Assessment of a PK/PD Target of Continuous Infusion Beta-Lactams Useful for Preventing Microbiological Failure and/or Resistance Development in Critically Ill Patients Affected by Documented Gram-Negative Infections
Abstract
:1. Introduction
2. Results
2.1. Patient Population, Microbiological Characteristics, and TREATMENT Regimens
2.2. Microbiological Failure and Resistance Development
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Beta-Lactam Administration and Sampling
4.3. Data Collection
4.4. Microbiological and Susceptibility Data
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marston, H.D.; Dixon, D.M.; Knisely, J.M.; Palmore, T.N.; Fauci, A.S. Antimicrobial Resistance. JAMA 2016, 316, 1193–1204. [Google Scholar] [CrossRef] [Green Version]
- Veiga, R.P.; Paiva, J.-A. Pharmacokinetics-Pharmacodynamics Issues Relevant for the Clinical Use of Beta-Lactam Antibiotics in Critically Ill Patients. Crit. Care 2018, 22, 233. [Google Scholar] [CrossRef] [Green Version]
- MacVane, S.H. Antimicrobial Resistance in the Intensive Care Unit: A Focus on Gram-Negative Bacterial Infections. J. Intensive Care Med. 2017, 32, 25–37. [Google Scholar] [CrossRef]
- Roberts, J.A.; Joynt, G.M.; Choi, G.Y.S.; Gomersall, C.D.; Lipman, J. How to Optimise Antimicrobial Prescriptions in the Intensive Care Unit: Principles of Individualised Dosing Using Pharmacokinetics and Pharmacodynamics. Int. J. Antimicrob. Agents 2012, 39, 187–192. [Google Scholar] [CrossRef]
- Craig, W.A. Pharmacokinetic/Pharmacodynamic Parameters: Rationale for Antibacterial Dosing of Mice and Men. Clin. Infect. Dis. 1998, 26, 1–10. [Google Scholar] [CrossRef]
- Gatti, M.; Pea, F. Pharmacokinetic/Pharmacodynamic Target Attainment in Critically Ill Renal Patients on Antimicrobial Usage: Focus on Novel Beta-Lactams and Beta Lactams/Beta-Lactamase Inhibitors. Expert Rev. Clin. Pharmacol. 2021, 14, 583–599. [Google Scholar] [CrossRef] [PubMed]
- Gatti, M.; Pea, F. Continuous versus Intermittent Infusion of Antibiotics in Gram-Negative Multidrug-Resistant Infections. Curr. Opin. Infect. Dis. 2021. [Google Scholar] [CrossRef]
- Roberts, J.A.; Paul, S.K.; Akova, M.; Bassetti, M.; De Waele, J.J.; Dimopoulos, G.; Kaukonen, K.-M.; Koulenti, D.; Martin, C.; Montravers, P.; et al. DALI: Defining Antibiotic Levels in Intensive Care Unit Patients: Are Current β-Lactam Antibiotic Doses Sufficient for Critically Ill Patients? Clin. Infect. Dis. 2014, 58, 1072–1083. [Google Scholar] [CrossRef]
- Guilhaumou, R.; Benaboud, S.; Bennis, Y.; Dahyot-Fizelier, C.; Dailly, E.; Gandia, P.; Goutelle, S.; Lefeuvre, S.; Mongardon, N.; Roger, C.; et al. Optimization of the Treatment with Beta-Lactam Antibiotics in Critically Ill Patients-Guidelines from the French Society of Pharmacology and Therapeutics (Société Française de Pharmacologie et Thérapeutique-SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Société Française d’Anesthésie et Réanimation-SFAR). Crit. Care 2019, 23, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sumi, C.D.; Heffernan, A.J.; Lipman, J.; Roberts, J.A.; Sime, F.B. What Antibiotic Exposures Are Required to Suppress the Emergence of Resistance for Gram-Negative Bacteria? A Systematic Review. Clin. Pharmacokinet. 2019, 58, 1407–1443. [Google Scholar] [CrossRef] [PubMed]
- Heffernan, A.J.; Sime, F.B.; Lipman, J.; Roberts, J.A. Individualising Therapy to Minimize Bacterial Multidrug Resistance. Drugs 2018, 78, 621–641. [Google Scholar] [CrossRef]
