A Metagenomic Nanopore Sequence Analysis Combined with Conventional Screening and Spectroscopic Methods for Deciphering the Antimicrobial Metabolites Produced by Alcaligenes faecalis Soil Isolate MZ921504
Abstract
:1. Introduction
2. Results
2.1. Screening of the Antimicrobial Activities of the Recovered Bacterial Isolates
2.2. Molecular Identification
2.3. The Antimicrobial Activities of the Extracted Metabolite(s) of A. faecalis Isolate MZ921504
2.4. Characterization of the Antimicrobial Metabolite(s)
2.4.1. TLC Analysis
2.4.2. LC/MS Analysis
Ethyl Acetate Extract of A. faecalis
2.5. Metagenomics Analysis of the Soil Sample
2.6. Identification of Secondary Metabolite(s) Gene Clusters
2.6.1. Ectoine
2.6.2. Bacteriocin or Other Unspecified Linear Ribosomal-Synthesized and Post-Translationally Modified Peptides (RiPP)
2.6.3. Hybrid Region: Resorcinol and Traditional (Multi-) Modular Non-Ribosomal Peptide Synthase (NRPS)
2.6.4. Beta-Lactone Containing Protease Inhibitor
2.6.5. Terpene
3. Discussion
4. Materials and Methods
4.1. Isolation and Characterization
4.2. Preliminary Screening
4.3. DNA Sequencing of 16S Ribosomal RNA
4.4. Production of the Antimicrobial Metabolite(s) in Shake Flasks
Seed Culture Preparation and Production Conditions
4.5. Purification of the Antimicrobial Metabolite(s)
Extraction of the Antimicrobial Metabolite(s)
4.6. In Vitro Testing of the Antimicrobial Activities of the Extracted Metabolite(s)
4.7. Characterization of the Antimicrobial Metabolite(s)
4.7.1. Thin Layer Chromatography (TLC) Analysis
4.7.2. Liquid Chromatography-Mass Spectroscopy (LC/MS) Analysis
4.8. Metagenomics Analysis of the Soil Samples
4.8.1. DNA Extraction and Quantification
4.8.2. Library Construction
4.8.3. Sequencing and Data Analysis
4.8.4. Genome Sequencing Aligning and Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Freire-Moran, L.; Aronsson, B.; Manz, C.; Gyssens, I.C.; So, A.D.; Monnet, D.L.; Cars, O.; ECDC-EMA Working Group. Critical shortage of new antibiotics in development against multidrug-resistant bacteria—Time to react is now. Drug Resist. Updat. 2011, 14, 118–124. [Google Scholar] [CrossRef]
- Rex, J.H.; Talbot, G.H.; Goldberger, M.J.; Eisenstein, B.I.; Echols, R.M.; Tomayko, J.F.; Dudley, M.N.; Dane, A.D. Progress in the fight against multidrug-resistant bacteria 2005–2016: Modern noninferiority trial designs enable antibiotic development in advance of epidemic bacterial resistance. Clin. Infect. Dis. 2017, 65, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Spellberg, B.; Guidos, R.; Gilbert, D.; Bradley, J.; Boucher, H.W.; Scheld, W.M.; Bartlett, J.G.; Edwards, J., Jr.; Infectious Diseases Society of America. The epidemic of antibiotic-resistant infections: A call to action for the medical community from the Infectious Diseases Society of America. Clin. Infect. Dis. 2008, 46, 155–164. [Google Scholar] [CrossRef]
- Chouchani, C.; Rolain, J.-M.; Ghrairi, T. Recent advances in antimicrobial and bacterial resistance. Int. J. Antimicrob. Agents. 2018, 52, 869–870. [Google Scholar] [CrossRef] [Green Version]
- Khameneh, B.; Diab, R.; Ghazvini, K.; Bazzaz, B.S.F. Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microb. Pathog. 2016, 95, 32–42. [Google Scholar] [CrossRef]
- Katz, L.; Baltz, R.H.J. Natural product discovery: Past, present, and future. J. Ind. Microbiol. Biotechnol. 2016, 43, 155–176. [Google Scholar] [CrossRef] [PubMed]
- Chandra, N.; Kumar, S. Antibiotics producing soil microorganisms. In Antibiotics and Antibiotics Resistance Genes in Soils; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–18. [Google Scholar]
