Phytocomplex Influences Antimicrobial and Health Properties of Concentrated Glycerine Macerates
Abstract
:1. Introduction
2. Results
2.1. HPLC Analysis
2.2. GC-MS Analysis
2.3. Glucose Analysis
2.4. DPPH Test
2.5. Antimicrobial Activity
2.6. ELISA Test
2.7. Cytotoxicity Test
3. Discussion
4. Materials and Methods
4.1. Glycerine Macerates
4.2. High Performance Liquid Chromatography (HPLC)
4.3. Solid-Phase Micro Extraction (SPME)
4.4. Gas Chromatography–Mass Spectrometry
4.5. Electrochemical Measurements
4.6. 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Test
4.7. Microbial Strains
4.8. Broth Microdilution Susceptibility Testing
4.9. Isolation of PBMCs
4.10. ELISA Assay
4.11. Cytotoxicity Test
4.12. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References and Notes
- Henry, P. Conception et pratique de la gemmothérapie. In Bulletin d’Organothérapie et de Gérontologie; 1959; Volume 7. [Google Scholar]
- Andrianne, P. La gemmothérapie: Passé, présent et avenir. Phytothérapie 2008, 6, 29–32. [Google Scholar] [CrossRef]
- Chișe, E.; Ardelean, M.; Cuc-Hepcal, I.; Deme, P.; Ardelean, S.; Moș, L.; Morgovan, C.; Olah, N.-K. The Research in Meristemotherapy—Past and Perspectives. J. Med. Arad. 2016, XIX, 21–25. [Google Scholar]
- Trapani, G. Biochemistry, and Symbolism in Gemmotherapy and Phytoembryotherpy. 2013, p. 5. Available online: https://pdfslide.net/documents/biochemistry-and-symbolism-in-gemmotherapy-and-.html (accessed on 27 November 2020).
- Ordre_National_des_Pharmaciens. Pharmacopée Française, Codex Medicamentarius Gallicus, Codex Français: Monographie, Préparations Homéopathiques, 8th ed.; Ministère de la Santé Publique et de la Population: Paris, France, 1965. [Google Scholar]
- Farmacopea Ufficiale della Repubblica Italiana XI Ed. 2015. Available online: https://documenti.site/document/farmacopea-ufficiale-della-repubblica-italiana-xi-ed.html (accessed on 30 November 2020).
- Phillipson, J.D. Phytochemistry and pharmacognosy. Phytochemistry 2007, 68, 2960–2972. [Google Scholar] [CrossRef] [PubMed]
- Guéniot, G.; Ledoux, F. La Phytembryothérapie, L’embryon de la Gemmothérapie; Editions Amyris: Bruxelles, Belgium, 2012. [Google Scholar]
- Malandrino, M.; Giacomino, A.; Abollino, O.; Allio, A.; Toniolo, R.; Colombo, M.L. Determination of major, minor and trace elements in Glyceric Macerates and Mother Tinctures and in the starting plant materials. J. Pharm. Biomed. Anal. 2015, 106, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Turrini, F.; Donno, D.; Boggia, R.; Beccaro, G.L.; Zunin, P.; Leardi, R.; Pittaluga, A.M. An innovative green extraction and re-use strategy to valorize food supplement by-products: Castanea sativa bud preparations as case study. Food Res. Int. 2019, 115, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Ieri, F.; Innocenti, M.; Possieri, L.; Gallori, S.; Mulinacci, N. Phenolic composition of “bud extracts” of Ribes nigrum L., Rosa canina L. and Tilia tomentosa M. J. Pharm. Biomed. Anal. 2015, 115, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Andrianne, F. Treatise on Gemmotherapy: The Therapeutic Use of Buds; Editions Amyris: Bruxelles, Belgium, 2012. [Google Scholar]
