Nisin Influence on the Antimicrobial Resistance Ability of Canine Oral Enterococci
Abstract
:1. Introduction
2. Results
2.1. Determination of the Nisin Mutant Prevention Concentration (MPC)
2.2. Antimicrobial Susceptibility Testing
2.3. Determination of Nisin’s Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
2.4. Nisin’s Influence on vanA Horizontal Gene Transfer (HGT)
3. Discussion
4. Materials and Methods
4.1. Bacterial Collection
4.2. Nisin Preparation
4.3. Determination of the Nisin Mutant Prevention Concentration (MPC)
4.4. Antimicrobial Susceptibility Testing
4.5. Determination of Nisin’s Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
4.6. Nisin’s Influence on vanA Horizontal Gene Transfer (HGT)
4.6.1. DNA Extraction and Isolates PCR Screening
4.6.2. HGT Protocol
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Riggio, M.P.; Lennon, A.; Taylor, D.J.; Bennett, D. Molecular identification of bacteria associated with canine periodontal disease. Vet. Microbiol 2011, 150, 394–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, M.; Wallis, C.; Milella, L.; Colyer, A.; Tweedie, A.; Harris, S. A longitudinal assessment of periodontal disease in 52 miniature schnauzers. BMC Vet. Res. 2014, 10, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niemiec, B.A. Periodontal disease. Top. Companion Anim. M 2008, 23, 72–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunha, E.; Trovão, T.; Pinheiro, A.; Nunes, T.; Santos, R.; Moreira da Silva, J.; São Braz, B.; Tavares, L.; Veiga, A.S.; Oliveira, M. Potential of two delivery systems for nisin topical application to dental plaque biofilms in dogs. BMC Vet. Res. 2018, 14, 375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Field, D.; Cotter, P.D.; Ross, R.P.; Hill, C. Bioengineering of the model lantibiotic nisin. Bioengineered 2015, 6, 187–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, R.; Gomes, D.; Macedo, H.; Barros, D.; Tibério, C.; Veiga, A.S.; Tavares, L.; Castanho, M.; Oliveira, M. Guar gum as a new antimicrobial peptide delivery system against diabetic foot ulcers Staphylococcus aureus isolates. J. Med. Microbiol. 2016, 65, 1092–1099. [Google Scholar] [CrossRef]
- Ahmad, V.; Khan, M.S.; Jamal, Q.M.S.; Alzohairy, M.A.; Al Karaawi, M.A.; Siddiqui, U.M. Antimicrobial potential of bacteriocins: In therapy, agriculture and food preservation. Int. J. Antimicrob. Agents 2017, 49, 1–11. [Google Scholar] [CrossRef]
- Shin, J.M.; Gwak, J.W.; Kamarajan, P.; Fenno, J.C.; Rickard, A.H.; Kapila, Y.L. Biomedical applications of nisin. J. Appl. Microbiol. 2015, 120, 1449–1465. [Google Scholar] [CrossRef] [Green Version]
- Köck, R.; Kreienbrock, L.; van Duijkeren, E.; Schwarz, S. Antimicrobial resistance at the interface of human and veterinary medicine. Vet. Microbiol. 2017, 200, 1–5. [Google Scholar] [CrossRef]
- Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef] [Green Version]
