Electrolyte and Acid-Base Disorders Triggered by Aminoglycoside or Colistin Therapy: A Systematic Review
Abstract
:1. Introduction
2. Results
2.1. Search Results—Completeness of Reporting
2.2. Findings
3. Discussion
4. Materials and Methods
4.1. Search Strategy
4.2. Eligibility Criteria
4.3. Data Extraction
4.4. Analysis-Classification-Statistics
Author Contributions
Funding
Conflicts of Interest
References
- Craig, W.A. Optimizing aminoglycoside use. Crit. Care Clin. 2011, 27, 107–121. [Google Scholar] [CrossRef]
- Goetz, D.; Singh, S. Cystic fibrosis: Respiratory system disease. Pediatr. Clin. N. Am. 2016, 63, 637–659. [Google Scholar] [CrossRef]
- Javan, A.O.; Shokouhi, S.; Sahraei, Z. A review on colistin nephrotoxicity. Eur. J. Clin. Pharmacol. 2015, 71, 801–810. [Google Scholar] [CrossRef]
- Werner, C.A.; Tompsett, R.; Muschenheim, C.; McDermott, W. The toxicity of viomycin in humans. Am. Rev. Tuberc. 1951, 63, 49–61. [Google Scholar]
- Clarke, M.; McCarthy, C. Electrolyte changes due to viomycin. Tubercle 1961, 42, 358–361. [Google Scholar] [CrossRef]
- Holmes, A.M.; Hesling, C.M.; Wilson, T.M. Capreomycin-induced serum electrolyte abnormalities. Thorax 1970, 25, 608–611. [Google Scholar] [CrossRef] [Green Version]
- Holmes, A.; Helsing, C.; Wilson, T. Drug-induced secondary hyperaldosteronism in patients with pulmonary tuberculosis. QJM. 1970, 39, 299–315. [Google Scholar] [CrossRef]
- Vanasin, B.; Colmer, M.; Davis, P.J. Hypocalcemia, hypomagnesemia and hypokalemia during chemotherapy of pulmonary tuberculosis. Chest 1972, 61, 496–499. [Google Scholar] [CrossRef]
- Bar, R.S.; Wilson, H.E.; Mazzaferri, E.L. Hypomagnesemic hypocalcemia secondary to renal magnesium wasting. Ann. Intern. Med. 1975, 82, 646–649. [Google Scholar] [CrossRef]
- Patel, R.; Savage, A. Symptomatic hypomagnesemia associated with gentamicin therapy. Nephron 1979, 23, 50–52. [Google Scholar] [CrossRef]
- Daele, M.C.-V.; Corbeel, L.; Van De Casseye, W.; Standaert, L. Gentamicin-induced Fanconi syndrome. J. Pediatr. 1980, 97, 507. [Google Scholar] [CrossRef]
- Watson, A.J.; McCann, S.R.; Temperley, I.J. Tetany following aminoglycoside therapy. Ir. J. Med. Sci. 1981, 150, 316–318. [Google Scholar] [CrossRef] [PubMed]
- Darr, M.; Hamburger, S.; Ellerbeck, E. Acid-base and electrolyte abnormalities due to capreomycin. South. Med. J. 1982, 75, 627–628. [Google Scholar] [CrossRef] [PubMed]
- Teziç, T.; Saraçlar, Y.; Bilginturan, N.; Kilcioğlu, I. Symptomatic hypocalcemia and hypomagnesemia due to gentamicin therapy in an 8-year-old girl. Turk. J. Pediatr. 1982, 24, 267–269. [Google Scholar]
- Watson, A.; Coffey, L.; Keogh, B.; McCann, S.R. Severe hypomagnesaemia and hypocalcaemia following gentamicin therapy. Ir. Med. J. 1983, 76, 381–383. [Google Scholar]
- Nanji, A.A.; Denegri, J.F. Hypomagnesemia associated with gentamicin therapy. Drug Intell. Clin. Pharm. 1984, 18, 596–598. [Google Scholar] [CrossRef]