- Henry, P. Phytoembryothérapie-Gemmothérapie; Anverse, Belgique, 1970. [Google Scholar]
- Henry, P. Gemmothérapie: Thérapeutique par les Extraits Embryonnaires Végétaux; Anverse, Belgique, 1982. [Google Scholar]
- Nicoletti, M.; Piterà, F. Gemmoterapia. Fondamenti Scientifici Della Moderna Meristemoterapia; Nuova Ipsa Editore: Palermo, Italy, 2018. [Google Scholar]
- Donno, D.; Beccaro, G.; Cerutti, A.; Mellano, M.G.; Bounous, G. Bud Extracts as New Phytochemical Source for Herbal Preparations—Quality Control and Standardization by Analytical Fingerprint. In Phytochemicals Isolation, Characterisation and Role in Human Health; Rao, V., Rao, L.G., Eds.; IntechOpen: London, UK, 2015; pp. 187–218. [Google Scholar]
- Ferrara, L. Phytotherapy as a preventive and adjuvant for the rhinitis. IOSR J. Pharm. 2016, 6, 2250–3013. [Google Scholar]
- Tabart, J.; Franck, T.; Kevers, C.; Pincemail, J.; Serteyn, D.; Defraigne, J.-O.; Dommes, J. Antioxidant and anti-inflammatory activities of Ribes nigrum extracts. Food Chem. 2012, 131, 1116–1122. [Google Scholar] [CrossRef]
- Oniga, O. Are Herbal Products an Alternative to Antibiotics? Bact. Pathog. Antibact. Control. 2018. [Google Scholar] [CrossRef] [Green Version]
- Badgujar, S.B.; Patel, V.; Bandivdekar, A.H.; Mahajan, R.T. Traditional uses, phytochemistry and pharmacology ofFicus carica: A review. Pharm. Biol. 2014, 52, 1487–1503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desbois, A.P.; Smith, V.J. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 2010, 85, 1629–1642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kremmyda, L.-S.; Tvrzicka, E.; Stankova, B.; Zak, A. Fatty acids as biocompounds: Their role in human metabolism, health and disease—A review. part 2: Fatty acid physiological roles and applications in human health and disease. Biomed. Pap. 2011, 155, 195–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Innes, J.K.; Calder, P.C. Omega-6 fatty acids and inflammation. Prostaglandins Leukot. Essent. Fat. Acids 2018, 132, 41–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno-Solís, G.; Torre-Aguilar, M.J.D.; Torres-Borrego, J.; Llorente-Cantarero, F.J.; Fernández-Gutiérrez, F.; Gil-Campos, M.; Túnez-Fiñana, I.; Pérez-Navero, J.L. Oxidative stress and inflamatory plasma biomarkers in respiratory syncytial virus bronchiolitis. Clin. Respir. J. 2016, 11, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Song, Y.; Shen, C.; Xu, W.; Chen, L.; Zhang, J.; Liu, H.; Huang, M.; Lai, G.; Qian, G.; et al. Mucoactive and antioxidant medicines for COPD: Consensus of a group of Chinese pulmonary physicians. Int. J. Chronic Obstr. Pulm. Dis. 2017, 12, 803–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinu, L.; Popescu, C.; Atitieni, A. The Effect of Gemmoderivatives on Probiotic and Pathogenic Microorganisms. Anim. Sci. Biotechnol. 2019, 52, 74–77. [Google Scholar]
