Presumed Urinary Tract Infection in Patients Admitted with COVID-19: Are We Treating Too Much?
Abstract
:1. Introduction
2. Materials and Methods
Compliance with Ethics Guidelines
3. Results
3.1. Patient and Disease Characteristics
3.2. UTI Diagnoses
3.3. Evaluation of UTI Diagnoses and Antimicrobial Prescriptions
3.4. Associated Drivers with UTI (over) Diagnosis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UN. General Assembly (71st Sess.: 2016–2017). President. Political Declaration of the High-Level Meeting of the General Assembly on Antimicrobial Resistance: Draft Resolution; UN: New York, NY, USA, 2016; p. 6. [Google Scholar]
- Interagency Coordination Group on Antimicrobial Resistance. No Time to Wait: Securing the Future from Drug-Resistant Infections Report to the Secretary-General of the United Nations; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Rawson, T.M.; Ming, D.; Ahmad, R.; Moore, L.S.; Holmes, A.H. Antimicrobial use, drug-resistant infections and COVID-19. Nat. Rev. Microbiol. 2020, 18, 409–410. [Google Scholar] [CrossRef] [PubMed]
- Musuuza, J.S.; Watson, L.; Parmasad, V.; Putman-Buehler, N.; Christensen, L.; Safdar, N. Prevalence and outcomes of co-infection and superinfection with SARS-CoV-2 and other pathogens: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0251170. [Google Scholar] [CrossRef]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Soucy, J.P.R.; Westwood, D.; Daneman, N.; MacFadden, D.R. Antibiotic prescribing in patients with COVID-19: Rapid review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 520–531. [Google Scholar] [CrossRef] [PubMed]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Westwood, D.; MacFadden, D.R.; Soucy, J.P.R.; Daneman, N. Bacterial co-infection and secondary infection in patients with COVID-19: A living rapid review and meta-analysis. Clin. Microbiol. Infect. 2020, 26, 1622–1629. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Beović, B.; Doušak, M.; Ferreira-Coimbra, J.; Nadrah, K.; Rubulotta, F.; Belliato, M.; Berger-Estilita, J.; Ayoade, F.; Rello, J.; Erdem, H. Antibiotic use in patients with COVID-19: A ‘snapshot’ Infectious Diseases International Research Initiative (ID-IRI) survey. J. Antimicrob. Chemother. 2020, 75, 3386–3390. [Google Scholar] [CrossRef]
- Baghdadi, J.D.; Coffey, K.C.; Adediran, T.; Goodman, K.E.; Pineles, L.; Magder, L.S.; O’Hara, L.M.; Pineles, B.L.; Nadimpalli, G.; Morgan, D.J. Antibiotic Use and Bacterial Infection Among Inpatients in the First Wave of COVID-19: A Retrospective Cohort Study of 64,691 Patients. Antimicrob. Agents Chemother. 2021, 65, e01341-21. [Google Scholar] [CrossRef] [PubMed]
- Reyes, R.; Bono, G.; E Finucane, T. So-called Urinary Tract Infection in the Era of COVID-19. J. Am. Geriatr. Soc. 2020, 68, 1927–1928. [Google Scholar] [CrossRef] [PubMed]
- May, M.; Chang, M.; Dietz, D.; Shoucri, S.; Laracy, J.; Sobieszczyk, M.E.; Uhlemann, A.C.; Zucker, J.; Kubin, C.J. Limited utility of procalcitonin in identifying community-associated bacterial infections in patients presenting with coronavirus disease 2019. Antimicrob. Agents Chemother. 2021, 65, e02167-20. [Google Scholar] [CrossRef] [PubMed]