- Delgado-Baquerizo, M.; Oliverio, A.M.; Brewer, T.E.; Benavent-González, A.; Eldridge, D.J.; Bardgett, R.D.; Maestre, F.T.; Singh, B.K.; Fierer, N. A global atlas of the dominant bacteria found in soil. Science 2018, 359, 320–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Land, M.; Hauser, L.; Jun, S.-R.; Nookaew, I.; Leuze, M.R.; Ahn, T.-H.; Karpinets, T.; Lund, O.; Kora, G.; Wassenaar, T.; et al. Insights from 20 years of bacterial genome sequencing. Funct. Integr. Genomics 2015, 15, 141–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hover, B.M.; Kim, S.-H.; Katz, M.; Charlop-Powers, Z.; Owen, J.G.; Ternei, M.A.; Maniko, J.; Estrela, A.B.; Molina, H.; Park, S. Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens. Nat. Microbiol. 2018, 3, 415–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayanth, K.; Jeyasekaran, G.; Shakila, R.J. Isolation of marine bacteria, antagonistic to human pathogens. Indian J. Mar. Sci. 2002, 31, 39–44. [Google Scholar]
- Bernan, V.; Greenstein, M.; Maiese, W.M. Marine microorganisms as a source of new natural products. Adv. Appl. Microbiol. 1997, 43, 57–90. [Google Scholar]
- Gauthier, M.; Shewan, J.; Gibson, D.; Lee, J.V. Taxonomic position and seasonal variations in marine neritic environment of some gram-negative antibiotic-producing bacteria. J. Gen. Microbiol. 1975, 87, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Abdelgalil, S.A.; Attia, A.R.; Reyed, R.M.; Soliman, N.A. Partial purification and biochemical characterization of a new highly acidic NYSO laccase from Alcaligenes faecalis. J. Genet. Eng. Biotechnol. 2020, 18, 79. [Google Scholar] [CrossRef]
- Maré, I.J.; Coetzee, J.N. Antibiotics of Alcaligenes faecalis. Nature 1964, 203, 430–431. [Google Scholar] [CrossRef]
- Zahir, I.; Houari, A.; Bahafid, W.; Iraqui, M.; Ibnsouda, S. A novel Alcaligenes faecalis antibacterial-producing strain isolated from a Moroccan tannery waste. Afr. J. Microbiol. Res. 2013, 7, 5314–5323. [Google Scholar]
- Kapley, A.; Tanksale, H.; Sagarkar, S.; Prasad, A.; Kumar, R.A.; Sharma, N.; Qureshi, A.; Purohit, H.J. Antimicrobial activity of Alcaligenes sp. HPC 1271 against multidrug resistant bacteria. Funct. Integr. Genom. 2016, 16, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Onajobi, I.B.; Idowu, E.O.; Adeyemi, J.O.; Samson, O.J.; Ogunyinka, P.I.; Fagade, O.E. In vitro antibacterial activities and molecular characterization of bacterial species isolated from farmlands against selected pathogens. Biotechnol. Rep. (Amst.) 2020, 27, e00513. [Google Scholar] [CrossRef] [PubMed]
- Zahir, I.; Houari, A.; Iraqui, M.; Ibnsouda, S. Partial purification and antimycobacterial screening of the ethyl acetate extract of Alcaligenes faecalis BW1. Br. Microbiol. Res. J. 2014, 4, 1178–1188. [Google Scholar] [CrossRef]
- Arulprakasam, K.R.; Dharumadurai, D. Genome mining of biosynthetic gene clusters intended for secondary metabolites conservation in actinobacteria. Microb. Pathog. 2021, 161, 105252. [Google Scholar] [CrossRef] [PubMed]
- Robinson, S.L.; Wackett, L.P. Rings of Power: Enzymatic Routes to β-Lactones. In Comprehensive Natural Products III, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 4, pp. 323–345. [Google Scholar]
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef]
- Rafiq, M.; Hayat, M.; Hassan, N.; Ibrar, M.; Haleem, A.; Rehman, M.; Ahmad, F.; Shah, A.A.; Hasan, F. Characterization of antibacterial compounds produced by psychrotrophic Alcaligenes faecalis HTP6 isolated from Passu Glacier, Pakistan. Int. J. Biosci. 2016, 8, 122–135. [Google Scholar]
- Abd Sharad, A.; Usupb, G.; Sahrani, F.K.; Ahmad, A. Bioactivity of Natural Compounds Produced by Marine Alcaligenes faecalis as Antimicrobial, Antibiofilm Formation and Anti-biocorrosion Effect against Desulfovibrio sp. Isolated from Crude Oil Fluid. 2018. Available online: https://www.researchgate.net/publication/329130286_Bioactivity_of_natural_compounds_Produced_by_Marine_Alcaligenes_faecalis_as_Antimicrobial_antibiofilm_formation_and_anti-biocorrosion_effect_against_Desulfovibrio_sp_Isolated_from_crude_oil_fluid (accessed on 10 November 2021).
