Isolation and Characterization of Multidrug-Resistant Escherichia coli and Salmonella spp. from Healthy and Diseased Turkeys
Abstract
:1. Introduction
2. Results
2.1. Prevalence of E. coli and Salmonella spp.
2.2. Antibiotic Profiles of Isolated E. coli and Salmonella spp.
2.3. Detection of tetA Gene
2.4. Detection of MDR E. coli and Salmonella spp.
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. Study Design
4.3. Study Areas and Collection of Samples
4.4. Isolation of E. coli and Salmonella spp.
4.5. Molecular Detection of E. coli and Salmonella spp.
4.6. Antibiotic Sensitivity Test
4.7. Molecular Detection of Tetracycline Resistance tetA Gene
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Anandh, M.A.; Jagatheesan, P.N.R.; Kumar, P.S.; Rajarajan, G.; Paramasivam, A. Effect of egg weight on egg traits and hatching performance of turkey (Meleagris gallopavo) eggs. Iran. J. Appl. Anim. Sci. 2012, 2, 391–395. [Google Scholar]
- Jahan, B.; Ashraf, A.; Rahman, M.A.; Molla, M.H.R.; Chowdhury, S.H.; Megwalu, F.O. Rearing of high yielding turkey poults: Problems and future prospects in Bangladesh: A review. SF J. Biotechnol. Biomed. Eng. 2018, 1, 1008. [Google Scholar]
- The Independent. Turkey Rearing Gains Popularity. Available online: http://www.theindependentbd.com/printversion/details/185891 (accessed on 12 September 2020).
- Bangladesh Bureau of Statistics (BBS). Report of the Household Income and Expenditure Survey 2016. Available online: https://drive.google.com/file/d/1TmUmC-0M3wC5IN6_tUxZUvTW2rmUx-Mce/view?usp=sharing (accessed on 12 September 2020).
- Begum, I.A.; Alam, M.J.; Buysse, J.; Frija, A.; Van Huylenbroeck, G. A comparative efficiency analysis of poultry farming systems in Bangladesh: A Data Envelopment Analysis approach. Appl. Econ. 2011, 44, 3737–3747. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.S.; Sabuj, A.A.M.; Haque, Z.F.; Pondit, A.; Hossain, M.G.; Saha, S. Seroprevalence of avian reovirus in backyard chickens in different areas of Mymensingh district in Bangladesh. J. Adv. Vet. Anim. Res. 2020, 7, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Asaduzzaman, M.; Salma, U.; Ali, H.S.; Hamid, M.A.; Miah, A.G. Problems and prospects of turkey (Meleagris gallopavo) production in Bangladesh. Res. Agric. Livest. Fish. 2017, 4, 77–90. [Google Scholar] [CrossRef] [Green Version]
- Kar, J.; Barman, T.R.; Sen, A.; Nath, S.K. Isolation and identification of Escherichia coli and Salmonella sp. from apparently healthy Turkey. Int. J. Adv. Res. Biol. Sci. 2017, 4, 72–78. [Google Scholar]
- Hopkins, K.L.; Davies, R.H.; Threlfall, E.J. Mechanisms of quinolone resistance in Escherichia coli and Salmonella: Recent developments. Int. J. Antimicrob. Agents 2005, 25, 358–373. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.T.; Sobur, M.A.; Islam, M.S.; Ievy, S.; Hossain, M.J.; El Zowalaty, M.E.; Rahman, A.T.; Ashour, H.M. Zoonotic Diseases: Etiology, Impact, and Control. Microorganisms 2020, 8, 1405. [Google Scholar] [CrossRef] [PubMed]
- Barnes, H.J.; Gross, W.B. Colibacillosis. In Diseases of Poultry, 10th ed.; Mosby-Wolfe Medical Publication Ltd: London, UK, 1997; pp. 131–139. [Google Scholar]
- De Oliveira, A.L.; Newman, D.M.; Sato, Y.; Noel, A.; Rauk, B.; Nolan, L.K.; Barbieri, N.L.; Logue, C.M. Characterization of Avian Pathogenic Escherichia coli (APEC) Associated With Turkey Cellulitis in Iowa. Front. Vet. Sci. 2020, 7, 380. [Google Scholar] [CrossRef]
- Foxman, B. The epidemiology of urinary tract infection. Nat. Rev. Urol. 2010, 7, 653–660. [Google Scholar] [CrossRef]