- Vanhomwegen, C.; Veliziotis, I.; Malinverni, S.; Konopnicki, D.; Dechamps, P.; Claus, M.; Roman, A.; Cotton, F.; Dauby, N. Procalcitonin accurately predicts mortality but not bacterial infection in COVID-19 patients admitted to intensive care unit. Ir. J. Med. Sci. 2021, 190, 1649–1652. [Google Scholar] [CrossRef] [PubMed]
- Tjendra, Y.; Al Mana, A.F.; Espejo, A.P.; Akgun, Y.; Millan, N.C.; Gomez-Fernandez, C.; Cray, C. Predicting Disease Severity and Outcome in COVID-19 Patients: A Review of Multiple Biomarkers. Arch. Pathol. Lab. Med. 2020, 144, 1465–1474. [Google Scholar] [CrossRef]
- Kubin, C.J.; McConville, T.H.; Dietz, D.; Zucker, J.; May, M.; Nelson, B.; Istorico, E.; Bartram, L.; Small-Saunders, J.; Sobieszczyk, M.E.; et al. Characterization of Bacterial and Fungal Infections in Hospitalized Patients with Coronavirus Disease 2019 and Factors Associated with Health Care-Associated Infections. In Open Forum Infect Diseases; Oxford University Press: New York, NY, USA, 2021; Volume 8. [Google Scholar] [CrossRef]
- Finucane, T.E. “Urinary Tract Infection”-Requiem for a Heavyweight. J. Am. Geriatr. Soc. 2017, 65, 1650–1655. [Google Scholar] [CrossRef] [Green Version]
- European Association of Urology (EAU) Guidelines. Edn. presented at the EAU Annual Congress Milan Italy 2021. ISBN 978-94-92671-13-4. Available online: http://uroweb.org/guidelines/compilations-of-all-guidelines/ (accessed on 1 December 2021).
- Katz, S.; Ford, A.B.; Moskowitz, R.W.; Jackson, B.A.; Jaffe, M.W. Studies of illness in the aged: The index of ADL: A standardized measure of biological and psychosocial function. JAMA 1963, 185, 914–919. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO) Collaborating Centre for Drugs Statistics Methodology (2020) DDD and ATC-Classifcation. WHO Collaborating Centre for Drugs Statistics Methodology. Available online: https://www.whocc.no/atc_ddd_index/ (accessed on 4 November 2021).
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic. Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Johansen, T.E.; Botto, H.; Cek, M.; Grabe, M.; Tenke, P.; Wagenlehner, F.M.; Naber, K.G. Critical review of current definitions of urinary tract infections and proposal of an EAU/ESIU classification system. Int. J. Antimicrob. Agents 2011, 38 (Suppl. S6), 4–70. [Google Scholar] [CrossRef]
- Russell, C.D.; Fairfield, C.J.; Drake, T.M.; Turtle, L.; Seaton, R.A.; Wootton, D.G.; Sigfrid, L.; Harrison, E.M.; Docherty, A.B.; de Silva, T.I. Co-infections, secondary infections, and antimicrobial use in patients hospitalised with COVID-19 during the first pandemic wave from the ISARIC WHO CCP-UK study: A multicentre, prospective cohort study. Lancet Microbe 2021, 2, e354–e365. [Google Scholar] [CrossRef]
- Bardi, T.; Pintado, V.; Gomez-Rojo, M.; Escudero-Sanchez, R.; Lopez, A.A.; Diez-Remesal, Y.; Castro, N.M.; Ruiz-Garbajosa, P.; Pestaña, D. Nosocomial infections associated to COVID-19 in the intensive care unit: Clinical characteristics and outcome. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 495–502. [Google Scholar] [CrossRef]