- Fiddaman, P.; Rossall, S. Effect of substrate on the production of antifungal volatiles from Bacillus subtilis. J. Appl. Bacteriol. 1994, 76, 395–405. [Google Scholar] [CrossRef]
- Abouseoud, M.; Maachi, R.; Amrane, A.; Boudergua, S.; Nabi, A. Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens. Desalination 2008, 223, 143–151. [Google Scholar] [CrossRef]
- Waschulin, V.; Borsetto, C.; James, R.; Newsham, K.K.; Donadio, S.; Corre, C.; Wellington, E. Biosynthetic potential of uncultured Antarctic soil bacteria revealed through long-read metagenomic sequencing. ISME J. 2021. [Google Scholar] [CrossRef]
- Priya, G.; Lau, N.-S.; Furusawa, G.; Dinesh, B.; Foong, S.Y.; Amirul, A.-A.A. Metagenomic insights into the phylogenetic and functional profiles of soil microbiome from a managed mangrove in Malaysia. Agric. Gene 2018, 9, 5–15. [Google Scholar] [CrossRef]
- Heeb, S.; Fletcher, M.P.; Chhabra, S.R.; Diggle, S.P.; Williams, P.; Cámara, M. Quinolones: From antibiotics to autoinducers. FEMS Microbiol. Rev. 2011, 35, 247–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nithyapriya, S.; Lalitha, S.; Sayyed, R.; Reddy, M.; Dailin, D.J.; El Enshasy, H.A.; Luh Suriani, N.; Herlambang, S. Production, Purification, and Characterization of Bacillibactin Siderophore of Bacillus subtilis and Its Application for Improvement in Plant Growth and Oil Content in Sesame. Sustainability 2021, 13, 5394. [Google Scholar] [CrossRef]
- Su, Z.; Chen, X.; Liu, X.; Guo, Q.; Li, S.; Lu, X.; Zhang, X.; Wang, P.; Dong, L.; Zhao, W.; et al. Genome mining and UHPLC–QTOF–MS/MS to identify the potential antimicrobial compounds and determine the specificity of biosynthetic gene clusters in Bacillus subtilis NCD-2. BMC Genom. 2020, 21, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Gallucci, M.N.; Oliva, M.; Casero, C.; Dambolena, J.; Luna, A.; Zygadlo, J.; Demo, M. Antimicrobial combined action of terpenes against the food-borne microorganisms Escherichia coli, Staphylococcus aureus and Bacillus cereus. Flavour Frag. J. 2009, 24, 348–354. [Google Scholar] [CrossRef]
- Mahizan, N.A.; Yang, S.-K.; Moo, C.-L.; Song, A.A.-L.; Chong, C.-M.; Chong, C.-W.; Abushelaibi, A.; Lim, S.-H.E.; Lai, K.-S. Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules 2019, 24, 2631. [Google Scholar] [CrossRef] [Green Version]
- Soltani, J. Chapter 22—Secondary Metabolite Diversity of the Genus Aspergillus: Recent Advances. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2016; pp. 275–292. [Google Scholar]
- Zheng, J.; Keatinge-Clay, A.T. The status of type I polyketide synthase ketoreductases. Med. Chem. Commun. 2013, 4, 34–40. [Google Scholar] [CrossRef]
- Jeyaseelan, E.C.; Pathmanathan, M.K.; Jeyadevan, J.P. Inhibitory effect of different solvent extracts of Vitex negundo L. and Allium sativum L. on phytopathogenic bacteria. Arch. Appl. Sci. Res. 2011, 3, 1–8. [Google Scholar]
- Jeffrey, L.J.S. Isolation, characterization and identification of actinomycetes from agriculture soils at Semongok, Sarawak. Afr. J. Biotechnol. 2008, 7, 3697–3702. [Google Scholar]
