Salmonella spp. in Pet Reptiles in Portugal: Prevalence and Chlorhexidine Gluconate Antimicrobial Efficacy
Abstract
:1. Introduction
2. Results
2.1. Salmonella spp. Isolates
2.2. Antimicrobial Resistance
2.3. Virulence Phenotype
2.4. Minimum Inhibitory Concentration and Minimum Bactericidal Concentration
2.5. Biofilm Formation in the Air-Liquid Interface
2.6. Minimum Biofilm Inhibitory Concentration and Minimum Biofilm Eradication Concentration Determination
3. Discussion
4. Materials and Methods
4.1. Sample Collection and Salmonella spp. Isolation
4.2. Antimicrobial Susceptibility Testing
4.3. Virulence Phenotype Analysis
4.4. Chlorhexidine Gluconate Minimum Inhibitory Concentration and Minimum Bactericidal Concentration Determination
4.5. Biofilm Formation in the Air-Liquid Interface
4.6. Chlorhexidine Gluconate Minimum Biofilm Inhibitory Concentration and Minimum Biofilm Eradication Concentration Determination
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC). The European Union One Health 2018 Zoonoses Report. EFSA J. 2019, 17, 5926. [Google Scholar] [CrossRef] [Green Version]
- Majowicz, S.E.; Musto, J.; Scallan, E.; Angulo, F.J.; Kirk, M.; O’Brien, S.J.; Jones, T.F.; Fazil, A.; Hoekstra, R.M. The global burden of nontyphoidal salmonella gastroenteritis. Clin. Infect. Dis. 2010, 50, 882–889. [Google Scholar] [CrossRef] [Green Version]
- Crum-Cianflone, N.F. Salmonellosis and the gastrointestinal tract: More than just peanut butter. Curr. Gastroenterol. Rep. 2008, 10, 424–431. [Google Scholar] [CrossRef]
- Van Duijkeren, E.; Houwers, D.J. A critical assessment of antimicrobial treatment in uncomplicated Salmonella enteritis. Vet. Microbiol. 2000, 73, 61–73. [Google Scholar] [CrossRef]
- FEDIAF (The European Pet Food Industry). FEDIAF Annual Report 2019; FEDIAF: Bruxelles, Belgium, 2020. [Google Scholar]
- Hoelzer, K.; Moreno Switt, A.; Wiedmann, M.; Majowicz, S.; Musto, J.; Scallan, E.; Angulo, F.; Kirk, M.; O’Brien, S.; Jones, T.; et al. Animal contact as a source of human non-typhoidal salmonellosis. Vet. Res. 2011, 42, 34. [Google Scholar] [CrossRef] [Green Version]
- Wikström, V.O.; Fernström, L.L.; Melin, L.; Boqvist, S. Salmonella isolated from individual reptiles and environmental samples from terraria in private households in Sweden. Acta Vet. Scand. 2014, 56, 7. [Google Scholar] [CrossRef] [Green Version]
- Brenner, F.W.; Villar, R.G.; Angulo, F.J.; Tauxe, R.; Swaminathan, B. Salmonella nomenclature. J. Clin. Microbiol. 2000, 38, 2465–2467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mermin, J.; Hutwagner, L.; Vugia, D.; Shallow, S.; Daily, P.; Bender, J.; Koehler, J.; Marcus, R.; Angulo, F.J. Reptiles, amphibians, and human Salmonella infection: A population-based, case-control study. Clin. Infect. Dis. 2004, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corrente, M.; Sangiorgio, G.; Grandolfo, E.; Bodnar, L.; Catella, C.; Trotta, A.; Martella, V.; Buonavoglia, D. Risk for zoonotic Salmonella transmission from pet reptiles: A survey on knowledge, attitudes and practices of reptile-owners related to reptile husbandry. Prev. Vet. Med. 2017, 146, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Whiley, H.; Gardner, M.G.; Ross, K. A review of salmonella and squamates (Lizards, snakes and amphisbians): Implications for public health. Pathogens 2017, 6, 38. [Google Scholar] [CrossRef] [Green Version]