- Drlica, K. The mutant selection window and antimicrobial resistance. J. Antimicrob. Chemother. 2003, 52, 11–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasquali, F.; Manfreda, G. Mutant prevention concentration of ciprofloxacin and enrofloxacin against Escherichia coli, Salmonella typhimurium and Pseudomonas aeruginosa. Vet. Microbiol. 2007, 119, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Drlica, K. Restricting the selection of antibiotic-resistant mutants: A general strategy derived from fluoroquinolone studies. Clin. Infect. Dis 2001, 15, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Drlica, K. Restricting the selection of antibiotic-resistant mutant bacteria: Measurement and potential use of the Mutant Selection Window. J. Infect. Dis. 2002, 185, 561–565. [Google Scholar] [CrossRef]
- Drlica, K.; Zhao, X. Mutant selection window hypothesis updated. Clin. Infect. Dis. 2007, 44, 681–688. [Google Scholar] [CrossRef]
- Dong, Y.; Zhao, X.; Domagala, J.; Drlica, K. Effect of fluoroquinolone concentration on selection of resistant mutants of Mycobacterium bovis BCG and Staphylococcus aureus. Antimicrob. Agents Chemother. 1999, 43, 1756–1758. [Google Scholar] [CrossRef] [Green Version]
- Firsov, A.A.; Vostrov, S.N.; Lubenko, I.Y.; Drlica, K.; Portnoy, Y.A.; Zinner, S.H. In vitro pharmacodynamic evaluation of the mutant selection window hypothesis using four fluoroquinolones against Staphylococcus aureus. Antimicrob. Agents Chemother. 2003, 47, 1604–1613. [Google Scholar] [CrossRef] [Green Version]
- Sinel, C.; Jaussaud, C.; Auzou, M.; Giard, J.; Cattoir, V. Mutant prevention concentrations of daptomycin for Enterococcus faecium clinical isolates. Int. J. Antimicrob. Agents 2016, 48, 449–452. [Google Scholar] [CrossRef]
- Schiwon, K.; Arends, K.; Rogowski, K.M.; Fürch, S.; Prescha, K.; Sakinc, T.; Van Houdt, R.; Werner, G.; Grohmann, E. Comparison of antibiotic resistance, biofilm formation and conjugative transfer of Staphylococcus and Enterococcus isolates from international space station and antarctic research station Concordia. Microb. Ecol. 2013, 65, 638–651. [Google Scholar] [CrossRef]
- Roberts, A.; Mullany, P. Oral biofilms: A reservoir of transferable, bacterial, antimicrobial resistance. Expert Rev. Anti. Infect. 2010, 8, 1441–1450. [Google Scholar] [CrossRef] [PubMed]
- Semedo-Lemsaddek, T.; Tavares, M.; Braz, B.S.; Tavares, L.; Oliveira, M. Enterococcal infective endocarditis following periodontal disease in dogs. PLoS ONE 2016, 11, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Werner, G.; Coque, T.M.; Franz, C.; Grohmann, E.; Hegstad, K.; Jensen, L.; van Schaik, W.; Weaver, K. Antibiotic resistant enterococci—Tales of a drug resistance gene trafficker. Int. J. Med. Microbiol. 2013, 303, 360–379. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. 2017. Available online: https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf (accessed on 10 May 2019).
- Niederhäusern, S.; Bondi, M.; Messi, P.; Iseppi, R.; Sabia, C.; Manicardi, G.; Anacarso, I. Vancomycin-resistance transferability from VanA enterococci to Staphylococcus aureus. Curr. Microbiol. 2011, 62, 1363–1367. [Google Scholar] [CrossRef]
