Protective Effect of Grape (Vitis vinifera) Seed Powder and Zinc-Glycine Complex on Growth Traits and Gut Health of Broilers Following Eimeria tenella Challenge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Coccidial Challenge
2.3. Performance Traits and Sampling
2.4. Lesion Score
2.5. Number of Oocysts per Gram (OPG)
2.6. Histopathological Examination
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hafeez, A.; Ullah, Z.; Khan, R.U.; Ullah, Q.; Naz, S. Effect of diet supplemented with essential coconut oil on performance and intestinal injury in broiler exposed to avian coccidiosis. Trop. Anim. Health Prod. 2020, 52, 2499–2504. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, Z.; Hafeez, A.; Ullah, Q.; Naz, S.; Khan, R.U. Protective effect of Aloe vera on growth performance, leucocyte count and intestinal injury in broiler chicken infected with coccidiosis. J. Appl. Anim. Res. 2020, 48, 252–256. [Google Scholar] [CrossRef]
- Ali, M.; Chand, N.; Khan, R.U.; Naz, S.; Gul, S. Anticoccidial effect of garlic (Allium sativum) and ginger (Zingiber officinale) against experimentally induced coccidiosis in broiler chickens. J. Appl. Anim. Res. 2019, 47, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Chand, N.; Faheem, H.; Khan, R.U.; Qureshi, M.S.; Alhidary, I.A.; Abudabos, A.M. Anticoccidial effect of mannanoligosacharide against experimentally induced coccidiosis in broiler. Environ. Sci. Poll. Res. 2016, 23, 14414–14421. [Google Scholar] [CrossRef]
- Tanweer, A.J.; Chand, N.; Saddique, U.; Bailey, C.A.; Khan, R.U. Antiparasitic effect of wild rue (Peganum harmala L.) against experimentally induced coccidiosis in broiler chicks. Parasitol. Res. 2014, 113, 2951–2960. [Google Scholar] [CrossRef]
- Naz, S.; Idris, M.; Khalique, M.A.; Zia-ur-Rahman; Alhidary, I.A.; Abdelrahman, M.M.; Khan, R.U.; Chand, N.; Farooq, U.; Ahmad, U. The activity and use of zinc in poultry diet. World Poult. Sci. J. 2016, 72, 159–167. [Google Scholar] [CrossRef]
- Bun, S.D.; Guo, Y.M.; Guo, F.C.; Ji, F.J.; Cao, H. Influence of organic zinc supplementation on the antioxidant status and immune responses of broilers challenged with Eimeria tenella. Poult. Sci. 2011, 90, 1220–1226. [Google Scholar] [CrossRef]
- Jarosz, Ł.; Marek, A.; Grądzki, Z.; Kwiecień, M.; Żylińska, B.; Kaczmarek, B. Effect of feed supplementation with zinc glycine chelate and zinc sulfate on cytokine and immunoglobulin gene expression profiles in chicken intestinal tissue. Poult. Sci. 2017, 96, 4224–4235. [Google Scholar] [CrossRef]
- He, B.; Bortoluzzi, C.; King, W.D.; Graugnard, D.; Dawson, K.A.; Applegate, T.J. Zinc source influences the gene expression of zinc transporters in jejunum and cecal tonsils during broiler challenge with Eimeria maxima and Clostridium perfringens. Poult. Sci. 2019, 98, 1146–1152. [Google Scholar] [CrossRef]