- Sodagari, H.R.; Habib, I.; Shahabi, M.P.; Dybing, N.A.; Wang, P.; Bruce, M. A review of the public health challenges of salmonella and turtles. Vet. Sci. 2020, 7, 56. [Google Scholar] [CrossRef]
- Bertrand, S.; Rimhanen-Finne, R.; Weill, F.X.; Rabsch, W.; Thornton, L.; Perevoscikovs, J.; van Pelt, W.; Heck, M. Salmonella infections associated with reptiles: The current situation in Europe. Eur. Surveill. 2008, 13, 18902. [Google Scholar] [CrossRef]
- Marin, C.; Lorenzo-Rebenaque, L.; Laso, O.; Villora-Gonzalez, J.; Vega, S. Pet Reptiles: A Potential Source of Transmission of Multidrug-Resistant Salmonella. Front. Vet. Sci. 2021, 7. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Chen, W.C.; Chin, S.C.; Lai, Y.H.; Tung, K.C.; Chiou, C.S.; Hsu, Y.M.; Chang, C.C. Prevalence and antimicrobial susceptibility of salmonellae isolates from reptiles in Taiwan. J. Vet. Diagn. Investig. 2010, 22, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Sylvester, W.R.B.; Amadi, V.; Pinckney, R.; Macpherson, C.N.L.; Mckibben, J.S.; Bruhl-Day, R.; Johnson, R.; Hariharan, H. Prevalence, Serovars and Antimicrobial Susceptibility of Salmonella spp. from Wild and Domestic Green Iguanas (Iguana iguana) in Grenada, West Indies. Zoonoses Public Health 2014, 61, 436–441. [Google Scholar] [CrossRef]
- Ebani, V.V. Domestic reptiles as source of zoonotic bacteria: A mini review. Asian Pac. J. Trop. Med. 2017, 10, 723–728. [Google Scholar] [CrossRef]
- Reygaert, W.C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018, 4, 482–501. [Google Scholar] [CrossRef]
- Bertelloni, F.; Chemaly, M.; Cerri, D.; Le Gall, F.; Ebani, V.V. Salmonella infection in healthy pet reptiles: Bacteriological isolation and study of some pathogenic characters. Acta Microbiol. Immunol. Hung. 2016, 63, 203–216. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Li, H.; Shen, Y. Antimicrobial Drug Resistance in Salmonella enteritidis Isolated from Edible Snakes with Pneumonia and Its Pathogenicity in Chickens. Front. Vet. Sci. 2020, 7, 463. [Google Scholar] [CrossRef]
- Steenackers, H.; Hermans, K.; Vanderleyden, J.; De Keersmaecker, S.C.J. Salmonella biofilms: An overview on occurrence, structure, regulation and eradication. Food Res. Int. 2012, 45, 502–531. [Google Scholar] [CrossRef]
- Trampari, E.; Holden, E.R.; Wickham, G.J.; Ravi, A.; de Martins, L.O.; Savva, G.M.; Webber, M.A. Exposure of Salmonella biofilms to antibiotic concentrations rapidly selects resistance with collateral tradeoffs. NPJ Biofilms Microbiomes 2021, 7, 1–13. [Google Scholar] [CrossRef]
- Mcdonnell, G.; Russell, A.D. Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev. 1999, 12, 147–179. [Google Scholar] [CrossRef] [Green Version]
- Main, R.C. Should chlorhexidine gluconate be used in wound cleansing? J. Wound Care 2008, 17, 112–114. [Google Scholar] [CrossRef]
- O’Rourke, D.P.; Cox, J.D.; Baumann, D.P. Nontraditional Species. In Management of Animal Care and Use Programs in Research, Education, and Testing; CRC Press: Boca Raton, FL, USA, 2020; pp. 579–596. [Google Scholar]
- Corrente, M.; Madio, A.; Friedrich, K.G.; Greco, G.; Desario, C.; Tagliabue, S.; D’Incau, M.; Campolo, M.; Buonavoglia, C. Isolation of Salmonella strains from reptile faeces and comparison of different culture media. J. Appl. Microbiol. 2004, 96, 709–715. [Google Scholar] [CrossRef] [Green Version]