- Yilmaz, E.I.; Yavuz, M.; Kizil, M. Molecular characterization of rhizospheric soil streptomycetes isolated from indigenous Turkish plants and their antimicrobial activity. World J. Microbiol. Biotechnol. 2008, 24, 1461–1470. [Google Scholar] [CrossRef]
- Agadagba, S.K. Isolation of Actinomycetes from soil. J. Microbiol. Biotechnol. 2014, 4, 136–140. [Google Scholar]
- Elston, H.R.; Baudo, J.A.; Stanek, J.P.; Schaab, M. Multi-biochemical test system for distinguishing enteric and other gram-negative bacilli. Appl. Microbiol. 1971, 22, 408–414. [Google Scholar] [CrossRef]
- Abou-Elela, G.M.; Ibrahim, H.A.; Hassan, S.W.; Abd-Elnaby, H.; El-Toukhy, N.M.K. Alkaline protease production by alkaliphilic marine bacteria isolated from Marsa-Matrouh (Egypt) with special emphasis on Bacillus cereus purified protease. Afr. J. Biotechnol. 2011, 10, 4631–4642. [Google Scholar]
- Arasu, M.V.; Duraipandiyan, V.; Agastian, P.; Ignacimuthu, S. In vitro antimicrobial activity of Streptomyces spp. ERI-3 isolated from Western Ghats rock soil (India). J. Med. Mycol. 2009, 19, 22–28. [Google Scholar] [CrossRef]
- Iqbal, S.; Qasim, M.; Begum, F.; Rahman, H.; Sajid, I. Screening, Characterization and Optimization of antibacterial peptides, produced by Bacillus safensis strain MK-12 isolated from waste dump soil KP, Pakistan. BioRxiv 2018. [Google Scholar] [CrossRef] [Green Version]
- Rajaram, S.K.; Ahmad, P.; Keerthana, S.S.S.; Cressida, P.J.; Moorthy, I.G.; Suresh, R.S.S. Extraction and purification of an antimicrobial bioactive element from lichen associated Streptomyces olivaceus LEP7 against wound inhabiting microbial pathogens. J. King Saud Univ. Sci. 2020, 32, 2009–2015. [Google Scholar] [CrossRef]
- Ranjan, R.; Jadeja, V. Isolation, characterization and chromatography based purification of antibacterial compound isolated from rare endophytic actinomycetes Micrococcus yunnanensis. J. Pharm. Anal. 2017, 7, 343–347. [Google Scholar] [CrossRef]
- Selvin, J.; Shanmughapriya, S.; Gandhimathi, R.; Kiran, G.S.; Ravji, T.R.; Natarajaseenivasan, K.; Hema, T.A. Optimization and production of novel antimicrobial agents from sponge associated marine actinomycetes Nocardiopsis dassonvillei MAD08. Appl. Microbiol. Biotechnol. 2009, 83, 435. [Google Scholar] [CrossRef] [PubMed]
- Hozzein, W.N.; Rabie, W.; Ali, M.I.A. Screening the Egyptian desert actinomycetes as candidates for new antimicrobial compounds and identification of a new desert Streptomyces strain. Afr. J. Biotechnol. 2011, 10, 2295–2301. [Google Scholar]
- Chawawisit, K.; Bhoopong, P.; Phupong, W.; Lertcanawanichakul, M. 2,4-Di-tert-butylphenol, the bioactive compound produced by Streptomyces sp. KB1. J. Appl. Pharm. Sci. 2015, 5, 007–012. [Google Scholar]
Isolate Code | Gram Positive Test Organisms | |||||
---|---|---|---|---|---|---|
SE1 | SE2 | SE3 | VRSA1 | VRSA2 | VRSA3 | |
SS9 | + | - | + | + | - | - |
SS10 | + | + | + | + | + | + |
SS11 | - | - | + | - | - | - |