- Nicolle, L.E.; Gupta, K.; Bradley, S.F.; Colgan, R.; DeMuri, G.P.; Drekonja, D.; Eckert, L.O.; Geerlings, S.E.; Köves, B.; Hooton, T.M. Clinical Practice Guideline for the Management of Asymptomatic Bacteriuria: 2019 Update by the Infectious Diseases Society of America. Clin. Infect Dis. 2019, 68, e83–e110. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, J.G.; Bentley, D.W.; Valenti, W.M.; Watson, N.M. Systemic antibiotic use in nursing homes. A quality assessment. J. Am. Geriatr. Soc. 1986, 34, 703–710. [Google Scholar] [CrossRef]
- Montgomery, P.; Semenchuk, M.; Nicolle, L.E. Antimicrobial use in nursing homes in Manitoba. J. Geriatr. Drug Ther. 1995, 9, 55–74. [Google Scholar] [CrossRef]
- Stuart, R.L.; Wilson, J.; Bellaard-Smith, E.; Brown, R.; Wright, L.; Vandergraaf, S.; Gillespie, E.E. Antibiotic use and misuse in residential aged care facilities. Intern. Med. J. 2012, 42, 1145–1149. [Google Scholar] [CrossRef]
- Lim, C.J.; McLellan, S.C.; Cheng, A.C.; Culton, J.M.; Parikh, S.N.; Peleg, A.Y.; Kong, D.C. Surveillance of infection burden in residential aged care facilities. Med. J. Aust. 2012, 196, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Loeb, M.; Simor, A.E.; Landry, L.; Walter, S.; McArthur, M.; Duffy, J.; Kwan, D.; McGeer, A. Antibiotic use in Ontario facilities that provide chronic care. J. Gen. Intern. Med. 2001, 16, 376–383. [Google Scholar] [CrossRef] [Green Version]
- Peron, E.P.; Hirsch, A.A.; Jury, L.A.; Jump, R.L.; Donskey, C.J. Another setting for stewardship: High rate of unnecessary antimicrobial use in a Veterans Affairs long-term care facility. J. Am. Geriatr. Soc. 2013, 61, 289–290. [Google Scholar] [CrossRef] [Green Version]
- Spoorenberg, V.; Hulscher, M.E. Appropriate antibiotic use for patients with urinary tract infections reduces length of hospital stay. Clin Infect Dis. 2014, 58, 164–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Laethem, J.; Wuyts, S.; Van Laere, S.; Dirkx, S.; Seyler, L.; Mertens, R.; Ilsen, B.; Lacor, P.; Pierard, D.; Allard, S.D. Antibiotic Prescriptions Targeting Bacterial Respiratory Infections in Admitted Patients with COVID-19: A Prospective Observational Study. Infect. Dis. Ther. 2021, 10, 2575–2591. [Google Scholar] [CrossRef] [PubMed]
- Van Buul, L.W.; Veenhuizen, R.B.; Achterberg, W.P.; Schellevis, F.G.; Essink, R.T.; de Greeff, S.C.; Natsch, S.; van der Steen, J.T.; Hertogh, C.M. Antibiotic prescribing in Dutch nursing homes: How appropriate is it? J. Am. Med. Dir. Assoc. 2015, 16, 229–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olafsson, M.; Kristinsson, K.G.; Sigurdsson, J.A. Urinary tract infections, antibiotic resistance and sales of antimicrobial drugs—An observational study of uncomplicated urinary tract infections in Icelandic women. Scand. J. Prim. Health Care. 2000, 18, 35–38. [Google Scholar] [CrossRef] [Green Version]