- Back, D.-S.; Shin, G.-W.; Wendt, M.; Heo, G.-J. Prevalence of Salmonella spp. in pet turtles and their environment. Lab. Anim. Res. 2016, 32, 166. [Google Scholar] [CrossRef] [Green Version]
- Geue, L.; Löschner, U. Salmonella enterica in reptiles of German and Austrian origin. Vet. Microbiol. 2002, 84, 79–91. [Google Scholar] [CrossRef]
- Lukac, M.; Pedersen, K.; Prukner-Radovcic, E. Prevalence of salmonella in captive reptiles from Croatia. J. Zoo Wildl. Med. 2015, 46, 234–240. [Google Scholar] [CrossRef]
- Pedersen, K.; Lassen-Nielsen, A.-M.; Nordentoft, S.; Hammer, A.S. Serovars of Salmonella from captive reptiles. Zoonoses Public Health 2009, 56, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Kikillus, K.; Gartrell, B.; Motion, E. Prevalence of Salmonella spp., and serovars isolated from captive exotic reptiles in New Zealand. N. Z. Vet. J. 2011, 59, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Scheelings, T.F.; Lightfoot, D.; Holz, P. Prevalence of salmonella in australian reptiles. J. Wildl. Dis. 2011, 47, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bjelland, A.M.; Sandvik, L.M.; Skarstein, M.M.; Svendal, L.; Debenham, J.J. Prevalence of Salmonella serovars isolated from reptiles in Norwegian zoos. Acta Vet. Scand. 2020, 62. [Google Scholar] [CrossRef]
- Weltman, A.; Smee, A.; Moll, M.; Deasy, M.; Pringle, J.; Williams, I.; Behravesh, C.B.; Wright, J.; Routh, J.; Longenberger, A. Notes from the field: Outbreak of salmonellosis associated with pet turtle exposures—United States, 2011. Morb. Mortal. Wkly Rep. 2012, 61, 79. [Google Scholar]
- Gambino-Shirley, K.; Stevenson, L.; Wargo, K.; Burnworth, L.; Roberts, J.; Garrett, N.; Van Duyne, S.; McAllister, G.; Nichols, M. Notes from the Field: Four Multistate Outbreaks of Human Salmonella Infections Linked to Small Turtle Exposure—United States, 2015. MMWR. Morb. Mortal. Wkly. Rep. 2016, 65, 655–656. [Google Scholar] [CrossRef] [Green Version]
- Basler, C.; Bottichio, L.; Higa, J.; Prado, B.; Wong, M.; Bosch, S. Multistate Outbreak of Human Salmonella Poona Infections Associated with Pet Turtle Exposure—United States, 2014. MMWR. Morb. Mortal. Wkly. Rep. 2015, 64, 804. [Google Scholar] [CrossRef] [Green Version]
- Miki, T.; Okada, N.; Shimada, Y.; Danbara, H. Characterization of Salmonella pathogenicity island 1 type III secretion-dependent hemolytic activity in Salmonella enterica serovar Typhimurium. Microb. Pathog. 2004, 37, 65–72. [Google Scholar] [CrossRef]
- Pascoal, A.; Estevinho, L.M.; Martins, I.M.; Choupina, A.B. REVIEW: Novel sources and functions of microbial lipases and their role in the infection mechanisms. Physiol. Mol. Plant Pathol. 2018. [Google Scholar] [CrossRef]
- Bender, J.; Flieger, A. Lipases as Pathogenicity Factors of Bacterial Pathogens of Humans. In Handbook of Hydrocarbon and Lipid Microbiology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 3241–3258. [Google Scholar]
- Lamas, A.; Miranda, J.M.; Regal, P.; Vázquez, B.; Franco, C.M.; Cepeda, A. A comprehensive review of non-enterica subspecies of Salmonella enterica. Microbiol. Res. 2018, 206, 60–73. [Google Scholar] [CrossRef]