- Sparo, M.; Delpech, G.; Allende, N.G. Impact on public health of the spread of high-level resistance to gentamicin and vancomycin in enterococci. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Palmer, K.L.; Kos, V.N.; Gilmore, M.S. Horizontal gene transfer and the genomics of enterococcal antibiotic resistance. Curr. Opin. Microbiol. 2010, 13, 632–639. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Clark, N.; Patel, J.B. pSK41-like plasmid is necessary for Inc18-like vanA plasmid transfer from Enterococcus faecalis to Staphylococcus aureus in vitro. Antimicrob. Agents Chemother. 2013, 57, 212–219. [Google Scholar] [CrossRef] [Green Version]
- Kataoka, Y.; Ito, C.; Kawashima, A.; Ishii, M.; Yamashiro, S.; Harada, K.; Ochi, H.; Sawada, T. Identification and antimicrobial susceptibility of Enterococci isolated from dogs and cats subjected to differing antibiotic pressures. J. Vet. Med. Sci. 2013, 75, 749–753. [Google Scholar] [CrossRef] [Green Version]
- Argudín, M.A.; Deplano, A.; Meghraoui, A.; Dodémont, M.; Heinrichs, A.; Denis, O.; Nonhoff, C.; Roisin, S. Bacteria from animals as a pool of antimicrobial resistance genes. Antibiotics 2017, 6, 12. [Google Scholar] [CrossRef]
- Oliveira, M.; Tavares, M.; Gomes, D.; Touret, T.; São Braz, B.; Tavares, L.; Semedo-Lemsaddek, T. Virulence traits and antibiotic resistance among enterococci isolated from dogs with periodontal disease. Comp. Immunol. Microbiol. Infect. Dis. 2016, 46, 27–31. [Google Scholar] [CrossRef]
- Magiorakos, A.; Srinivasan, A.; Carey, R.; Carmeli, Y.; Falagas, M.; Giske, C.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howell, T.H.; Fiorellini, J.P.; Blackburn, P.; Projan, S.J.; de la Harpe, J.; Williams, R.C. The effect of a mouthrinse based on nisin, a bacteriocin, on developing plaque and gingivitis in beagle dogs. J. Clin. Periodontol. 1993, 20, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Fang, J.; Tian, Y.; Yang Lu, X. Mechanisms of nisin resistance in Gram-positive bacteria. Ann. Microbiol. 2014, 64, 413–420. [Google Scholar] [CrossRef]
- Draper, L.; Cotter, P.; Hill, C.; Ross, R. Lantibiotic resistance. Microbiol Mol. Biol. R 2015, 79, 171–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, G.T.; Zhaob, X.; Drlica, K.; Blondeau, J.M. Mutant prevention concentration for ciprofloxacin and levofloxacin with Pseudomonas aeruginosa. Int. J. Antimicrob. Agents 2006, 27, 120–124. [Google Scholar] [CrossRef]
- Cui, J.; Liu, Y.; Chen, L. Mutant prevention concentration of tigecycline for carbapenem-susceptible and -resistant Acinetobacter baumannii. J. Antibiot. 2010, 63, 29–31. [Google Scholar] [CrossRef]
- Gebru, E.; Choi, M.J.; Lee, S.J.; Damte, D.; Park, S.C. Mutant-prevention concentration and mechanism of resistance in clinical isolates and enrofloxacin/marbofloxacin-selected mutants of Escherichia coli of canine origin. J. Med. Microbiol. 2011, 60, 1512–1522. [Google Scholar] [CrossRef]
- Balaje, R.; Sidhu, P.; Kaur, G.; Rampal, S. Mutant prevention concentration and PK–PD relationships of enrofloxacin for Pasteurella multocida in buffalo calves. Res. Vet. Sci. 2013, 95, 1114–1124. [Google Scholar] [CrossRef]
- Berghaus, L.J.; Giguère, S.; Guldbech, K. Mutant prevention concentration and mutant selection window for 10 antimicrobial agents against Rhodococcus equi. Vet. Microbiol. 2013, 166, 670–675. [Google Scholar] [CrossRef]