- Watson, A.J.S.; Watson, M.M.R.; Keogh, J.A.B. Metabolic abnormalities associated with tobramycin therapy. Ir. J. Med. Sci. 1984, 153, 96–99. [Google Scholar] [CrossRef]
- Goodhart, G.L.; Handelsman, S. Gentamicin and hypokalemia. Ann. Intern. Med. 1985, 103, 645–646. [Google Scholar] [CrossRef]
- Green, C.G.; Doershuk, C.F.; Stern, R.C. Symptomatic hypomagnesemia in cystic fibrosis. J. Pediatr. 1985, 107, 425–428. [Google Scholar] [CrossRef]
- Davies, S.V.; Murray, J.A. Amphotericin B, aminoglycosides, and hypomagnesaemic tetany. BMJ 1986, 292, 1395–1396. [Google Scholar] [CrossRef] [Green Version]
- Steiner, R.W.; Omachi, A.S. A Bartter’s-like syndrome from capreomycin, and a similar gentamicin tubulopathy. Am. J. Kidney Dis. 1986, 7, 245–249. [Google Scholar] [CrossRef]
- Wilkinson, R.; Lucas, G.L.; Heath, D.A.; Franklin, I.M.; Boughton, B.J. Hypomagnesaemic tetany associated with prolonged treatment with aminoglycosides. BMJ 1986, 292, 818–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kes, P.; Reiner, Z. Symptomatic hypomagnesemia associated with gentamicin therapy. Magnes. Trace Elem. 1990, 9, 54–60. [Google Scholar] [PubMed]
- Fuchs, S.; Kaminski, N.; Brezis, M. Drug points: Metabolic abnormality induced by streptomycin. BMJ 1994, 309, 512. [Google Scholar] [CrossRef]
- Melnick, J.Z.; Baum, M.; Thompson, J.R. Aminoglycoside-induced Fanconi’s syndrome. Am. J. Kidney Dis. 1994, 23, 118–122. [Google Scholar] [CrossRef]
- Slayton, W.; Anstine, D.; Lakhdir, F.; Sleasman, J.; Neiberger, R. Tetany in a child with AIDS receiving Intravenous tobramycin. South. Med. J. 1996, 89, 1108–1111. [Google Scholar] [CrossRef]
- Gainza, F.J.; Minguela, J.I.; Lampreabe, I. Aminoglycoside-associated Fanconi’s syndrome: An underrecognized entity. Nephron 1997, 77, 205–211. [Google Scholar] [CrossRef]
- Landau, D.; Kher, K.K. Gentamicin-induced Bartter-like syndrome. Pediatr. Nephrol. 1997, 11, 737–740. [Google Scholar] [CrossRef]
- Adams, J.; Conway, S.; Wilson, C. Hypomagnesaemic tetany associated with repeated courses of intravenous tobramycin in a patient with cystic fibrosis. Respir. Med. 1998, 92, 602–604. [Google Scholar] [CrossRef] [Green Version]
- Akbar, J.R.A.; Rees, J.; Nyamugunduru, G.; English, M.W.; Spencer, D.A.; Weller, P.H. Aminoglycoside-associated hypomagnesaemia in children with cystic fibrosis. Acta Paediatr. 1999, 88, 783–785. [Google Scholar] [CrossRef]
- Liamis, G.; Alexandridis, G.; Bairaktari, E.T.; Elisaf, M.S. Aminoglycoside-induced metabolic abnormalities. Ann. Clin. Biochem. Int. J. Lab. Med. 2000, 37, 543–544. [Google Scholar] [CrossRef] [PubMed]
- Shetty, A.K.; Rogers, N.L.; Mannick, E.E.; Aviles, D.H. Syndrome of hypokalemic metabolic alkalosis and hypomagnesemia associated with gentamicin therapy: Case reports. Clin. Pediatr. 2000, 39, 529–533. [Google Scholar] [CrossRef]
- Alexandridis, G.; Liberopoulos, E.; Elisaf, M. Aminoglycoside-induced reversible tubular dysfunction. Pharmacology. 2003, 67, 118–120. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.-L.; Chau, T.; Lin, S.-H.; Chen, Y.-H. Acquired Bartter-like syndrome associated with gentamicin administration. Am. J. Med. Sci. 2005, 329, 144–149. [Google Scholar] [CrossRef]