- Semenova, D.; Silina, Y.; Koch, M.; Micheli, L.; Zubov, A.; Gernaey, K.V. Sensors for biosensors: A novel tandem monitoring in a droplet towards efficient screening of robust design and optimal operating conditions. Analyst 2019, 144, 2511–2522. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.; Harris, H.M.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef] [PubMed]
- EUCAST. Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect. 2003, 9, ix–xv. [Google Scholar] [CrossRef] [Green Version]
C-GM | Myricetin (2.7 min) | Quercitin (4 min) | Quercitin (6.3 min) | g/L |
---|---|---|---|---|
FC-A | 0.120 | 0.008 | 0.359 | 1.060 |
FC-B | 0.160 | n.d. | 0.121 | 1.390 |
CB-A | 0.477 | n.d. | n.d | 4.230 |
CB-B | 0.566 | n.d. | n.d. | 5.022 |
AG-A | 0.060 | n.d. | n.d. | 0.504 |
AG-B | 0.160 | 0.040 | n.d. | 1.390 |
RN-A | 0.090 | 0.020 | n.d | 0.829 |
RN-B | 0.315 | 0.024 | n.d. | 2.781 |
No. a | COMPONENT b | LRI c | LRIlit d | MS e | FC-A | FC-B | CB-A | CB-B | AG-A | AG-B | RN-A | RN-B |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | terpinolene | 1073 | 1079 f | + | - | - | - | - | - | - | 8.5 | 15.8 |
2 | terpinen-4-ol | 1165 | 1168 | + | - | - | - | - | - | - | 33.1 | 33.5 |
3 | octanoic acid | 1168 | 1170 | + | - | 9.9 | - | - | - | - | - | - |
4 | α-methylbenzenepropanamine | 1118 | 1221 | + | - | - | - | - | - | - | 13.2 | 11.6 |
5 | dodecanal | 1384 | 1388 | + | - | - | - | - | - | 3.3 | - | - |
6 | spathulenol | 1576 | 1581 | + | - | - | - | - | - | - | 15.3 | 15.9 |
7 | caryophyllene oxide | 1580 | 1585 | + | - | - | - | - | - | - | 29.8 | 31.1 |
8 | palmitic acid (C16:0) | 1945 | 1950 | + | 64.8 | 31.7 | - | 20.5 | - | 31.9 | - | - |
9 | linoleic acid (C18:2) | 2128 | 2130 | + | 22.8 | 29.3 | - | 28.0 | - | 29.4 | - | - |
10 | linolenic acid (C18:3) | 2155 | 2159 | + | 12.3 | 29.0 | - | 51.4 | - | 35.4 | - | - |
Total identified (%) | 99.9 | 99.0 | 99.9 | 100.0 | 99.9 | 100.0 |
Sample | Glucose Concentration (AveragemM ± St. Dev.mM) | RSD% |
---|---|---|
FC-A | 0.86 ± 0.06 | 7 |
FC-B | 4 ± 3 | 75 |
AG-A | 0.0075 ± 0.0002 | 3 |
AG-B | n.d. | - |
CB-A | 12 ± 1 | 8 |
CB-B | 15 ± 2 | 13 |
RN-A | 0.74 ± 0.08 | 11 |
RN-B | 0.64 ±0.03 | 5 |
IC50 (Average% v/v ± St. Dev.% v/v) | ||||
---|---|---|---|---|
C-GM | FC | CB | AG | RN |
A | 7.42 ± 1.57 (a) | 0.73 ± 0.01 (bc) | 1.19 ± 0.28 (bc) | 6.67 ± 0.26 (a) |
B | 2.55 ± 0.49 (b) | 0.11 ± 0.00 (c) | 0.54 ± 0.01 (bc) | 0.62 ± 0.20 (bc) |
Strain | FC-A | FC-B | CB-A | CB-B | AG-A | AG-B | RN-A | RN-B | FC-A | FC-B | CB-A | CB-B | AG-A | AG-B | RN-A | RN-B |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC90 (% v/v) | MBC90 (% v/v) | |||||||||||||||
Sp | 10 | 10 | 10 | 5 | ≤2.5 | ≤2.5 | 10 | 5 | 80 | 40 | 80 | 40 | 5 | 10 | 80 | 40 |
MIC (% v/v) | MBC (% v/v) | |||||||||||||||
M141 | 5 | 5 | ≤2.5 | 5 | ≤2.5 | ≤2.5 | 20 | ≤2.5 | 40 | 40 | 10 | 10 | 20 | 10 | 40 | 20 |
M142 | 20 | 10 | 10 | 10 | 5 | 10 | 10 | 5 | 80 | 80 | 80 | 80 | 80 | 40 | 80 | 80 |
