive killing of Gram-negative and Gram-positive bacteria. Nat Commun. 2019, 10, 4057. [Google Scholar] [CrossRef] [Green Version]
- Carreño, G.; Marican, A.; Vijayakumar, S.; Valdés, O.; Cabrera-Barjas, G.; Castaño, J.; Durán-Lara, E.F. Sustained release of linezolid from prepared hydrogels with polyvinyl alcohol and aliphatic dicarboxylic acids of variable chain lengths. Pharmaceutics 2020, 12, 982. [Google Scholar] [CrossRef]
- Gaeta, M.; Sanfilippo, G.; Fraix, A.; Sortino, G.; Barcellona, M.; Oliveri Conti, G.; Fragalà, M.E.; Ferrante, M.; Purrello, R.; D’Urso, A. Photodegradation of antibiotics by noncovalent porphyrin-functionalized tio2 in water for the bacterial antibiotic resistance risk management. Int. J. Mol. Sci. 2020, 21, 3775. [Google Scholar] [CrossRef]
- Pancu, D.F.; Scurtu, A.; Macasoi, I.G.; Marti, D.; Mioc, M.; Soica, C.; Coricovac, D.; Horhat, D.; Poenaru, M.; Dehelean, C. Antibiotics: Conventional therapy and natural compounds with antibacterial activity-a pharmaco-toxicological screening. Antibiotics 2021, 10, 401. [Google Scholar] [CrossRef]
- Douafer, H.; Andrieu, V.; Phanstiel, O., 4th; Brunel, J.M. Antibiotic adjuvants: Make antibiotics great again! J. Med. Chem. 2019, 62, 8665–8681. [Google Scholar] [CrossRef]
- Rossiter, S.E.; Fletcher, M.H.; Wuest, W.M. Natural products as platforms to overcome antibiotic resistance. Chem. Rev. 2017, 117, 12415–12474. [Google Scholar] [CrossRef]
- Fortuna, C.G.; Berardozzi, R.; Bonaccorso, C.; Caltabiano, G.; Di Bari, L.; Goracci, L.; Guarcello, A.; Pace, A.; Palumbo Piccionello, A.; Pescitelli, G.; et al. New potent antibacterials against Gram-positive multiresistant pathogens: Effects of side chain modification and chirality in linezolid-like 1,2,4-oxadiazoles. Bioorg. Med. Chem. 2014, 22, 6814–6825. [Google Scholar] [CrossRef]
- Antimicrobial Resistance in the EU/EEA (EARS-Net)-Annual Epidemiological Report for 2019. Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2019 (accessed on 12 May 2021).
- Campanile, F.; Bongiorno, D.; Perez, M.; Mongelli, G.; Sessa, L.; Benvenuto, S.; Gona, F.; Varaldo, P.E.; Stefani, S. Epidemiology of Staphylococcus aureus in Italy: First nationwide survey, 2012. J. Glob. Antimicrob. Resist. 2015, 3, 247–254. [Google Scholar] [CrossRef]
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Bressan, R.; Knezevich, A.; Monticelli, J.; Campanile, F.; Busetti, M.; Santagati, M.; Dolzani, L.; Milan, A.; Bongiorno, D.; Di Santolo, M.; et al. Spread of vancomycin-resistant Enterococcus faecium isolates despite validated infection control measures in an Italian hospital: Antibiotic resistance and genotypic characterization of the endemic strain. Microb. Drug Resist. 2018, 24, 1148–1155. [Google Scholar] [CrossRef]
- Aprile, A.; Scalia, G.; Stefani, S.; Mezzatesta, M.L. In vitro fosfomycin study on concordance of susceptibility testing methods against ESBL and carbapenem-resistant Enterobacteriaceae. J Glob. Antimicrob. Resist. 2020, 23, 286–289. [Google Scholar] [CrossRef]