- Shimizu, T.; Harada, K.; Kataoka, Y. Mutant prevention concentration of orbifloxacin: Comparison between Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus pseudintermedius of canine origin. Acta Vet. Scand. 2013, 55, 37. [Google Scholar] [CrossRef] [Green Version]
- Hesje, C.; Drlica, K.; Blondeau, J. Mutant prevention concentration of tigecycline for clinical isolates of Streptococcus pneumoniae and Staphylococcus aureus. J. Antimicrob. Chemother. 2015, 70, 494–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, A.; Mei, Q.; Ye, Y.; Li, H.; Liu, B.; Li, J. Validation of the mutant selection window hypothesis with fosfomycin against Escherichia coli and Pseudomonas aeruginosa: An in vitro and in vivo comparative study. J. Antibiot. 2017, 70, 166–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gianvecchio, C.; Lozano, N.A.; Henderson, C.; Kalhori, P.; Bullivant, A.; Valencia, A.; Su, L.; Bello, G.; Wong, M.; Cook, E.; et al. Variation in mutant prevention concentrations. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez, B.; Rodríguez, A. Antimicrobial susceptibility of nisin resistant Listeria monocytogenes of dairy origin. FEMS Microbiol. Lett. 2005, 252, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Plumb, D.C. Plumbs Veterinary Drug Handbook, 7th ed.; Blackwell Publishing: Ames, IA, USA, 2011. [Google Scholar]
- Field, D.; Blake, T.; Mathur, H.; O’ Connor, P.M.; Cotter, P.D.; Ross, R.P.; Hill, C. Bioengineering nisin to overcome the nisin resistance protein. Mol. Microbiol. 2019, 111, 717–731. [Google Scholar] [CrossRef] [PubMed]
- Levison, M.E.; Levison, J.H. Pharmacokinetics and Pharmacodynamics of antibacterial agents. Infect. Dis. Clin. North Am. 2009, 23, 791–819. [Google Scholar] [CrossRef] [Green Version]
- Paoletti, C.; Foglia, G.; Princivalli, M.S.; Magi, G.; Guaglianone, E.; Donelli, G.; Pruzzo, C.; Biavasco, F.; Facinelli, B. Co-transfer of vanA and aggregation substance genes from Enterococcus faecalis isolates in intra- and interspecies matings. J. Antimicrob. Chemother. 2007, 59, 1005–1009. [Google Scholar] [CrossRef]
- Clewell, D.B.; Weaver, K.E.; Dunny, G.M.; Coque, T.M.; Francia, M.V.; Hayes, F. Extrachromosomal and mobile elements in enterococci: Transmission, maintenance, and epidemiology. In Enterococci from Commensals to Leading Causes of Drug Resistant Infection; Gilmore, M.S., Clewell, D.B., Ike, Y., Shankar, N., Eds.; Eye and Ear Infirmary: Boston, MA, USA, 2014. [Google Scholar]
- Terra, M.R.; Tosoni, N.F.; Furlaneto, M.C.; Furlaneto-Maia, L. Assessment of vancomycin resistance transfer among enterococci of clinical importance in milk matrix. J. Environ. Sci. Health Part B 2019. [Google Scholar] [CrossRef]
- Eaton, J.T.; Gasson, M.J. Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl. Environ. Microbiol. 2001, 67, 1628–1635. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals: Second Informational Supplement VET01-S2; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2013. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Tests: M100S, 26th ed.; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2016. [Google Scholar]