- Kresken, M.; Körber-Irrgang, B.; Biedenbach, D.J.; Batista, N.; Besard, V.; Cantón, R.; García-Castillo, M.; Kalka-Moll, W.; Pascual, A.; Schwarz, R.; et al. Comparative in vitro activity of oral antimicrobial agents against Enterobacteriaceae from patients with community-acquired urinary tract infections in three European countries. Clin. Microbiol. Infect. 2016, 22, 63.e1–63.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, J.R.; Russo, T.A. Acute Pyelonephritis in Adults. N. Engl. J. Med. 2018, 378, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Stamm, W.E.; Hooton, T.M.; Johnson, J.R.; Johnson, C.; Stapleton, A.; Roberts, P.L.; Moseley, S.L.; Fihn, S.D. Urinary tract infections: From pathogenesis to treatment. J. Infect. Dis. 1989, 159, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Czaja, C.A.; Scholes, D.; Hooton, T.M.; Stamm, W.E. Population-based epidemiologic analysis of acute pyelonephritis. Clin. Infect. Dis. 2007, 45, 273–280. [Google Scholar] [CrossRef]
- Karakonstantis, S.; Kalemaki, D. Evaluation and management of Staphylococcus aureus bacteriuria: An updated review. Infection 2018, 46, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Velasco, M.; Martínez, J.A.; Moreno-Martínez, A.; Horcajada, J.P.; Ruiz, J.; Barranco, M.; Almela, M.; Vila, J.; Mensa, J. Blood cultures for women with uncomplicated acute pyelonephritis: Are they necessary? Clin. Infect. Dis. 2003, 37, 1127–1130. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Seo, M.R.; Kim, S.J.; Kim, J.; Wie, S.H.; Cho, Y.K.; Lim, S.K.; Lee, J.S.; Kwon, K.T.; Lee, H.; et al. Usefulness of blood cultures and radiologic imaging studies in the management of patients with community-acquired acute pyelonephritis. Infect. Chemother. 2017, 49, 22–30. [Google Scholar] [CrossRef]
- Gavazzi, G.; Delerce, E.; Cambau, E.; François, P.; Corroyer, B.; de Wazières, B.; Fougère, B.; Paccalin, M.; Gaillat, J. Diagnostic criteria for urinary tract infection in hospitalized elderly patients over 75 years of age: A multicenter cross-sectional study. Med. Mal. Infect. 2013, 43, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Warren, J.W.; Tenney, J.H.; Hoopes, J.M.; Muncie, H.L.; Anthony, W.C. A prospective microbiologic study of bacteriuria in patients with chronic indwelling urethral catheters. J. Infect. Dis. 1982, 146, 719–723. [Google Scholar] [CrossRef]
- Nicolle, L.E. Asymptomatic bacteriuria: When to screen and when to treat. Infect. Dis. Clin. N. Am. 2003, 17, 367–394. [Google Scholar] [CrossRef]
- Nicolle, L.E. Urinary tract infections in the older adult. Clin. Geriatr. Med. 2016, 32, 523–538. [Google Scholar] [CrossRef]
- Mody, L.; Juthani-Mehta, M. Urinary tract infections in older women: A clinical review. JAMA 2014, 311, 844–854. [Google Scholar] [CrossRef] [Green Version]
- Douillet, D.; Caillaud, A.; Riou, J.; Miroux, P.; Thibaud, E.; Noizet, M.; Oberlin, M.; Léger, M.; Mahieu, R.; Riquin, E. Assessment of physicians’ resilience level during the COVID-19 pandemic. Transl. Psychiatry 2021, 11, 283. [Google Scholar] [CrossRef]
- Verroken, A.; Scohy, A.; Gérard, L.; Wittebole, X.; Collienne, C.; Laterre, P.F. Co-infections in COVID-19 critically ill and antibiotic management: A prospective cohort analysis. Crit. Care 2020, 24, 410. [Google Scholar] [CrossRef]