- Gona, F.; Bongiorno, D.; Aprile, A.; Corazza, E.; Pasqua, B.; Scuderi, M.G.; Chiacchiaretta, M.; Cirillo, D.M.; Stefani, S.; Mezzatesta, M.L. Emergence of two novel sequence types (3366 and 3367) NDM-1- and OXA-48-co-producing K. pneumoniae in Italy. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1687–1691. [Google Scholar] [CrossRef]
- Mularoni, A.; Mezzatesta, M.L.; Pilato, M.; Medaglia, A.A.; Cervo, A.; Bongiorno, D.; Aprile, A.; Luca, A.; Stefani, S.; Grossi, P. Combination of aztreonam, ceftazidime-avibactam and amikacin in the treatment of VIM-1 Pseudomonas aeruginosa ST235 osteomyelitis. Int. J. Infect. Dis. 2021, 108, 510–512. [Google Scholar] [CrossRef] [PubMed]
- Mezzatesta, M.L.; D’Andrea, M.M.; Migliavacca, R.; Giani, T.; Gona, F.; Nucleo, E.; Fugazza, G.; Pagani, L.; Rossolini, G.M.; Stefani, S. Epidemiological characterization and distribution of carbapenem-resistant Acinetobacter baumannii clinical isolates in Italy. Clin. Microbiol. Infect. 2012, 18, 160–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Centre for Disease Prevention and Control. Surveillance of antimicrobial resistance in Europe 2018. Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2018 (accessed on 28 July 2021).
- Fortuna, C.G.; Barresi, V.; Bonaccorso, C.; Consiglio, G.; Failla, S.; Trovato-Salinaro, A.; Musumarra, G. Design, synthesis and in vitro antitumour activity of new heteroaryl ethylenes. Eur. J. Med. Chem. 2012, 47, 221–227. [Google Scholar] [CrossRef]
- Barresi, V.; Bonaccorso, C.; Consiglio, G.; Goracci, L.; Musso, N.; Musumarra, G.; Satriano, C.; Fortuna, C.G. Modeling, design and synthesis of new heteroaryl ethylenes active against the MCF-7 breast cancer cell-line. Mol. Biosyst. 2013, 9, 2426–2429. [Google Scholar] [CrossRef]
- Bonaccorso, C.; Naletova, I.; Satriano, C.; Spampinato, G.; Barresi, V.; Fortuna, C.G. New Di(heteroaryl) ethenes as apoptotic anti-proliferative agents towards breast cancer: Design, one-pot synthesis and in vitro evaluation. ChemistrySelect 2020, 5, 2581–2587. [Google Scholar] [CrossRef]
- Mattio, L.M.; Catinella, G.; Dallavalle, S.; Pinto, A. Stilbenoids: A natural arsenal against bacterial pathogens. Antibiotics 2020, 9, 336. [Google Scholar] [CrossRef]
- Zakova, T.; Rondevaldova, J.; Bernardos, A.; Landa, P.; Kokoska, L. The relationship between structure and in vitro antistaphylococcal effect of plant-derived stilbenes. Acta Microbiol. Immunol. Hung. 2018, 65, 467–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Culpitt, S.V.; Rogers, D.F.; Fenwick, P.S.; Shah, P.; De Matos, C.; Russell, R.E.K.; Barnes, P.J.; Donnelly, L.E. Inhibition by red wine extract, resveratrol, of cytokine release by alveolar macrophages in COPD. Thorax 2003, 58, 942–946. [Google Scholar] [CrossRef] [Green Version]
- Giacomini, E.; Rupiani, S.; Guidotti, L.; Recanatini, M.; Roberti, M. The use of stilbene scaffold in medicinal chemistry and multi-target drug design. Curr. Med. Chem. 2016, 23, 2439–2489. [Google Scholar] [CrossRef] [PubMed]
- De Filippis, B.; Ammazzalorso, A.; Fantacuzzi, M.; Giampietro, L.; Maccallini, C.; Amoroso, R. Anticancer activity of stilbene-based derivatives. ChemMedChem 2017, 12, 558–570. [Google Scholar] [CrossRef]