- Ma, W.; Niu, H.; Feng, J.; Wang, Y.; Feng, J. Effects of zinc glycine chelate on oxidative stress, contents of trace elements, and intestinal morphology in broilers. Biol. Trace Elem. Res. 2011, 142, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Chand, N.; Zahirullah; Khan, R.U.; Shah, M.; Naz, S.; Tinelli, A. Zinc source modulates zootechnical characteristics, intestinal features, humoral response and paraoxonase (PON1) activity in broilers. Tropical. Anim. Health Prod. 2020, 52, 511–515. [Google Scholar] [CrossRef]
- Bortoluzzi, C.; Lumpkins, B.; Mathis, G.; França, M.; King, W.; Graugnard, D.; Dawson, K.; Applegate, T. Zinc source modulates intestinal inflammation and intestinal integrity of broiler chickens challenged with coccidia and Clostridium perfringens. Poult. Sci. 2019, 98, 2211–2219. [Google Scholar] [CrossRef]
- Azizi, M.; Seidavi, A.R.; Ragni, M.; Laudadio, V.; Tufarelli, V. Practical applications of agricultural wastes in poultry feeding in Mediterranean and Middle East regions. Part 1: Citrus, grape, pomegranate and apple wastes. World Poult. Sci. J. 2018, 74, 489–498. [Google Scholar] [CrossRef]
- Wang, M.L.; Suo, X.; Gu, J.H.; Zhang, W.W.; Fang, Q.; Wang, X. Influence of Grape Seed Proanthocyanidin Extract in Broiler Chickens: Effect on Chicken Coccidiosis and Antioxidant Status. Poult. Sci. 2008, 87, 2273–2280. [Google Scholar] [CrossRef] [PubMed]
- Viveros, A.; Chamorro, S.; Pizarro, M.; Arija, I.; Centeno, C.; Brenes, A. Effects of dietary polyphenol-rich grape products on intestinal microflora and gut morphology in broiler chicks. Poult. Sci. 2011, 90, 566–578. [Google Scholar] [CrossRef]
- Rapp, C.; Johnson, A.B.; Fakler, T.M.; Ward, T.L.; Quark, C.L. Effect of zinc source on intestinal lesion and performance of broilers expose to coccidiosis. Zoot Int. 2004, 2, 40–43. [Google Scholar]
- Yun, C.H.; Lillehoj, H.S.; Lillehoj, E.P. Intestinal immune responses to coccidiosis. Dev. Comp. Immunol. 2000, 24, 303–324. [Google Scholar] [CrossRef]
- Li, C.; Guo, S.; Gao, J.; Guo, Y.; Du, E.; Lv, Z.; Zhang, B. Maternal high-zinc diet attenuates intestinal inflammation by reducing DNA methylation and elevating H3K9 acetylation in the A20 promoter of offspring chicks. J. Nutr. Biochem. 2015, 26, 173–183. [Google Scholar] [CrossRef]
- Bortoluzzi, C.; Vieira, B.S.; Applegate, T.J. Influence of Dietary Zinc, Copper, and Manganese on the Intestinal Health of Broilers Under Eimeria Challenge. Front. Vet. Sci. 2020, 7, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.Y.; Zhang, H.J.; Wang, J.; Wu, S.G.; Yue, H.Y.; Jiang, X.R.; Qi, G.H. Effects of dietary grape proanthocyanidins on the growth performance, jejunum morphology and plasma biochemical indices of broiler chicks. Animal 2017, 11, 762–770. [Google Scholar] [CrossRef] [Green Version]