SS12 | + | + | + | + | + | + |
SS13 | + | - | + | - | - | - |
SS14 | - | - | + | + | - | - |
SS16 | + | + | - | + | + | - |
SS17 | + | + | + | + | + | + |
Isolate Code | Gram Negative Test Organisms | |||||
---|---|---|---|---|---|---|
E. coli ATCC 25922 | EC1 | EC2 | KP1 | KP2 | KP3 | |
SS9 | - | + | - | + | - | - |
SS10 | + | + | + | + | + | + |
SS13 | - | + | - | + | - | - |
SS14 | - | - | - | + | - | - |
SS16 | - | + | - | + | - | - |
SS17 | + | + | - | + | - | - |
Test Organisms | Mean Zone of Inhibition (mm) ± SD | |
---|---|---|
Dichloromethane Extract | Ethyl Acetate Extract | |
S. aureus ATCC 25293 | 13.0 ± 0.5 | 16.0 ± 0.5 |
VRSA2 | - | 16.0 ± 1.0 |
KP1 | 12.0 ± 0.5 | 17.0 ± 0.5 |
KP2 | - | 17.0 ± 0.5 |
EC1 | 15.0 ± 0.5 | 16.0 ± 1.0 |
EC2 | - | 13.0 ± 0.5 |
C. albicans ATCC 10231 | - | 17.0 ± 1.0 |
CA1 | - | - |
Gram Positive | Gram Negative | ||
---|---|---|---|
Clinical Isolate Code | Resistance Pattern | Clinical Isolate Code | Resistance Pattern |
SE1, SE2, SE3 | CLI, CN, FOX, CIP | KP1 | AMC, ATM, CTX, CAZ, CRO, FEP, CIP, SXT, TET, IMP, ETP, DOR, CT, PB, FF, RA, CN |
VRSA1 | VAN, FOX | KP2 | AK, AMC, ATM, CTX, CAZ, CRO, FEP, CIP, SXT, TET, IMP, ETP, DOR, CT, FF, RA, CN |
VRSA2, VSRA3 | VAN, CLI, CN, FOX, CIP | KP3 | AK, AMC, ATM, CTX, CAZ, CRO, FEP, CIP, SXT, TET, IMP, ETP, DOR, FF, RA, CN |
EC1 | CTX, IMP | ||
EC2 | AK, AMC, ATM, CTX, CAZ, CRO, FEP, CIP, SXT, TET, IMP, ETP, DOR, FF, RA, |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eltokhy, M.A.; Saad, B.T.; Eltayeb, W.N.; El-Ansary, M.R.; Aboshanab, K.M.; Ashour, M.S.E. A Metagenomic Nanopore Sequence Analysis Combined with Conventional Screening and Spectroscopic Methods for Deciphering the Antimicrobial Metabolites Produced by Alcaligenes faecalis Soil Isolate MZ921504. Antibiotics 2021, 10, 1382. https://doi.org/10.3390/antibiotics10111382
Eltokhy MA, Saad BT, Eltayeb WN, El-Ansary MR, Aboshanab KM, Ashour MSE. A Metagenomic Nanopore Sequence Analysis Combined with Conventional Screening and Spectroscopic Methods for Deciphering the Antimicrobial Metabolites Produced by Alcaligenes faecalis Soil Isolate MZ921504. Antibiotics. 2021; 10(11):1382. https://doi.org/10.3390/antibiotics10111382
Chicago/Turabian StyleEltokhy, Mohamed A., Bishoy T. Saad, Wafaa N. Eltayeb, Mona R. El-Ansary, Khaled M. Aboshanab, and Mohamed S. E. Ashour. 2021. "A Metagenomic Nanopore Sequence Analysis Combined with Conventional Screening and Spectroscopic Methods for Deciphering the Antimicrobial Metabolites Produced by Alcaligenes faecalis Soil Isolate MZ921504" Antibiotics 10, no. 11: 1382. https://doi.org/10.3390/antibiotics10111382
APA StyleEltokhy, M. A., Saad, B. T., Eltayeb, W. N., El-Ansary, M. R., Aboshanab, K. M., & Ashour, M. S. E. (2021). A Metagenomic Nanopore Sequence Analysis Combined with Conventional Screening and Spectroscopic Methods for Deciphering the Antimicrobial Metabolites Produced by Alcaligenes faecalis Soil Isolate MZ921504. Antibiotics, 10(11), 1382. https://doi.org/10.3390/antibiotics10111382