- Beshiru, A.; Igbinosa, I.H.; Igbinosa, E.O. Biofilm formation and potential virulence factors of Salmonella strains isolated from ready-to-eat shrimps. PLoS ONE 2018, 13. [Google Scholar] [CrossRef]
- Denton, G.W. Chlorhexidine. In Disinfection, Sterilization and Preservation; Block, S.S., Ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2001; pp. 325–333. [Google Scholar]
- Aarestrup, F.M.; Hasman, H. Susceptibility of different bacterial species isolated from food animals to copper sulphate, zinc chloride and antimicrobial substances used for disinfection. Vet. Microbiol. 2004, 100, 83–89. [Google Scholar] [CrossRef]
- Beier, R.C.; Anderson, P.N.; Hume, M.E.; Poole, T.L.; Duke, S.E.; Crippen, T.L.; Sheffield, C.L.; Caldwell, D.J.; Byrd, J.A.; Anderson, R.C.; et al. Characterization of salmonella enterica isolates from Turkeys in commercial processing plants for resistance to antibiotics, disinfectants, and a growth promoter. Foodborne Pathog. Dis. 2011, 8, 593–600. [Google Scholar] [CrossRef]
- Long, M.; Lai, H.; Deng, W.; Zhou, K.; Li, B.; Liu, S.; Fan, L.; Wang, H.; Zou, L. Disinfectant susceptibility of different Salmonella serotypes isolated from chicken and egg production chains. J. Appl. Microbiol. 2016, 121, 672–681. [Google Scholar] [CrossRef]
- Maillard, J.Y.; Bloomfield, S.; Coelho, J.R.; Collier, P.; Cookson, B.; Fanning, S.; Hill, A.; Hartemann, P.; McBain, A.J.; Oggioni, M.; et al. Does microbicide use in consumer products promote antimicrobial resistance? A critical review and recommendations for a cohesive approach to risk assessment. Microb. Drug Resist. 2013, 19, 344–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, D.; Cerca, N.; Teixeira, P.; Oliveira, R.; Ceri, H.; Azeredo, J. Listeria monocytogenes and Salmonella enterica Enteritidis biofilms susceptibility to different disinfectants and stress-response and virulence gene expression of surviving cells. Microb. Drug Resist. 2011, 17, 181–189. [Google Scholar] [CrossRef]
- Vestby, L.K.; Møretrø, T.; Langsrud, S.; Heir, E.; Nesse, L.L. Biofilm forming abilities of Salmonella are correlated with persistence in fish meal- and feed factories. BMC Vet. Res. 2009, 5, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seixas, R.; Machado, J.; Bernardo, F.; Vilela, C.; Oliveira, M. Biofilm formation by salmonella enterica serovar 1,4,[5],12:i:- portuguese isolates: A phenotypic, genotypic, and socio-geographic analysis. Curr. Microbiol. 2014, 68, 670–677. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, G.; Aheto, K.; Shirtliff, M.E.; Tennant, S.M. Poor biofilm-forming ability and long-term survival of invasive Salmonella Typhimurium ST313. Pathog. Dis. 2016, 74. [Google Scholar] [CrossRef] [Green Version]
- Otter, J.A.; Vickery, K.; Walker, J.T.; deLancey Pulcini, E.; Stoodley, P.; Goldenberg, S.D.; Salkeld, J.A.G.; Chewins, J.; Yezli, S.; Edgeworth, J.D. Surface-attached cells, biofilms and biocide susceptibility: Implications for hospital cleaning anddisinfection. J. Hosp. Infect. 2015, 89, 16–27. [Google Scholar] [CrossRef] [Green Version]
- Wong, H.S.; Townsend, K.M.; Fenwick, S.G.; Trengove, R.D.; O’Handley, R.M. Comparative susceptibility of planktonic and 3-day-old Salmonella Typhimurium biofilms to disinfectants. J. Appl. Microbiol. 2010, 108, 2222–2228. [Google Scholar] [CrossRef]