- Eibergen, N.R.; Im, I.; Patel, N.Y.; Hergenrother, P.J. Identification of a novel protein synthesis inhibitor active against Gram-positive bacteria. ChemBioChem 2012, 13, 574–583. [Google Scholar] [CrossRef]
- Nicolaou, K.C.; Roecker, A.J.; Barluenga, S.; Pfefferkorn, J.A.; Cao, G.Q. Discovery of novel antibacterial agents active against methicillin-resistant Staphylococcus aureus from combinatorial benzopyran libraries. ChemBioChem 2001, 2, 460–465. [Google Scholar] [CrossRef]
- Eloff, J.N.; Katerere, D.R.; Mcgaw, L.J. The biological activity and chemistry of the southern African Combretaceae. J. Ethnopharmacol. 2008, 119, 686–699. [Google Scholar] [CrossRef] [PubMed]
- Franchini, C.; Muraglia, M.; Corbo, F.; Florio, M.A.; Di Mola, A.; Rosato, A.; Matucci, R.; Nesi, M.; Van Bambeke, F.; Vitali, C. Synthesis and biological evaluation of 2-mercapto-1,3-benzothiazole derivatives with potential antimicrobial activity. Arch. Pharm. (Weinheim) 2009, 342, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Racané, L.; Ptiček, L.; Fajdetić, G.; Tralić-kulenović, V.; Klobučar, M.; Starčević, K. Bioorganic Chemistry Green synthesis and biological evaluation of 6-substituted-2-(2-hydroxy/methoxy phenyl) benzothiazole derivatives as potential antioxidant, antibacterial and antitumor agents. Bioorganic Chem. 2020, 95, 103537. [Google Scholar] [CrossRef]
- Kabir, M.S.; Engelbrecht, K.; Polanowski, R.; Krueger, S.M.; Ignasiak, R.; Rott, M.; Schwan, W.R.; Stemper, M.E.; Reed, K.D.; Sherman, D.; et al. New classes of Gram-positive selective antibacterials: Inhibitors of MRSA and surrogates of the causative agents of anthrax and tuberculosis. Bioorganic Med. Chem. Lett. 2008, 18, 5745–5749. [Google Scholar] [CrossRef]
- Schwan, W.R.; Kabir, M.S.; Kallaus, M.; Krueger, S.; Monte, A.; Cook, J.M. Synthesis and minimum inhibitory concentrations of SK-03-92 against Staphylococcus aureus and other Gram-positive bacteria. J. Infect. Chemother. 2012, 18, 124–126. [Google Scholar] [CrossRef]
- Su, Y.; Ma, L.; Wen, Y.; Wang, H.; Zhang, S. Studies of the in vitro antibacterial activities of several polyphenols against clinical isolates of methicillin-resistant Staphylococcus aureus. Molecules 2014, 19, 12630–12639. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.; Lee, S.H.; Lee, S.J.; Kwon, O.P.; Yoon, H. New antibacterial-core structures based on styryl quinolinium. Food Sci. Biotechnol. 2017, 26, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, J.; Yu, W.; Cardinale, S.; Opperman, T.J.; MacKerell Jr, A.D.; Fletcher, S.; de Leeuw, E.P.H. Optimization of a benzothiazole indolene scaffold targeting bacterial cell wall assembly. Drug Des. Dev. Ther. 2020, 14, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Cruciani, G.; Pastor, M.; Guba, W. VolSurf: A new tool for the pharmacokinetic optimization of lead compounds. Eur J Pharm Sci. 2000, 11, S29–S39. [Google Scholar] [CrossRef]
- Berellini, G.; Cruciani, G.; Mannhold, R. Pharmacophore, Drug Metabolism, and Pharmacokinetics Models on Non-Peptide AT 1, AT 2, and AT 1/AT 2 Angiotensin II Receptor Antagonists. J. Med. Chem. 2005, 48, 4389–4399. [Google Scholar] [CrossRef]