- Heesom, L.; Rehnberg, L.; Nasim-Mohi, M.; Jackson, A.I.; Celinski, M.; Dushianthan, A.; Cook, P.; Rivinberg, W.; Saeed, K. Procalcitonin as an antibiotic stewardship tool in COVID-19 patients in the intensive care unit. J. Glob. Antimicrob. Resist. 2020, 22, 782–784. [Google Scholar] [CrossRef] [PubMed]
- Harrington, R.D.; Hooton, T.M. Urinary tract infection risk factors and gender. J. Gend. Specif. Med. 2000, 3, 27–34. [Google Scholar] [PubMed]
- Gupta, K.; Grigoryan, L.; Trautner, B. Urinary Tract Infection. Ann. Intern. Med. 2017, 167, ITC49–ITC64. [Google Scholar] [CrossRef] [PubMed]
- Hooton, T.M.; Scholes, D.; Hughes, J.P.; Winter, C.; Roberts, P.L.; Stapleton, A.E.; Stergachis, A.; Stamm, W.E. A prospective study of risk factors for symptomatic urinary tract infection in young women. N. Engl. J. Med. 1996, 335, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.W.; Bauer, S.R.; Fowler, R.; Duggal, A. Systematic review and meta-analysis of procalcitonin-guidance versus usual care for antimicrobial management in critically ill patients: Focus on subgroups based on antibiotic initiation, cessation, or mixed strategies. Crit. Care Med. 2018, 46, 684–690. [Google Scholar] [CrossRef]
All Admissions (n = 622) | Admissions with UTI Diagnosis by the Treating Physician (n = 79) | |
---|---|---|
Demographics | ||
Age (years); (median, IQR *) | 63 (15) | 77 (16) |
Gender (male); (n, %) | 359 (58) | 22 (28) |
BMI ** (kg/m2); (median, IQR) | 27 (6) | 25 (7) |
COVID-19 diagnosis (n (%)); | ||
• PCR *** | 556 (89) | 72 (91) |
• Clinical Diagnosis | 66 (11) | 7 (9) |
Length of stay (median, IQR) | 7 (6) | 10 (10) |
COVID-19 related symptoms at admission (n, %) | ||
Cough | 363 (58) | 29 (37) |
Fever or history of fever | 421 (68) | 52 (67) |
Dyspnea | 358 (58) | 27 (35) |
Thoracic pain | 142 (23) | 7 (9) |
Laboratory findings (median, IQR; except for lymphopenia) | ||
White blood cell count (/mm3) | 6600 (4600) | 7800 (7300) |
Neutrophil count (/mm3) | 4845 (4188) | 5540 (5867) |
Lymphocyte count (/mm3) | 1010 (633) | 1010 (645) |
Ferritin (mcg/L) | 580 (869) | 465 (687) |
CRP †(mg/dL) | 75 (127) | 72 (129) |
Comorbidities | ||
CCI ‡ (median, IQR) | 1 (3) | 2 (4) |
Diabetes mellitus (n, %) | 162 (26) | 26 (33) |
Pre-existing pulmonary disease (n, %) | 79 (13) | 13 (17) |
Ischemic/congestive heart disease (n, %) | 72 (12) | 11 (14) |
Other variables, possibly related to ASB ☩ or UTI § | ||
Urinary incontinence (n, %) | 91 (15) | 36 (46) |
Presence of a chronic urinary catheter (n, %) | 16 (3) | 6 (8) |
Living in a nursing home (n, %) | 79 (13) | 27 (34) |
Decreased autonomy (n, %) | 194 (31) | 54 (68) |
Anatomical urinary tract pathology | 77 (12) | 19 (24) |
Functional urinary tract pathology | 63 (10) | 23 (29) |
Active neurological disease or passive with sequelae (n, %) | 87 (14) | 25 (32) |
Cognitive disorder (n, %) | 68 (11) | 20 (25) |
Active immune suppression (n, %) | 84 (14) | 13 (17) |
Prognostic factors | ||
qSOFA score at admission (median, IQR) | ||
0 | 303 (49) | 33 (43) |
1 | 272 (44) | 36 (47) |