- Adembri, C.; Novelli, A.; Nobili, S. Some Suggestions from PK/PD Principles to Contain Resistance in the Clinical Setting-Focus on ICU Patients and Gram-Negative Strains. Antibiotics 2020, 9, 676. [Google Scholar] [CrossRef] [PubMed]
- Tam, V.H.; Chang, K.-T.; Zhou, J.; Ledesma, K.R.; Phe, K.; Gao, S.; Van Bambeke, F.; Sánchez-Díaz, A.M.; Zamorano, L.; Oliver, A.; et al. Determining β-Lactam Exposure Threshold to Suppress Resistance Development in Gram-Negative Bacteria. J. Antimicrob. Chemother. 2017, 72, 1421–1428. [Google Scholar] [CrossRef]
- Tam, V.H.; Schilling, A.N.; Neshat, S.; Poole, K.; Melnick, D.A.; Coyle, E.A. Optimization of Meropenem Minimum Concentration/MIC Ratio to Suppress in Vitro Resistance of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2005, 49, 4920–4927. [Google Scholar] [CrossRef] [Green Version]
- Felton, T.W.; Goodwin, J.; O’Connor, L.; Sharp, A.; Gregson, L.; Livermore, J.; Howard, S.J.; Neely, M.N.; Hope, W.W. Impact of Bolus Dosing versus Continuous Infusion of Piperacillin and Tazobactam on the Development of Antimicrobial Resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2013, 57, 5811–5819. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017, 43, 304–377. [Google Scholar] [CrossRef]
- Drago, L.; De Vecchi, E.; Nicola, L.; Tocalli, L.; Gismondo, M.R. In Vitro Selection of Resistance in Pseudomonas aeruginosa and Acinetobacter spp. by Levofloxacin and Ciprofloxacin Alone and in Combination with Beta-Lactams and Amikacin. J. Antimicrob. Chemother. 2005, 56, 353–359. [Google Scholar] [CrossRef] [Green Version]
- Tumbarello, M.; Raffaelli, F.; Giannella, M.; Mantengoli, E.; Mularoni, A.; Venditti, M.; De Rosa, F.G.; Sarmati, L.; Bassetti, M.; Brindicci, G.; et al. Ceftazidime-Avibactam Use for KPC-Kp Infections: A Retrospective Observational Multicenter Study. Clin. Infect. Dis. 2021. [Google Scholar] [CrossRef]
- Abdul-Aziz, M.H.; Alffenaar, J.-W.C.; Bassetti, M.; Bracht, H.; Dimopoulos, G.; Marriott, D.; Neely, M.N.; Paiva, J.-A.; Pea, F.; Sjovall, F.; et al. Antimicrobial Therapeutic Drug Monitoring in Critically Ill Adult Patients: A Position Paper. Intensive Care Med. 2020, 46, 1127–1153. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.A.; Abdul-Aziz, M.H.; Lipman, J.; Mouton, J.W.; Vinks, A.A.; Felton, T.W.; Hope, W.W.; Farkas, A.; Neely, M.N.; Schentag, J.J.; et al. Individualised Antibiotic Dosing for Patients Who Are Critically Ill: Challenges and Potential Solutions. Lancet Infect. Dis. 2014, 14, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Dhaese, S.A.M.; De Kezel, M.; Callant, M.; Boelens, J.; De Bus, L.; Depuydt, P.; De Waele, J.J. Emergence of Antimicrobial Resistance to Piperacillin/Tazobactam or Meropenem in the ICU: Intermittent versus Continuous Infusion. A Retrospective Cohort Study. J. Crit. Care 2018, 47, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Guillamet, M.C.; Vazquez, R.; Micek, S.T.; Kollef, M.H. Predicting Resistance to Piperacillin-Tazobactam, Cefepime and Meropenem in Septic Patients With Bloodstream Infection Due to Gram-Negative Bacteria. Clin. Infect. Dis. 2017, 65, 1607–1614. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Beisken, S.; Bergman, Y.; Posch, A.E.; Avdic, E.; Sharara, S.L.; Cosgrove, S.E.; Simner, P.J. Modifiable Risk Factors for the Emergence of Ceftolozane-Tazobactam Resistance. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Cojutti, P.G.; Maximova, N.; Schillani, G.; Hope, W.; Pea, F. Population Pharmacokinetics of Continuous-Infusion Ceftazidime in Febrile Neutropenic Children Undergoing HSCT: Implications for Target Attainment for Empirical Treatment against Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2019, 74, 1648–1655. [Google Scholar] [CrossRef]