- Bagchi, D.; Swaroop, A.; Preuss, H.G.; Bagchi, M. Free radical scavenging, antioxidant and cancer chemoprevention by grape seed proanthocyanidin: An overview. Mutat. Res. Mol. Mech. Mutagen. 2014, 768, 69–73. [Google Scholar] [CrossRef] [PubMed]
Ingredients, % | Starter | Finisher |
---|---|---|
Corn | 53.21 | 60.75 |
Soybean meal | 37.92 | 25.00 |
Corn gluten meal | 2.00 | 7.10 |
Corn oil | 2.20 | 2.80 |
Dicalcium phosphate | 2.30 | 2.05 |
Limestone | 0.83 | 0.68 |
Salt | 0.45 | 0.50 |
Vitamin–mineral premix 1 | 0.50 | 0.50 |
DL-Methionine | 0.20 | 0.10 |
Lysine-HCl | 0.22 | 0.37 |
Threonine | 0.11 | 0.10 |
Choline chloride | 0.05 | 0.05 |
Chemical Composition | ||
ME, kcal/kg | 3000 | 3150 |
Crude protein, % | 23.50 | 21.30 |
Methionine, % | 0.55 | 0.44 |
Lysine, % | 1.42 | 1.23 |
Sulfur amino acids, % | 0.96 | 0.80 |
Threonine, % | 0.95 | 0.85 |
Calcium, % | 1.05 | 0.90 |
Phosphorus, % | 0.50 | 0.45 |
Groups | 2nd Week | 3rd Week | 4th Week | 5th Week | Overall Mean |
---|---|---|---|---|---|
Negative control | 389.6 ± 8.22 | 614.2 a ± 16.10 | 750.5 a ± 71.1 | 920.67 a ± 7.94 | 2675.3 a ± 34.99 |
Positive control | 391.4 ± 11.6 | 592.2 b ± 4.10 | 610.17 c ± 16.75 | 796.20 b ± 15.32 | 2400.7 ± 28.55 |
Infected + Amprolium | 391.7 ± 12.1 | 617.47 a ± 4.89 | 722.07 b ± 13.34 | 890.73 a ± 37.85 | 2634.3 a ± 41.04 |
GSP2.5 + OZ50 | 387.8 ± 16.5 | 624.77 a ± 8.50 | 741.80 ab ± 18.04 | 912.17 a ± 5.00 | 2666.6 a ± 8.70 |
GSP5 + OZ50 | 389.2 ± 8.82 | 627.37 a ± 8.60 | 738.77 ab ± 10.11 | 918.57 a ± 11.45 | 2672.9 a ± 33.68 |
p-value | 0.993 | 0.007 | ≤0.01 | ≤0.01 | ≤0.01 |
Groups | 2nd Week | 3rd Week | 4th Week | 5th Week | Overall Mean |
---|---|---|---|---|---|
Negative control | 281.67 ± 3.51 | 392.33 ± 9.07 | 466.33 a ± 9.07 | 502.3 a ± 7.5 | 1642.7 a ± 15.17 |
Positive control | 280.33 ± 5.50 | 353.67 d ± 7.09 | 287.33 d ± 7.09 | 359.67 c ± 11.59 | 1281.0 c ± 19.92 |
Infected + Amprolium | 282.67 ± 7.09 | 373.00 c ± 8.62 | 443.33 b ± 8.62 | 455.00 b ± 10.81 | 1554.0 b ± 24.06 |
GSP2.5 + OZ50 | 289.67 ± 1.52 | 386.33 ab ± 4.72 | 422.67 c ± 4.72 | 458.00 b ± 10.53 | 1558.0 b ± 14.97 |
GSP5 + OZ50 | 288.67 ± 4.72 | 379.33 ab ± 3.05 | 412.67 c ± 3.05 | 452.00 b ± 7.63 | 1533.0 b ± 12.34 |
p-value | 0.128 | ≤0.01 | ≤0.01 | ≤0.01 | ≤0.01 |
Groups | 2nd Week | 3rd Week | 4th Week | 5th Week | Overall Mean |
---|---|---|---|---|---|
Negative control | 1.44 ± 0.39 | 1.60 b ± 0.01 | 1.53 c ± 0.14 | 1.78 d ± 0.02 | 1.62 d ± 0.02 |
Positive control | 1.38 ± 0.04 | 1.67 a ± 0.02 | 2.15 a ± 0.01 | 2.21 a ± 0.03 | 1.87 a ± 0.01 |
Infected + Amprolium | 1.37 ± 5.77 | 1.65 a ± 0.02 | 1.62 c ± 5.77 | 1.89 b ± 1.01 | 1.74 c ± 5.77 |