- Davido, B.; Moussiegt, A.; Dinh, A.; Bouchand, F.; Matt, M.; Senard, O.; Deconinck, L.; Espinasse, F.; Lawrence, C.; Fortineau, N.; et al. Germs of thrones—Spontaneous decolonization of Carbapenem-Resistant Enterobacteriaceae (CRE) and Vancomycin-Resistant Enterococci (VRE) in Western Europe: Is this myth or reality? Antimicrob. Resist. Infect. Control 2018, 7. [Google Scholar] [CrossRef]
- Mottola, C.; Matias, C.S.; Mendes, J.J.; Melo-Cristino, J.; Tavares, L.; Cavaco-Silva, P.; Oliveira, M. Susceptibility patterns of Staphylococcus aureus biofilms in diabetic foot infections. BMC Microbiol. 2016, 16, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos-Trujillo, E.; Pérez-Roth, E.; Méndez-Alvarez, S.; Claverie-Martín, F. Multiplex PCR for simultaneous detection of enterococcal genes vanA and vanB and staphylococcal genes mecA, ileS-2 and femB. Int. Microbiol. 2003, 6, 113–115. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, V.S.; Zervos, M.J.; Kaye, K.S.; Tosh, P.K.; Arshad, S.; Hayakawa, K.; Kallen, A.J.; McDougal, L.K.; Limbago, B.M.; Guh, A.Y. Prevalence of and risk factors for vancomycin-resistant Staphylococcus aureus precursor organisms in southeastern Michigan. Infect. Control. Hosp. Epidemiol. 2014, 35, 1531–1534. [Google Scholar] [CrossRef] [PubMed]
- Caryl, J.A.; O’Neill, A.J. Complete nucleotide sequence of pGO1, the prototype conjugative plasmid from the staphylococci. Plasmid 2009, 62, 35–38. [Google Scholar] [CrossRef]
- Conwell, M.; Daniels, V.; Naughton, P.J.; Dooley, J.S.G. Interspecies transfer of vancomycin, erythromycin and tetracycline resistance among Enterococcus species recovered from agrarian sources. BMC Microbiol. 2017, 17, 19. [Google Scholar] [CrossRef] [Green Version]
Isolates ID | MIC (µg/mL) [1] | MPC (µg/mL) | MPC/MIC Ratio |
---|---|---|---|
M2b | 12.75 | 400 | 31 |
M2c | 15.75 | 400 | 25 |
M3b | 14.75 | 400 | 27 |
M3d | 15.75 | 400 | 25 |
M4a | 21.50 | 600 | 28 |
M4c | 26.75 | 400 | 15 |
M15b | 19.25 | 600 | 31 |
M15d | 15.25 | 600 | 39 |
M21a | 12.50 | 400 | 32 |
M21c | 16.00 | 400 | 25 |
M23a | 12.50 | 400 | 32 |
M23c | 12.50 | 400 | 32 |
M25a | 12.50 | 400 | 32 |
M25c | 12.50 | 400 | 32 |
M28a | 10.50 | 400 | 38 |
M28d | 8.50 | >600 | - |
M29b | 12.50 | 400 | 32 |
M29c | 12.50 | >600 | - |
M32a | 17.50 | >600 | - |
M32b | 16.25 | 600 | 37 |
Average | 14.90 | 447.06 | 32 |
SD | 4.10 | 84.84 | - |
Antibiotic | Resistant | Intermediate | Susceptible | |||
---|---|---|---|---|---|---|
Number of Original Isolates | Number of MPC Recovered Isolates | Number of Original Isolates | Number of MPC Recovered Isolates | Number of Original Isolates | Number of MPC Recovered Isolates | |
Ampicillin | 3 | 3 | 0 | 0 | 17 | 17 |
Amoxicillin/clavulanate | 0 | 1 | 3 | 2 | 17 | 17 |
Vancomycin | 2 | 3 | 9 | 8 | 9 | 9 |
Imipenem | 0 | 3 | 6 | 5 | 14 | 12 |
Cefotaxime | 20 | 20 | 0 | 0 | 0 | 0 |
Enrofloxacin | 16 | 18 | 4 | 2 | 0 | 0 |
Ciprofloxacin | 11 | 11 | 9 | 9 | 0 | 0 |
Tetracycline | 19 | 19 | 0 | 1 | 1 | 0 |
Doxycycline | 17 | 17 | 2 | 2 | 1 | 1 |