- Hendriksen, R.S. Laboratory Protocols Level 1: Training Course Isolation of Salmonella. In A Global Salmonella Surveillance and Laboratory. Support Project of the World Health Organization, 4th ed.; WHO: Geneva, Switzerland, 2003. [Google Scholar]
- CLSI. Performance Standarts for Antimicrobial Susceptibility Testing; 25th Informational Supplement; CLSI=NCCLS M100-S25; CLSI: Wayne, PA, USA, 2015. [Google Scholar]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef]
- Santos, R.; Gomes, D.; Macedo, H.; Barros, D.; Tibério, C.; Veiga, A.S.; Tavares, L.; Castanho, M.; Oliveira, M. Guar gum as a new antimicrobial peptide delivery system against diabetic foot ulcers Staphylococcus aureus isolates. J. Med. Microbiol. 2016, 65, 1092–1099. [Google Scholar] [CrossRef] [PubMed]
- French, G.L. Bactericidal agents in the treatment of MRSA infections—The potential role of daptomycin. J. Antimicrob. Chemother. 2006, 58, 1107–1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceri, H.; Olson, M.E.; Stremick, C.; Read, R.R.; Morck, D.; Buret, A. The Calgary Biofilm Device: New technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J. Clin. Microbiol. 1999, 37, 1771–1776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Category | Species | Number of Positive Animals |
---|---|---|
Ophidians | Pantherophis guttatus guttatus | 2 |
Python regius | 2 | |
Chelonians | Centrochelys sulcata | 1 |
Chelonoidis carbonaria | 1 | |
Geochelone sulcata | 1 | |
Pseudemys spp. | 2 | |
Sternotherus odoratus | 1 | |
Testudo horsfield | 1 | |
Traquemys scripta elegans | 2 | |
Saurians | Chlamydosaurus kingii | 2 |
Ctenosaura quinquecarinata | 1 | |
Gerrhosaurus major | 1 | |
Hydrosaurus amboinensis | 1 | |
Iguana iguana | 1 | |
Physignatus cocincinus | 3 | |
Physignatus lesueurii lesueurii | 1 | |
Pogona vitticeps | 8 | |
Tupinambis rufrescens | 1 |
Isolate Number | Group | Species | Owner | API20E Result |
---|---|---|---|---|
4 | Ophidian | Python regius | A | Salmonella enterica subsp. arizonae |
12 | Chelonian | Pseudemys spp. | B | Salmonella spp. |
21 | Ophidian | Pantherophis guttatus guttatus | C | Salmonella spp. |
26 | Chelonian | Geochelone sulcata | D | Salmonella enterica subsp. arizonae |
27 | Chelonian | Chelonoidis carbonaria | D | Salmonella enterica subsp. arizonae |
30 | Saurian | Pogona vitticeps | E | Salmonella spp. |
31 | Saurian | Pogona vitticeps | E | Salmonella spp. |
32 | Saurian | Pogona vitticeps | E | Salmonella spp. |
33 | Saurian | Physignatus cocincinus | E | Salmonella spp. |
34 | Saurian | Pogona vitticeps | E | Salmonella spp. |
35 | Chelonian | Centrochelys sulcata | F | Salmonella spp. |
36 | Chelonian | Testudo horsfield | F | Salmonella spp. |
41 | Chelonian | Sternotherus odoratus | F | Salmonella spp. |
44 | Chelonian | Pseudemys spp. | G | Salmonella spp. |
46 | Saurian | Pogona vitticeps | H | Salmonella spp. |
47 | Chelonian | Traquemys scripta elegans | I | Salmonella enterica subsp. arizonae |
48 | Chelonian | Traquemys scripta elegans | I | Salmonella spp. |
50 | Saurian | Ctenosaura quinquecarinata | J | Salmonella enterica subsp. arizonae |
52 | Saurian | Physignatus cocincinus | J | Salmonella enterica subsp. arizonae |
53 | Saurian | Physignatus cocincinus | J | Salmonella einterica subsp. arizonae |