- Mellata, M. Human and avian extraintestinal pathogenic Escherichia coli: Infections, zoonotic risks, and antibiotic resistance trends. Foodborne Pathog. Dis. 2013, 10, 916–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aury, K.; Chemaly, M.; Petetin, I.; Rouxel, S.; Picherot, M.; Michel, V.; Le Bouquin, S. Prevalence and risk factors for Salmonella enterica subsp. enterica contamination in French breeding and fattening turkey flocks at the end of the rearing period. Prev. Vet. Med. 2010, 94, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Abdukhalilova, G.; Kaftyreva, L.; Wagenaar, J.A.; Tangyarikov, B.; Bektimirov, A.; Akhmedov, I.; Khodjaev, Z.; Kruse, H. World Health Organization. Occurrence and antimicrobial resistance of Salmonella and Campylobacter in humans and broiler chicken in Uzbekistan. Public Health Panor. 2016, 2, 340–347. [Google Scholar]
- Andino, A.; Hanning, I. Salmonella enterica: Survival, Colonization, and Virulence Differences among Serovars. Sci. World J. 2015, 2015, 520179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, S.; Qaiyumi, S.; Friedman, S.; Singh, R.; Foley, S.L.; White, D.G.; McDermott, P.F.; Donkar, T.; Bolin, C.; Munro, S.; et al. Characterization of Salmonella enterica serotype Newport isolated from humans and food animals. J. Clin. Microbiol. 2003, 41, 5366–5371. [Google Scholar] [CrossRef] [Green Version]
- Varga, C.; Guerin, M.T.; Brash, M.L.; Slavic, D.; Boerlin, P.; Susta, L. Antimicrobial resistance in fecal Escherichia coli and Salmonella enterica isolates: A two-year prospective study of small poultry flocks in Ontario, Canada. BMC Vet. Res. 2019, 15, 1–10. [Google Scholar] [CrossRef]
- Helms, M.; Vastrup, P.; Gerner-Smidt, P.; Mølbak, K. Excess mortality associated with antimicrobial drug-resistant Salmonella Typhimurium. Emerg. Infect. Dis. 2002, 8, 490–495. [Google Scholar] [CrossRef]
- Yeh, J.C.; Chen, C.L.; Chiou, C.S.; Lo, D.Y.; Cheng, J.C.; Kuo, H.C. Comparison of prevalence, phenotype, and antimicrobial resistance of Salmonella serovars isolated from turkeys in Taiwan. Poult. Sci. 2018, 97, 279–288. [Google Scholar] [CrossRef]
- Ievy, S.; Islam, M.S.; Sobur, M.A.; Talukder, M.; Rahman, M.B.; Khan, M.F.R.; Rahman, M.T. Molecular Detection of Avian Pathogenic Escherichia coli (APEC) for the First Time in Layer Farms in Bangladesh and Their Antibiotic Resistance Patterns. Microorganisms 2020, 8, 1021. [Google Scholar] [CrossRef]
- Poppe, C.; Martin, L.C.; Gyles, C.L.; Reid-Smith, R.; Boerlin, P.; McEwen, S.A.; Prescott, J.F.; Forward, K.R. Acquisition of resistance to extended-spectrum cephalosporins by Salmonella enterica subsp. enterica serovar Newport and Escherichia coli in the turkey poult intestinal tract. Appl. Environ. Microbiol. 2005, 71, 1184–1192. [Google Scholar] [CrossRef] [Green Version]
- Blair, J.M.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015, 13, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Fluit, A.; Schmitz, F.J. Class 1 integrons, gene cassettes, mobility, and epidemiology. Eur. J. Clin. Microbiol. Infect. Dis. 1999, 18, 761–770. [Google Scholar] [CrossRef] [PubMed]
- Tirumalai, M.R.; Karouia, F.; Tran, Q.; Stepanov, V.G.; Bruce, R.J.; Ott, C.M.; Pierson, D.L.; Fox, G.E. Evaluation of acquired antibiotic resistance in Escherichia coli exposed to long-term low-shear modeled microgravity and background antibiotic exposure. Mbio 2019, 10, e02637-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, H.K.; MacLean, R.C. Stochastic bacterial population dynamics restrict the establishment of antibiotic resistance from single cells. Proc. Natl. Acad. Sci. USA 2020, 117, 19455–19464. [Google Scholar] [CrossRef]
- Clifford, K.; Darash, D.; da Costa, C.P.; Meyer, H.; Islam, M.T.; Meyer, H.; Klohe, K.; Winklerc, A.; Rahman, M.T.; Islam, M.T.; et al. Antimicrobial resistance in livestock and poor quality veterinary medicines. Bull. World Health Organ. 2018, 96, 662–664. [Google Scholar] [CrossRef]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. 2016. Available online: https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf (accessed on 18 August 2020).