- Ghiculescu, R.A.; Kubler, P.A. Aminoglycoside-associated Fanconi syndrome. Am. J. Kidney Dis. 2006, 48, e89–e93. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Fang, H.-C.; Chou, K.-J.; Lee, P.-T.; Hsu, C.-Y.; Huang, W.-C.; Chung, H.-M.; Chen, C.-L. Gentamicin-induced Bartter-like syndrome. Am. J. Kidney Dis. 2009, 54, 1158–1161. [Google Scholar] [CrossRef]
- Chrispal, A.; Boorugu, H.; Prabhakar, A.T.; Moses, V. Amikacin-induced type 5 Bartter-like syndrome with severe hypocalcemia. J. Postgrad. Med. 2009, 55, 208–210. [Google Scholar] [CrossRef]
- Geara, A.S.; Parikh, A.; Rekhtman, Y.; Rao, M.K. The case: Metabolic alkalosis in a patient with cystic fibrosis. Kidney Int. 2012, 81, 421–422. [Google Scholar] [CrossRef] [Green Version]
- Çakır, U.; Alan, S.; Zeybek, C.; Erdeve, Ö.; Atasay, B.; Yalcinkaya, F.; Arsan, S. Acquired Bartter-like syndrome associated with colistin use in a preterm infant. Ren. Fail. 2013, 35, 411–413. [Google Scholar] [CrossRef] [Green Version]
- Varma, T.; Saini, A.; Panchani, R.; Gupta, N.R. Two unusual cases of severe recalcitrant hypocalcemia due to aminoglycoside-induced hypomagnesemia. Indian J. Endocrinol. Metab. 2013, 17, 206–208. [Google Scholar] [CrossRef]
- Sangsiraprapha, W.; Addison, D.; Longfield, E.; Workeneh, B. A novel case of persistent Bartter’s-like syndrome associated with gentamicin exposure. Saudi J. Kidney Dis. Transplant. 2013, 24, 144–146. [Google Scholar] [CrossRef] [PubMed]
- Sandal, G.; Akbay, S.; Ozen, M. Acquired Bartter-like syndrome association with netilmicin therapy in an extremely low birth weight infant. Ren. Fail. 2014, 36, 123–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santra, G.; Paul, R.; Karak, A.; Mukhopadhay, S. Gitelman-like syndrome with kanamycin toxicity. J. Assoc. Physicians India 2016, 64, 90–92. [Google Scholar] [PubMed]
- Singh, J.; Patel, M.L.; Gupta, K.K.; Pandey, S.; Dinkar, A. Acquired Bartter syndrome following gentamicin therapy. Indian J. Nephrol. 2016, 26, 461–463. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Sahay, R.N. Unusual Complication of multidrug resistant tuberculosis. Case Rep. Nephrol. 2017, 2017, 1–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acosta, A.G.R.; Díaz, A.V.A.; Elias, M.M.E.L.; Vázquez, C.A.V. Pseudo Bartter syndrome associated with intravenous infusion of colistin. Rev. Virtual Soc. Paraguaya Med. Interna 2018, 5, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Puri, M.M.; Kumar, A.; Aneja, P.; Gupta, R.; Kumar, L.; Sarin, R. Tetany in an extensively drug resistant tuberculosis (XDR-TB) patient treated with capreomycin. J. Assoc. Physicians India 2019, 67, 79–82. [Google Scholar]
- Ravi, C.; Dabadghao, P. Treatment of multi-drug resistant tuberculosis causing tubulopathy—Gitelman-like syndrome. Indian Pediatr. 2019, 56, 976–977. [Google Scholar] [CrossRef]