Gentamicin 10 μg | 20 | 20 | 0 | 0 | 0 | 0 |
Gentamicin 120 μg | 4 | 6 | 0 | 0 | 16 | 14 |
Streptomycin | 15 | 14 | 0 | 0 | 5 | 6 |
Isolates ID | MIC (µg/mL) | MBC (µg/mL) | MBC/MIC Ratio | |||
---|---|---|---|---|---|---|
MPC Recovered Isolates | Original Isolates [1] | MPC Recovered Isolates | Original Isolates [1] | MPC Recovered Isolates | Original Isolates | |
M2b | 29.17 | 12.75 | 45.83 | 73.00 | 1.57 | 5.73 |
M2c | 29.17 | 15.75 | 41.67 | 85.50 | 1.43 | 5.43 |
M3b | 39.58 | 14.75 | 43.75 | 60.25 | 1.11 | 4.08 |
M3d | 60.42 | 15.75 | >100 | 82.25 | - | 5.22 |
M4a | >100 | 21.50 | >100 | 98.50 | - | 4.58 |
M4c | >100 | 26.75 | >100 | >100 | - | - |
M15b | 79.69 | 19.25 | >100 | 77.00 | - | 4.00 |
M15d | >100 | 15.25 | >100 | 86.50 | - | 5.67 |
M21a | 76.56 | 12.50 | >100 | 59.75 | - | 4.48 |
M21c | 64.06 | 16.00 | 90.63 | 46.25 | 1.41 | 2.89 |
M23a | 56.25 | 12.50 | 92.19 | 64.50 | 1.64 | 5.16 |
M23c | 70.31 | 12.50 | 76.56 | 54.25 | 1.09 | 4.34 |
M25a | 43.75 | 12.50 | 75.00 | 91.25 | 1.71 | 7.30 |
M25c | 62.50 | 12.50 | >100 | 72.25 | - | 5.78 |
M28a | 81.25 | 10.50 | >100 | 48.50 | - | 4.62 |
M28d | 34.38 | 8.50 | 51.56 | 37.50 | 1.50 | 4.41 |
M29b | 27.08 | 12.50 | 43.75 | 41.00 | 1.62 | 3.28 |
M29c | 18.75 | 12.50 | 64.58 | 39.25 | 3.44 | 3.14 |
M32a | 20.83 | 17.50 | 37.50 | 79.25 | 1.80 | 4.53 |
M32b | 29.17 | 16.25 | 62.50 | 69.25 | 2.14 | 4.26 |
Average | 48.41 | 14.90 | 60.46 | 66.63 | 1.71 | 4.70 |
SD | 21.62 | 4.10 | 19.40 | 18.57 | 0.62 | 1.05 |
Mechanism of Action | Antimicrobial Class | Antimicrobial Drug | Concentration (µg Per Disk) |
---|---|---|---|
Inhibition of cell-wall synthesis | Aminopenicillins | Ampicillin (AMP) | 10 |
Amoxicillin/Clavulanate * (AMX) | 30 | ||
Glycopeptides | Vancomycin (VA) | 30 | |
Carbapenems | Imipenem (IMI) | 10 | |
Cephalosporins | Cefotaxime (CTX) | 30 | |
Inhibition of nucleic acid synthesis | Fluoroquinolones | Enrofloxacin (ENR) | 5 |
Ciprofloxacin (CIP) | 5 | ||
Inhibition of protein synthesis | Tetracyclines | Tetracycline (T) | 30 |
Doxycycline (DTX) | 30 | ||
Aminoglycosides | Gentamicin (CN) | 10/120 | |
Streptomycin (S) | 300 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cunha, E.; Janela, R.; Costa, M.; Tavares, L.; Veiga, A.S.; Oliveira, M. Nisin Influence on the Antimicrobial Resistance Ability of Canine Oral Enterococci. Antibiotics 2020, 9, 890. https://doi.org/10.3390/antibiotics9120890
Cunha E, Janela R, Costa M, Tavares L, Veiga AS, Oliveira M. Nisin Influence on the Antimicrobial Resistance Ability of Canine Oral Enterococci. Antibiotics. 2020; 9(12):890. https://doi.org/10.3390/antibiotics9120890
Chicago/Turabian StyleCunha, Eva, Rita Janela, Margarida Costa, Luís Tavares, Ana Salomé Veiga, and Manuela Oliveira. 2020. "Nisin Influence on the Antimicrobial Resistance Ability of Canine Oral Enterococci" Antibiotics 9, no. 12: 890. https://doi.org/10.3390/antibiotics9120890
APA StyleCunha, E., Janela, R., Costa, M., Tavares, L., Veiga, A. S., & Oliveira, M. (2020). Nisin Influence on the Antimicrobial Resistance Ability of Canine Oral Enterococci. Antibiotics, 9(12), 890. https://doi.org/10.3390/antibiotics9120890