GSP2.5 + OZ50 | 1.37 ± 0.01 | 1.64 a ± 0.01 | 1.75 b ± 0.034 | 1.98 b ± 0.06 | 1.75 bc ± 0.02 |
GSP5 + OZ50 | 1.37 ± 0.01 | 1.65 a ± 0.01 | 1.78 b ± 0.01 | 1.98 b ± 0.01 | 1.78 b ± 0.01 |
p-value | 0.35 | ≤0.01 | ≤0.01 | ≤0.01 | ≤0.01 |
Group | Dressing Percentage |
---|---|
Negative control | 68.55 a ± 1.19 |
Positive control | 58.35 d ± 2.56 |
Infected + Amprolium | 67.45 ab ± 0.72 |
GSP2.5 + OZ50 | 65.98 bc ± 0.35 |
GSP5 + OZ50 | 64.99 c ± 0.22 |
p-value | <0.001 |
Group | 7 dpi | 14 dpi | 21 dpi |
---|---|---|---|
Negative control | 0.00 d ± 0.00 | 0.00 d ±0.00 | 0.00 d ± 0.00 |
Positive control | 705.00 a ± 25.00 | 833.33 a ± 33.29 | 285.00 a ± 20.00 |
Infected + Amprolium | 370.00 c ± 15.00 | 391.67 c ± 15.27 | 120.00 c ± 22.91 |
GSP2.5 + OZ50 | 477.00 b ± 20.8 | 525.40 b ± 12.09 | 248.33 b ± 17.55 |
GSP5 + OZ50 | 498.33 b ± 31.22 | 541.67 b ± 41.96 | 223.33 b ± 47.25 |
p-value | ≤0.01 | ≤0.01 | ≤0.01 |
Groups | Thickness of Ceca | Hemorrhages | Congestion |
---|---|---|---|
Negative control | 0 | 0 | 0 |
Positive control | +++ | +++ | ++ |
Infected + Amprolium | + | + | 0 |
GSP2.5 + OZ50 | ++ | ++ | + |
GSP5 + OZ50 | ++ | ++ | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chand, N.; Ali, P.; Alhidary, I.A.; Abdelrahman, M.A.; Albadani, H.; Khan, M.A.; Seidavi, A.; Laudadio, V.; Tufarelli, V.; Khan, R.U. Protective Effect of Grape (Vitis vinifera) Seed Powder and Zinc-Glycine Complex on Growth Traits and Gut Health of Broilers Following Eimeria tenella Challenge. Antibiotics 2021, 10, 186. https://doi.org/10.3390/antibiotics10020186
Chand N, Ali P, Alhidary IA, Abdelrahman MA, Albadani H, Khan MA, Seidavi A, Laudadio V, Tufarelli V, Khan RU. Protective Effect of Grape (Vitis vinifera) Seed Powder and Zinc-Glycine Complex on Growth Traits and Gut Health of Broilers Following Eimeria tenella Challenge. Antibiotics. 2021; 10(2):186. https://doi.org/10.3390/antibiotics10020186
Chicago/Turabian StyleChand, Naila, Pervez Ali, Ibrahim A. Alhidary, Mutassim A. Abdelrahman, Hani Albadani, Murad Ali Khan, Alireza Seidavi, Vito Laudadio, Vincenzo Tufarelli, and Rifat Ullah Khan. 2021. "Protective Effect of Grape (Vitis vinifera) Seed Powder and Zinc-Glycine Complex on Growth Traits and Gut Health of Broilers Following Eimeria tenella Challenge" Antibiotics 10, no. 2: 186. https://doi.org/10.3390/antibiotics10020186
APA StyleChand, N., Ali, P., Alhidary, I. A., Abdelrahman, M. A., Albadani, H., Khan, M. A., Seidavi, A., Laudadio, V., Tufarelli, V., & Khan, R. U. (2021). Protective Effect of Grape (Vitis vinifera) Seed Powder and Zinc-Glycine Complex on Growth Traits and Gut Health of Broilers Following Eimeria tenella Challenge. Antibiotics, 10(2), 186. https://doi.org/10.3390/antibiotics10020186