- Yilmaz, F.; Nephrology, A.A.S.H.C.O.; Bora, F.; Ersoy, F.F. Gentamicin-induced acquired Bartter-like syndrome: A case report and review of the literature. Turk. J. Nephrol. 2019, 28, 234–327. [Google Scholar] [CrossRef]
- Veena, E.R.; Parrikar, A.; Keny, S.; Lawande, D. Gitelman-like syndrome: A rare complication of using aminoglycosides in tuberculosis—A case report. Indian J. Tuberc. 2020, 67, 417–418. [Google Scholar] [CrossRef]
- Von Vigier, R.O.; Truttmann, A.C.; Zindler-Schmocker, K.; Bettinelli, A.; Aebischer, C.C.; Wermuth, B.; Bianchetti, M.G. Aminoglycosides and renal magnesium homeostasis in humans. Nephrol. Dial. Transpl. 2000, 15, 822–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zorov, D.B. Amelioration of aminoglycoside nephrotoxicity requires protection of renal mitochondria. Kidney Int. 2010, 77, 841–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emma, F.; Salviati, L. Mitochondrial cytopathies and the kidney. Néphrol. Thér. 2017, 13, S23–S28. [Google Scholar] [CrossRef] [PubMed]
- Hannan, F.M.; Kallay, E.; Chang, W.; Brandi, M.L.; Thakker, R.V. The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases. Nat. Rev. Endocrinol. 2018, 15, 33–51. [Google Scholar] [CrossRef] [PubMed]
- Saidak, Z.; Brazier, M.; Kamel, S.; Mentaverri, R. Agonists and allosteric modulators of the calcium-sensing receptor and their therapeutic applications. Mol. Pharmacol. 2009, 76, 1131–1144. [Google Scholar] [CrossRef] [Green Version]
- Mersin, S.S.; Ramelli, G.P.; Laux-End, R.; Bianchetti, M.G. Urinary chloride excretion distinguishes between renal and extrarenal metabolic alkalosis. Eur. J. Pediatr. 1995, 154, 979–982. [Google Scholar] [CrossRef]
- Scurati-Manzoni, E.; Fossali, E.F.; Agostoni, C.; Riva, E.; Simonetti, G.D.; Zanolari-Calderari, M.; Bianchetti, M.G.; Lava, S.A.G. Electrolyte abnormalities in cystic fibrosis: Systematic review of the literature. Pediatr. Nephrol. 2014, 29, 1015–1023. [Google Scholar] [CrossRef] [Green Version]
- Zietse, R.; Zoutendijk, R.; Hoorn, E.J. Fluid, electrolyte and acid–base disorders associated with antibiotic therapy. Nat. Rev. Nephrol. 2009, 5, 193–202. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.D.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.F.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. Ann. Intern. Med. 2009, 151, W-65. [Google Scholar] [CrossRef] [Green Version]
- Stiburkova, B.; Bleyer, A.J. Changes in serum urate and urate excretion with age. Adv. Chronic Kidney Dis. 2012, 19, 372–376. [Google Scholar] [CrossRef]
- Kellum, J.A.; Lameire, N.; Aspelin, P.; Barsoum, R.S.; Burdmann, E.A.; Goldstein, S.L.; Herzog, C.A.; Joannidis, M.; Kribben, A.; Levey, A.S.; et al. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. 2012, 2, 1–138. [Google Scholar]
Characteristics | N | (%) |
---|---|---|
Gender | ||
Female | 51 | (62) |
Male | 31 | (38) |
Underlying infection | ||
Non-tuberculous respiratory infection * | 23 | (28) |
Tuberculosis | 17 | (21) |