M413 | 10 | 5 | 2.5 | 5 | ≤2.5 | 5 | 10 | 5 | 80 | 80 | 80 | 80 | 40 | 20 | 80 | 40 |
20021 | 10 | 10 | 10 | 5 | ≤2.5 | ≤2.5 | 20 | 10 | 80 | 80 | 80 | 40 | 80 | 80 | 40 | 40 |
11471 | ≤2.5 | 20 | 5 | 10 | ≤2.5 | ≤2.5 | 5 | 5 | 40 | 40 | 40 | 40 | 80 | 80 | 40 | 20 |
B1480 | 80 | 80 | 10 | 10 | 5 | 5 | 10 | 10 | 80 | 80 | 80 | 80 | 40 | 40 | 80 | 80 |
14200B | 20 | 20 | 10 | 20 | 5 | 10 | 10 | 40 | 40 | 20 | 40 | 20 | 20 | 20 | 40 | 20 |
B669 | ≤2.5 | 10 | ≤2.5 | 10 | ≤2.5 | ≤2.5 | ≤2.5 | ≤2.5 | 20 | 80 | 40 | 40 | 5 | 10 | 20 | 40 |
11742 | 10 | 10 | 5 | 10 | 5 | ≤2,5 | 5 | 5 | 10 | 10 | 20 | 10 | 10 | 5 | 10 | 10 |
RO215 | 5 | ≤2.5 | ≤2.5 | ≤2.5 | ≤2.5 | ≤2.5 | ≤2.5 | ≤2.5 | 10 | 20 | 40 | 20 | 5 | <2.5 | 20 | <2.5 |
IC90 (% v/v) | BC90 (% v/v) | |||||||||||||||
20 | 20 | 10 | 10 | 5 | 10 | 20 | 10 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 |
Average(OD Value) × 10−3 | Average Ratio × 102 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sample | IL-1a | IL-2 | IL-4 | IL-5 | IL-10 | IL-12 | IL-13 | IL-17a | GM-CSF | a PRO/IL-13 |
PBMC | 3 ± 1 (b) | 24 ± 1 | 1 ± 0 | 0 ± 0 | 2 ± 1 (b) | 1 ± 0 (b) | 1 ± 0 | 1 ± 0 | 3 ± 1 (c) | 0.46 ± 0.28 (b) |
PBMC + LPS | 531 ± 63 (a) | 0 ± 4 | 1 ± 0 | 0 ± 1 | 318 ± 26 (a) | 6 ± 0 (a) | 2 ± 1 | 1 ± 1 | 562 ± 21 (b) | 7.24 ± 4.00 (a) |
LPS + RN-A | 537 ± 29 (a) | 2 ± 3 | 2 ± 0 | 2 ± 1 | 11 ± 3 (b) | 2 ± 0 (ab) | 1 ± 0 | 1 ± 0 | 1316 ± 129 (a) | 18.7 ± 3.30 (a) |
LPS + RN-B | 47 ± 3 (b) | 5 ± 2 | 2 ± 0 | 1 ± 1 | 2 ± 1 (b) | 2 ± 1 (ab) | 2 ± 0 | 1 ± 0 | 39 ± 1 (c) | 0.50 ± 0.03 (b) |
p | <0.01 ** | 0.12 ns | 0.26 ns | 0.70 ns | <0.01 ** | 0.04 * | 0.23 ns | 0.80 ns | <0.01 ** | <0.01 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Vito, M.; Gentile, M.; Mattarelli, P.; Barbanti, L.; Micheli, L.; Mazzuca, C.; Garzoli, S.; Titubante, M.; Vitali, A.; Cacaci, M.; et al. Phytocomplex Influences Antimicrobial and Health Properties of Concentrated Glycerine Macerates. Antibiotics 2020, 9, 858. https://doi.org/10.3390/antibiotics9120858
Di Vito M, Gentile M, Mattarelli P, Barbanti L, Micheli L, Mazzuca C, Garzoli S, Titubante M, Vitali A, Cacaci M, et al. Phytocomplex Influences Antimicrobial and Health Properties of Concentrated Glycerine Macerates. Antibiotics. 2020; 9(12):858. https://doi.org/10.3390/antibiotics9120858
Chicago/Turabian StyleDi Vito, Maura, Margherita Gentile, Paola Mattarelli, Lorenzo Barbanti, Laura Micheli, Claudia Mazzuca, Stefania Garzoli, Mattia Titubante, Alberto Vitali, Margherita Cacaci, and et al. 2020. "Phytocomplex Influences Antimicrobial and Health Properties of Concentrated Glycerine Macerates" Antibiotics 9, no. 12: 858. https://doi.org/10.3390/antibiotics9120858
APA StyleDi Vito, M., Gentile, M., Mattarelli, P., Barbanti, L., Micheli, L., Mazzuca, C., Garzoli, S., Titubante, M., Vitali, A., Cacaci, M., Sanguinetti, M., & Bugli, F. (2020). Phytocomplex Influences Antimicrobial and Health Properties of Concentrated Glycerine Macerates. Antibiotics, 9(12), 858. https://doi.org/10.3390/antibiotics9120858