- Woolhouse, M.; Ward, M.; van Bunnik, B.; Farrar, J. Antimicrobial resistance in humans, livestock and the wider environment. Philos. Trans. R. Soc. B 2015, 370, 20140083. [Google Scholar] [CrossRef]
- Sobur, M.A.; Sabuj, A.A.M.; Sarker, R.; Rahman, A.M.M.T.; Kabir, S.M.L.; Rahman, M.T. Antibiotic-resistant Escherichia coli and Salmonella spp. associated with dairy cattle and farm environment having public health significance. Vet. World 2019, 12, 984–993. [Google Scholar] [CrossRef] [Green Version]
- Wright, G.D. The antibiotic resistome: The nexus of chemical and genetic diversity. Nat. Rev. Microbiol. 2007, 5, 175–186. [Google Scholar] [CrossRef]
- Alam, S.B.; Mahmud, M.; Akter, R.; Hasan, M.; Sobur, A.; Nazir, K.H.M.; Noreddin, A.; Rahman, T.; El Zowalaty, M.E.; Rahman, M. Molecular detection of multidrug resistant Salmonella species isolated from broiler farm in Bangladesh. Pathogens 2020, 9, 201. [Google Scholar] [CrossRef] [Green Version]
- Nandi, S.P.; Sultana, M.; Hossain, M.A. Prevalence and characterization of multidrug-resistant zoonotic Enterobacter spp. in poultry of Bangladesh. Foodborne Pathog. Dis. 2013, 10, 420–427. [Google Scholar] [CrossRef]
- Azad, M.A.R.A.; Amin, R.; Begum, M.I.A.; Fries, R.; Lampang, K.N.; Hafez, H.M. Prevalence of antimicrobial resistance of Escherichia coli isolated from broiler at Rajshahi region, Bangladesh. Br. J. Biomed. Multidisc. Res. 2017, 1, 6–12. [Google Scholar]
- Van Duin, D.; Paterson, D.L. Multidrug-resistant bacteria in the community: Trends and lessons learned. Infect. Dis. Clin. 2016, 30, 377–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Zhao, H.; Sun, J.; Liu, Y.; Zhou, X.; Beier, R.C.; Wu, G.; Hou, X. Characterization of multidrug-resistant Salmonella enterica serovars Indiana and Enteritidis from chickens in Eastern China. PLoS ONE 2014, 9, e96050. [Google Scholar] [CrossRef]
- Routh, J.A.; Pringle, J.; Mohr, M.; Bidol, S.; Arends, K.; Adams-Cameron, M.; Hancock, W.T.; Kissler, B.; Rickert, R.; Folster, J.; et al. Nationwide outbreak of multidrug-resistant Salmonella Heidelberg infections associated with ground turkey: United States, 2011. Epidemiol. Infect. 2015, 143, 3227–3234. [Google Scholar] [CrossRef]
- Sinwat, N.; Angkittitrakul, S.; Coulson, K.F.; Pilapil, F.M.I.R.; Meunsene, D.; Chuanchuen, R. High prevalence and molecular characteristics of multidrug-resistant Salmonella in pigs, pork and humans in Thailand and Laos provinces. J. Med. Microbiol. 2016, 65, 1182–1193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shecho, M.; Thomas, N.; Kemal, J.; Muktar, Y. Cloacael carriage and multidrug resistance Escherichia coli O157: H7 from poultry farms, eastern Ethiopia. J. Vet. Med. 2017, 2017, 8264583. [Google Scholar] [CrossRef] [Green Version]
- Davis, G.S.; Waits, K.; Nordstrom, L.; Grande, H.; Weaver, B.; Papp, K.; Horwinski, J.; Koch, B.; Hungate, B.A.; Liu, C.M.; et al. Antibiotic-resistant Escherichia coli from retail poultry meat with different antibiotic use claims. BMC Microbiol. 2018, 18, 174. [Google Scholar] [CrossRef]