2 | 28 (5) | 7 (9) |
3 | 2 (0) | 1 (1) |
ICU admission (n, %) | 126 (20) | 19 (24) |
Mechanical ventilation need (n, %) | 46 (7) | 8 (10) |
(SpO2/FiO2 × 100) min X (median, IQR) | 296 (190) | 284 (222) |
Mortality (n, %) | 23 (8) | 14 (18) |
Type of Antimicrobial Drugs | Appropriate DDDs | Inappropriate DDDs | Suboptimal DDDs | Unnecessary DDDs | Total DDDs |
---|---|---|---|---|---|
Beta-lactam antibiotics, penicillins | 2.3 | 0 | 11.5 | 7.7 | 21.5 |
Penicillins with beta-lactamase inhibitor | 5.2 | 23.5 | 30.2 | 195 | 253.9 |
Other beta-lactam antibiotics | 24 | 0 | 0.7 | 0 | 24.7 |
Sulfonamides and trimethoprim | 10 | 0 | 0 | 5 | 15 |
Aminoglycosides | 4.9 | 0 | 0 | 0 | 4.9 |
Quinolones | 45.5 | 0.5 | 0 | 26.8 | 72.8 |
Other antibiotics | 5 | 3.8 | 0 | 37.5 | 46.3 |
Antifungal drugs | 8 | 7 | 0 | 7 | 22 |
Variable | OR (95% Confidence Interval) | p-Value |
---|---|---|
Diagnosis of UTI § (n = 79) | ||
Age (per increase of 1 year) | 1.03 (1.00–1.06) | 0.043 * |
Male sex | 0.24 (0.11–0.53) | <0.001 |
Active cerebrovascular disease or sequelae | ||
No | Ref. | |
Yes | 2.95 (1.30–6.69) | 0.009 * |
C-reactive protein level at admission (per rise of 1 mg/dL) | 1.01 (1.00–1.01) | 0.007 * |
Fever at admission | 2.57 (1.18–5.60) | 0.018 * |
Anatomical or functional urinary tract pathology | 5.11 (2.31–11.32) | <0.001 |
Mechanical ventilation need | 10.42 (3.15–34.50) | <0.001 |
Variable | OR (95% Confidence Interval) | p-Value |
---|---|---|
Overdiagnosis of UTI § (n = 40) | ||
Male sex | 0.15 (0.06–0.38) | <0.001 |
Urinary incontinence | 8.78 (3.84–20.05) | <0.001 |
Physician unfamiliar with work in an internal medicine/ICU ward | 34.48 (10.22–116.29) | <0.001 |
Mechanical ventilation need | 3.70 (1.07–12.81) | 0.039 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Laethem, J.; Wuyts, S.C.M.; Pierreux, J.; Seyler, L.; Verschelden, G.; Depondt, T.; Meuwissen, A.; Lacor, P.; Piérard, D.; Allard, S.D. Presumed Urinary Tract Infection in Patients Admitted with COVID-19: Are We Treating Too Much? Antibiotics 2021, 10, 1493. https://doi.org/10.3390/antibiotics10121493
Van Laethem J, Wuyts SCM, Pierreux J, Seyler L, Verschelden G, Depondt T, Meuwissen A, Lacor P, Piérard D, Allard SD. Presumed Urinary Tract Infection in Patients Admitted with COVID-19: Are We Treating Too Much? Antibiotics. 2021; 10(12):1493. https://doi.org/10.3390/antibiotics10121493
Chicago/Turabian StyleVan Laethem, Johan, Stephanie C. M. Wuyts, Jan Pierreux, Lucie Seyler, Gil Verschelden, Thibault Depondt, Annelies Meuwissen, Patrick Lacor, Denis Piérard, and Sabine D. Allard. 2021. "Presumed Urinary Tract Infection in Patients Admitted with COVID-19: Are We Treating Too Much?" Antibiotics 10, no. 12: 1493. https://doi.org/10.3390/antibiotics10121493
APA StyleVan Laethem, J., Wuyts, S. C. M., Pierreux, J., Seyler, L., Verschelden, G., Depondt, T., Meuwissen, A., Lacor, P., Piérard, D., & Allard, S. D. (2021). Presumed Urinary Tract Infection in Patients Admitted with COVID-19: Are We Treating Too Much? Antibiotics, 10(12), 1493. https://doi.org/10.3390/antibiotics10121493