- Crivori, P.; Cruciani, G.; Carrupt, P.-A.; Testa, B. Predicting blood-brain barrier permeation from three-dimensional molecular structure. J. Med. Chem. 2000, 43, 2204–2216. [Google Scholar] [CrossRef]
- Carosati, E.; Sciabola, S.; Cruciani, G. Hydrogen Bonding Interactions of Covalently Bonded Fluorine Atoms: From Crystallographic Data to a New Angular Function in the GRID Force Field. J. Med. Chem. 2004, 47, 5114–5125. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M. SIMCA: A Method for Analyzing Chemical Data in Terms of Similarity and Analogy. In Chemometrics: Theory and Application; Kowalski, B.R., Ed.; American Chemical Society: Washington, DC, USA, 1977; pp. 243–282. [Google Scholar]
- Fortuna, C.G.; Barresi, V.; Musumarra, G. Design, synthesis and biological evaluation of trans 2-(thiophen-2-yl)vinyl heteroaromatic iodides. Bioorg. Med. Chem. 2010, 18, 4516–4523. [Google Scholar] [CrossRef]
- Bongiorno, D.; Musso, N.; Lazzaro, L.M.; Mongelli, G.; Stefani, S.; Campanile, F. Detection of methicillin-resistant Staphylococcus aureus persistence in osteoblasts using imaging flow cytometry. MicrobiologyOpen 2020, 9, 1017. [Google Scholar] [CrossRef] [Green Version]
- Mezzatesta, M.L.; Caio, C.; Gona, F.; Cormaci, R.; Salerno, I.; Zingali, T.; Denaro, C.; Gennaro, M.; Quattrone, C.; Stefani, S. Carbapenem and multidrug resistance in Gram-negative bacteria in a single centre in Italy: Considerations on in vitro assay of active drugs. Int. J. Antimicrob. Agents 2014, 44, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Pankey, G.A.; Sabath, L.D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin. Infect. Dis. 2004, 38, 864–870. [Google Scholar] [CrossRef] [Green Version]
- Neilson, A.H.; Allard, A.-S. Environmental Degradation and Transformation of Organic Chemicals, 1st ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Fortuna, C.G.; Bonaccorso, C.; Qamar, F.; Anu, A.; Ledoux, I.; Musumarra, G. Synthesis and NLO properties of new trans 2-(thiophen-2-yl)vinyl heteroaromatic iodides. Org. Biomol. Chem. 2011, 9, 1608–1613. [Google Scholar] [CrossRef] [PubMed]
- Ling, R.; Yoshida, M.; Mariano, P.S. Exploratory investigations probing a preparatively versatile, pyridinium salt photoelectrocyclization-solvolytic aziridine ring opening sequence. J. Org. Chem. 1996, 61, 4439–4449. [Google Scholar] [CrossRef] [PubMed]
- The European Committee on Antimicrobial Susceptibility Testing–EUCAST. Standard Operation Procedures. SOP 1.3. 23 October 2019. Available online: https://www.eucast.org/publications_and_documents/sops/ (accessed on 28 July 2021).
mg/L (μM) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Strain | PB1 | PB2 | PB3 | PB4 | PB5 | PB6 | PB7 | PB8 | ||||
MIC | MIC | MIC | MIC | MBC | MIC | MBC | MIC | MIC | MBC | MIC | MBC | |
S.aureus Mu50-VISA | 32 (76.87) | 8 (13.59) | 32 (70.28) | 0.25 (0.49) | 2 (3.91) | 2 (3.70) | 4 (7.40) | 4 (8.73) | 16 (34.50) | 16 (34.50) | 2 (3.46) | 8 (13.83) |