- Cojutti, P.G.; Lazzarotto, D.; Candoni, A.; Dubbini, M.V.; Zannier, M.E.; Fanin, R.; Pea, F. Real-Time TDM-Based Optimization of Continuous-Infusion Meropenem for Improving Treatment Outcome of Febrile Neutropenia in Oncohaematological Patients: Results from a Prospective, Monocentric, Interventional Study. J. Antimicrob. Chemother. 2020, 75, 3029–3037. [Google Scholar] [CrossRef]
- Lenhard, J.R.; Bulman, Z.P. Inoculum Effect of β-Lactam Antibiotics. J. Antimicrob. Chemother. 2019, 74, 2825–2843. [Google Scholar] [CrossRef]
- Viaene, E.; Chanteux, H.; Servais, H.; Mingeot-Leclercq, M.-P.; Tulkens, P.M. Comparative Stability Studies of Antipseudomonal Beta-Lactams for Potential Administration through Portable Elastomeric Pumps (Home Therapy for Cystic Fibrosis Patients) and Motor-Operated Syringes (Intensive Care Units). Antimicrob. Agents Chemother. 2002, 46, 2327–2332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, J.M.; Binnicker, M.J.; Campbell, S.; Carroll, K.C.; Chapin, K.C.; Gilligan, P.H.; Gonzalez, M.D.; Jerris, R.C.; Kehl, S.C.; Patel, R.; et al. A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2018 Update by the Infectious Diseases Society of America and the American Society for Microbiology. Clin. Infect. Dis. 2018, 67, e1–e94. [Google Scholar] [CrossRef] [PubMed]
- Shields, R.K.; Nguyen, M.H.; Chen, L.; Press, E.G.; Kreiswirth, B.N.; Clancy, C.J. Pneumonia and Renal Replacement Therapy Are Risk Factors for Ceftazidime-Avibactam Treatment Failures and Resistance among Patients with Carbapenem-Resistant Enterobacteriaceae Infections. Antimicrob. Agents Chemother. 2018, 62, e02497-17. [Google Scholar] [CrossRef] [Green Version]
Demographics and Clinical Variables | Overall Included Patients n = 116 |
---|---|
Patient demographics | |
Age (years) | 66 (56–73) |
Gender (male/female) | 81/35 (69.8/30.2) |
Body weight (Kg) | 80 (70–90) |
Body mass index (Kg/m2) | 26.3 (23.5–30.9) |
Creatinine clearance (mL/min/1.73 m2) 1 | 74.5 (39.8–102) |
Augmented renal clearance (ARC) | 13 (11.2) |
Severity of illness | |
Septic shock 1 | 62 (53.5) |
Mechanical ventilation 1 | 101 (87.1) |
CRRT 1 | 26 (22.4) |
Indication for beta-lactam use | |
HAP/VAP | 57 (49.1) |
BSI | 33 (28.4) |
cUTI | 13 (11.2) |
cIAI | 9 (7.8) |
SSTI/NSTI | 2 (1.7) |
Bone and joint infections | 1 (0.9) |
Meningitis | 1 (0.9) |
Isolated gram-negative pathogens2 | |
Klebsiella pneumoniae | 35 (25.2) |
Pseudomonas aeruginosa | 33 (23.7) |
Escherichia coli | 27 (19.4) |
Enterobacter spp. | 14 (10.1) |
Proteus mirabilis | 7 (5.0) |
Acinetobacter baumannii | 6 (4.3) |
Serratia marcescens | 3 (2.2) |
Others | 14 (10.1) |
Beta-lactam treatment | |
Median meropenem dose (mg/day) | 4000 (2000–4000) |
Median piperacillin dose (mg/day) | 18,000 (18,000–18,000) |
Median ceftazidime dose (mg/day) | 6000 (6000–6000) |
Meropenem Css (mg/L) | 22.9 (14.9–31.6) |
Meropenem Css/MIC | 32.4 (3.9–211.3) |
Piperacillin Css (mg/L) | 80.2 (56–145) |
Piperacillin Css/MIC | 11.3 (6.7–19.5) |
Ceftazidime Css (mg/L) | 22.4 (15.2–45.5) |