54 | Saurian | Tupinambis rufrescens | J | Salmonella enterica subsp. arizonae |
55 | Saurian | Pogona vitticeps | J | Salmonella spp. |
56 | Saurian | Pogona vitticeps | J | Salmonella enterica subsp. arizonae |
58 | Saurian | Gerrhosaurus major | J | Salmonella enterica subsp. arizonae |
61 | Saurian | Hydrosaurus amboinensis | J | Salmonella enterica subsp. arizonae |
62 | Saurian | Chlamydosaurus kingii | J | Salmonella enterica subsp. arizonae |
63 | Saurian | Chlamydosaurus kingii | J | Salmonella spp. |
66 | Saurian | Physignatus lesueurii lesueurii | J | Salmonella enterica subsp. arizonae |
69 | Saurian | Iguana iguana | J | Salmonella enterica subsp. arizonae |
70 | Ophidian | Pyton regius | K | Salmonella enterica subsp. arizonae |
73 | Ophidian | Pantherophis guttatus guttatus | K | Salmonella spp. |
76 | Saurian | Pogona vitticeps | L | Salmonella spp. |
Antimicrobial Resistance | Ophidians (%) | Chelonians (%) | Saurians (%) | p Value |
---|---|---|---|---|
AMC | 0 (0%) | 3 (33.3%) | 0 (0%) | 0.0286 |
AMP | 0 (0%) | 3 (33.3%) | 0 (0%) | 0.0286 |
AK | 0 (0%) | 1 (11.1%) | 0 (0%) | N.S. |
C | 0 (0%) | 0 (0%) | 1 (5.26%) | N.S. |
CN | 0 (0%) | 0 (0%) | 0 (0%) | - |
CTX | 0 (0%) | 0 (0%) | 0 (0%) | - |
ENR | 0 (0%) | 0 (0%) | 0 (0%) | - |
NA | 0 (0%) | 1 (11.1%) | 1 (5.26%) | N.S. |
P | 4 (100%) | 8 (88.89%) | 19 (100%) | N.S. |
CIP | 0 (0%) | 0 (0%) | 0 (0%) | - |
SXT | 0 (0%) | 0 (0%) | 1 (5.26%) | N.S. |
TE | 0 (0%) | 1 (11.1%) | 0 (0%) | N.S. |
Virulence phenotype | ||||
Hemolytic activity | 4 (100%) | 9 (100%) | 19 (100%) | - |
Lipolytic activity | 4 (100%) | 9 (100%) | 19 (100%) | - |
DNase activity | 4 (100%) | 4 (44.44%) | 11 (57.89%) | N.S. |
Gelatinolytic activity | 0 (0%) | 0 (0%) | 0 (0%) | - |
Heading | Ophidians | Chelonians | Saurians | p Value |
---|---|---|---|---|
MIC (mg/L) | 11.98 ± 1.46 | 11.25 ± 4.66 | 12.19 ± 3.44 | N.S. |
MBC (mg/L) | 86.84 ± 72.75 | 27.87 ± 11.71 | 33.87 ± 52.91 | N.S. |
MBIC (mg/L) | 57.15 ± 28.57 | 64.02 ± 12.32 | 72.87 ±39.60 | N.S. |
MBEC (mg/L) | 244.05 ± 131.49 * | 333.65 ± 222.2 * | 397.39 ± 194.74 * | N.S. |
Biofilm formation (days) | 5.1 ± 0.49 | 4.7 ± 1.0 | 4.2 ± 0.79 | N.S. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cota, J.B.; Carvalho, A.C.; Dias, I.; Reisinho, A.; Bernardo, F.; Oliveira, M. Salmonella spp. in Pet Reptiles in Portugal: Prevalence and Chlorhexidine Gluconate Antimicrobial Efficacy. Antibiotics 2021, 10, 324. https://doi.org/10.3390/antibiotics10030324
Cota JB, Carvalho AC, Dias I, Reisinho A, Bernardo F, Oliveira M. Salmonella spp. in Pet Reptiles in Portugal: Prevalence and Chlorhexidine Gluconate Antimicrobial Efficacy. Antibiotics. 2021; 10(3):324. https://doi.org/10.3390/antibiotics10030324
Chicago/Turabian StyleCota, João B., Ana C. Carvalho, Inês Dias, Ana Reisinho, Fernando Bernardo, and Manuela Oliveira. 2021. "Salmonella spp. in Pet Reptiles in Portugal: Prevalence and Chlorhexidine Gluconate Antimicrobial Efficacy" Antibiotics 10, no. 3: 324. https://doi.org/10.3390/antibiotics10030324
APA StyleCota, J. B., Carvalho, A. C., Dias, I., Reisinho, A., Bernardo, F., & Oliveira, M. (2021). Salmonella spp. in Pet Reptiles in Portugal: Prevalence and Chlorhexidine Gluconate Antimicrobial Efficacy. Antibiotics, 10(3), 324. https://doi.org/10.3390/antibiotics10030324