Abdominal infection | 13 | (16) |
Urinary tract infection | 11 | (13) |
Infection associated with neutropenia ☩ | 5 | (6.1) |
Other | 13 | (16) |
Antimicrobial agent | ||
Gentamicin | 37 | (45) |
Tobramycin | 11 | (13) |
Capreomycin | 8 | (9.8) |
Kanamycin | 4 | (4.9) |
Viomycin | 2 | (2.4) |
Colistin | 2 | (2.4) |
Unspecified aminoglycoside ◆ | 12 | (15) |
Other | 6 | (7.3) |
Previous antimicrobial therapy courses | 24 | (29) |
Duration of antimicrobial therapy✙ | ||
≤1 week | 11 | (15) |
2–4 weeks | 37 | (50) |
2–6 months | 17 | (23) |
>6 months | 9 | (12) |
Main findings | ||
Neuromuscular irritability | 42 | (52) |
Muscle weakness | 2 | (2.4) |
Irritability and weakness | 11 | (13) |
Abnormal Finding | N | (%) |
---|---|---|
Electrolyte and acid-base disorders | ||
Hypomagnesemia | 70 | (85) |
Hypokalemia | 69 | (84) |
Hypocalcemia | 64 | (78) |
Metabolic alkalosis | 35 | (43) |
Hyponatremia | 22 | (27) |
Hypophosphatemia | 18 | (22) |
Hypouricemia | 5 | (6.1) |
Hypernatremia | 2 | (2.4) |
Metabolic acidosis | 1 | (1.2) |
Relevant urinary findings | ||
Pathological proteinuria | 6 | (7.3) |
Normoglycemic glucosuria | 4 | (4.9) |
Generalized aminoaciduria | 3 | (3.7) |
Inappropriately high electrolyte excretion | ||
Magnesium * | 37 | (45) |
Chloride ** | 21 | (26) |
Disorder | N (%) | Females/Males | Age |
---|---|---|---|
Loop of Henle/Distal Tubular Dysfunction * | 56 (68) | 36/20 | 29 [19–57] |
Proximal Tubular Dysfunction ** | 3 (3.7) | 0/3 | 35, 71, 73 |
Mixed Dysfunction | 5 (6.1) | 3/2 | 41, 43, 49, 53, 64 |
Unclassified Abnormality | 18 (22) | 12/6 | 25 [19–28] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scoglio, M.; Bronz, G.; Rinoldi, P.O.; Faré, P.B.; Betti, C.; Bianchetti, M.G.; Simonetti, G.D.; Gennaro, V.; Renzi, S.; Lava, S.A.G.; et al. Electrolyte and Acid-Base Disorders Triggered by Aminoglycoside or Colistin Therapy: A Systematic Review. Antibiotics 2021, 10, 140. https://doi.org/10.3390/antibiotics10020140
Scoglio M, Bronz G, Rinoldi PO, Faré PB, Betti C, Bianchetti MG, Simonetti GD, Gennaro V, Renzi S, Lava SAG, et al. Electrolyte and Acid-Base Disorders Triggered by Aminoglycoside or Colistin Therapy: A Systematic Review. Antibiotics. 2021; 10(2):140. https://doi.org/10.3390/antibiotics10020140
Chicago/Turabian StyleScoglio, Martin, Gabriel Bronz, Pietro O. Rinoldi, Pietro B. Faré, Céline Betti, Mario G. Bianchetti, Giacomo D. Simonetti, Viola Gennaro, Samuele Renzi, Sebastiano A. G. Lava, and et al. 2021. "Electrolyte and Acid-Base Disorders Triggered by Aminoglycoside or Colistin Therapy: A Systematic Review" Antibiotics 10, no. 2: 140. https://doi.org/10.3390/antibiotics10020140
APA StyleScoglio, M., Bronz, G., Rinoldi, P. O., Faré, P. B., Betti, C., Bianchetti, M. G., Simonetti, G. D., Gennaro, V., Renzi, S., Lava, S. A. G., & Milani, G. P. (2021). Electrolyte and Acid-Base Disorders Triggered by Aminoglycoside or Colistin Therapy: A Systematic Review. Antibiotics, 10(2), 140. https://doi.org/10.3390/antibiotics10020140