S.aureus USA300-CAMRSA | 2 (4.80) | 4 (6.80) | 2 (4.39) | 0.25 (0.49) | 2 (3.91) | 0,5 (0.93) | 4 (7.40) | 4 (8.73) | 2 (4.31) | 32 (69.00) | 2 (3.46) | 4 (6.91) |
S.aureus ATCC29213-MSSA | 4 (9.61) | 4 (6.80) | 4 (8.78) | 0.25 (0.49) | 2 (3.91) | 1 (1.85) | 4 (7.40) | 4 (8.73) | 4 (8.63) | 4 (8.63) | 2 (3.46) | 8 (13.83) |
S.aureus ATCC12598-MSSA | 2 (4.80) | 4 (6.80) | 8 (17.57) | 0.25 (0.49) | 2 (3.91) | 4 (7.40) | 4 (7.40) | 8 (17.46) | 8 (17.25) | 8 (17.25) | 2 (3.46) | 4 (6.91) |
E. faecalis ATCC51299-VRE | 32 (76.87) | 16 (27.18) | 32 (70.28) | 0.5 (0.98) | 4 (7.82) | 4 (7.40) | 128 (236.94) | 32 (69.85) | 8 (17.25) | 128 (276.02) | 4 (6.91) | 4 (6.91) |
E. faecalis ATCC29212-VSE | 32 (76.87) | 16 (27.18) | 32 (70.28) | 0.5 (0.98) | 4 (7.82) | 4 (7.40) | 128 (236.94) | 32 (69.85) | 8 (17.25) | 128 (276.02) | 4 (6.91) | 4 (6.91) |
mg/L (μM) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Strain | PB1 | PB2 | PB3 | PB4 | PB5 | PB6 | PB7 | PB8 | |
MIC | MIC | MIC | MIC | MBC | MIC | MIC | MIC | MIC | |
A. baumannii ATCC17978 | 128 (307.47) | 32 (54.37) | 64 (140.55) | 0.25 (0.49) | 0.5 (0.98) | >128 (>236.94) | 64 (137.70) | 32 (69.00) | 128 (221.22) |
E. coli ATCC25922 | 16 (38.43) | 128 (217.47) | 16 (35.14) | 1 (1.96) | 4 (7.82) | 32 (59.24) | >128 (>279.40) | 32 (69.00) | 128 (221.22) |
P. aeruginosa ATCC27853 | >128 (>307.47) | 32 (54.37) | >128 (281.10) | 64 (125.14) | - | >128 (>236.94) | >128 (>279.40) | >128 (>276.02) | >128 (>221.22) |
K. pneumoniae ATCC700603 | >128 (>307.47) | >128 (>217.47) | >128 (>281.10) | >128 (>250.27) | - | >128 (>236.94) | >128 (>279.40) | 128 (276.02) | >128 (>221.22) |
K. pneumoniae ATCC BAA-2814 | >128 (>307.47) | >128 (>217.47) | 128 (>281.10) | 64 (125.14) | - | >128 (>236.94) | >128 (>279.40) | 64 (138.01) | >128 (>221.22) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bongiorno, D.; Musso, N.; Bonacci, P.G.; Bivona, D.A.; Massimino, M.; Stracquadanio, S.; Bonaccorso, C.; Fortuna, C.G.; Stefani, S. Heteroaryl-Ethylenes as New Lead Compounds in the Fight against High Priority Bacterial Strains. Antibiotics 2021, 10, 1034. https://doi.org/10.3390/antibiotics10091034
Bongiorno D, Musso N, Bonacci PG, Bivona DA, Massimino M, Stracquadanio S, Bonaccorso C, Fortuna CG, Stefani S. Heteroaryl-Ethylenes as New Lead Compounds in the Fight against High Priority Bacterial Strains. Antibiotics. 2021; 10(9):1034. https://doi.org/10.3390/antibiotics10091034
Chicago/Turabian StyleBongiorno, Dafne, Nicolò Musso, Paolo G. Bonacci, Dalida A. Bivona, Mariacristina Massimino, Stefano Stracquadanio, Carmela Bonaccorso, Cosimo G. Fortuna, and Stefania Stefani. 2021. "Heteroaryl-Ethylenes as New Lead Compounds in the Fight against High Priority Bacterial Strains" Antibiotics 10, no. 9: 1034. https://doi.org/10.3390/antibiotics10091034
APA StyleBongiorno, D., Musso, N., Bonacci, P. G., Bivona, D. A., Massimino, M., Stracquadanio, S., Bonaccorso, C., Fortuna, C. G., & Stefani, S. (2021). Heteroaryl-Ethylenes as New Lead Compounds in the Fight against High Priority Bacterial Strains. Antibiotics, 10(9), 1034. https://doi.org/10.3390/antibiotics10091034