Ceftazidime Css/MIC | 21 (4.5–32.8) |
Combination therapy | 23 (19.8) |
Length of therapy (days) | 10 (6–14) |
Clinical outcome | |
Microbiological failure | 26 (22.4) |
Of which developed resistance | 20 (17.2) |
Time to microbiological failure (days) | 11.5 (8.3–14) |
Variables | Univariate Analysis (OR; 95%CI) | p Value | Multivariate Analysis (OR; 95%CI) | p Value |
---|---|---|---|---|
Demographics | ||||
Age (≥65 years) | 1.866 (0.771–4.514) | 0.166 | ||
Gender (male) | 1.697 (0.914–9.133) | 0.071 | ||
Obesity (BMI ≥ 30 kg/m2) | 0.304 (0.084–1.100) | 0.070 | ||
ARC (CLCR ≥ 130 mL/min/1.73 m2) a | 5.158 (1.556–17.103) | 0.007 | ||
Severity of infection | ||||
Septic shock a | 0.234 (0.089–0.615) | 0.003 | ||
Mechanical ventilation a | 2.026 (0.427–9.618) | 0.374 | ||
CRRT a | 1.050 (0.372–2.967) | 0.920 | ||
Type of infection | ||||
Pneumonia | 2.942 (1.159–7.467) | 0.023 | ||
BSI | 0.382 (0.121–1.212) | 0.102 | ||
cIAI | 3.091 (0.765–12.483) | 0.113 | ||
Gram-negative isolates | ||||
Pseudomonas aeruginosa | 4.360 (1.733–10.966) | 0.002 | 4.79 (1.11–20.79) | 0.036 |
Klebsiella pneumoniae | 1.303 (0.515–3.295) | 0.576 | ||
Escherichia coli | 0.217 (0.048–0.985) | 0.048 | ||
Enterobacter spp. | 0.542 (0.113–2.591) | 0.443 | ||
Proteus mirabilis | 0.680 (0.076–6.093) | 0.730 | ||
Acinetobacter baumannii | 8.000 (1.376–46.523) | 0.021 | ||
Treatment characteristics | ||||
Css/MIC ≤ 5 | 37.800 (11.454–124.741) | <0.001 | 34.54 (7.45–160.11) | <0.001 |
Combination therapy | 2.874 (1.069–7.725) | 0.036 | ||
Treatment duration > 7 days | 2.550 (0.880–7.392) | 0.085 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gatti, M.; Cojutti, P.G.; Pascale, R.; Tonetti, T.; Laici, C.; Dell’Olio, A.; Siniscalchi, A.; Giannella, M.; Viale, P.; Pea, F. Assessment of a PK/PD Target of Continuous Infusion Beta-Lactams Useful for Preventing Microbiological Failure and/or Resistance Development in Critically Ill Patients Affected by Documented Gram-Negative Infections. Antibiotics 2021, 10, 1311. https://doi.org/10.3390/antibiotics10111311
Gatti M, Cojutti PG, Pascale R, Tonetti T, Laici C, Dell’Olio A, Siniscalchi A, Giannella M, Viale P, Pea F. Assessment of a PK/PD Target of Continuous Infusion Beta-Lactams Useful for Preventing Microbiological Failure and/or Resistance Development in Critically Ill Patients Affected by Documented Gram-Negative Infections. Antibiotics. 2021; 10(11):1311. https://doi.org/10.3390/antibiotics10111311
Chicago/Turabian StyleGatti, Milo, Pier Giorgio Cojutti, Renato Pascale, Tommaso Tonetti, Cristiana Laici, Alessio Dell’Olio, Antonio Siniscalchi, Maddalena Giannella, Pierluigi Viale, and Federico Pea. 2021. "Assessment of a PK/PD Target of Continuous Infusion Beta-Lactams Useful for Preventing Microbiological Failure and/or Resistance Development in Critically Ill Patients Affected by Documented Gram-Negative Infections" Antibiotics 10, no. 11: 1311. https://doi.org/10.3390/antibiotics10111311
APA StyleGatti, M., Cojutti, P. G., Pascale, R., Tonetti, T., Laici, C., Dell’Olio, A., Siniscalchi, A., Giannella, M., Viale, P., & Pea, F. (2021). Assessment of a PK/PD Target of Continuous Infusion Beta-Lactams Useful for Preventing Microbiological Failure and/or Resistance Development in Critically Ill Patients Affected by Documented Gram-Negative Infections. Antibiotics, 10(11), 1311. https://doi.org/10.3390/antibiotics10111311