- Díaz-Jiménez, D.; García-Meniño, I.; Fernández, J.; García, V.; Mora, A. Chicken and turkey meat: Consumer exposure to multidrug-resistant Enterobacteriaceae including mcr-carriers, uropathogenic E. coli and high-risk lineages such as ST131. Int. J. Food Microbiol. 2020, 331, 108750. [Google Scholar] [CrossRef]
- Winsor, D.K.; Bloebaum, A.P.; Mathewson, J.J. Gram-negative, aerobic, enteric pathogens among intestinal microflora of wild turkey vultures (Cathartes aura) in west central Texas. Appl. Environ. Microbiol. 1981, 42, 1123–1124. [Google Scholar] [CrossRef] [Green Version]
- Toze, S. PCR and the detection of microbial pathogens in water and wastewater. Water Res. 1999, 33, 3545–3556. [Google Scholar] [CrossRef]
- Chiu, C.H.; Ou, J.T. Rapid identification of Salmonella serovars in feces by specific detection of virulence genes, invA and spvC, by an enrichment broth culture-multiplex PCR combination assay. J. Clin. Microbiol. 1996, 34, 2619–2622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darwin, K.H.; Miller, V.L. Molecular Basis of the Interaction of Salmonella with the Intestinal Mucosa. Clin. Microbiol. Rev. 1999, 12, 405–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saelinger, C.A.; Lewbart, G.A.; Christian, L.S.; Lemons, C.L. Prevalence of Salmonella spp. in cloacal, fecal, and gastrointestinal mucosal samples from wild North American turtles. J. Am. Vet. Med. Assoc. 2006, 229, 266–268. [Google Scholar] [CrossRef] [PubMed]
- Havelaar, A.H.; Kirk, M.D.; Torgerson, P.R.; Gibb, H.J.; Hald, T.; Lake, R.J.; Praet, N.; Bellinger, D.C.; de Silva, N.R.; Gargouri, N.; et al. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Med. 2015, 12, e1001923. [Google Scholar] [CrossRef] [Green Version]
- Simonsen, G.S.; Tapsall, J.W.; Allegranzi, B.; Talbot, E.A.; Lazzari, S. The antimicrobial resistance containment and surveillance approach-a public health tool. Bull. World Health 2004, 82, 928–934. [Google Scholar]
- Sobur, A.; Haque, Z.F.; Sabuj, A.A.; Ievy, S.; Rahman, A.T.; El Zowalaty, M.E.; Rahman, T. Molecular detection of multidrug and colistin-resistant Escherichia coli isolated from house flies in various environmental settings. Future Microbiol. 2019, 14, 847–858. [Google Scholar] [CrossRef]
- Sobur, A.; Hasan, M.; Haque, E.; Mridul, A.I.; Noreddin, A.; El Zowalaty, M.E.; Rahman, T. Molecular Detection and Antibiotyping of Multidrug-Resistant Salmonella Isolated from Houseflies in a Fish Market. Pathogens 2019, 8, 191. [Google Scholar] [CrossRef] [Green Version]
- Nahar, A.; Islam, M.A.; Sobur, M.A.; Hossain, M.J.; Binte, S.; Zaman, M.; Rahman, B.; Kabir, S.L.; Rahman, M.T. Detection of tetracycline resistant E. coli and Salmonella spp. in sewage, river, pond and swimming pool in Mymensingh, Bangladesh. Afr. J. Microbiol. Res. 2018, 13, 382–387. [Google Scholar]
- Bryan, A.; Shapir, N.; Sadowsky, M.J. Frequency and distribution of tetracycline resistance genes in genetically diverse, nonselected, and nonclinical Escherichia coli strains isolated from diverse human and animal sources. Appl. Environ. Microbiol. 2004, 70, 2503–2507. [Google Scholar] [CrossRef] [Green Version]
- Strahilevitz, J.; Jacoby, G.A.; Hooper, D.C.; Robicsek, A. Plasmid-mediated quinolone resistance: A multifaceted threat. Clin. Microbiol. Rev. 2009, 22, 664–689. [Google Scholar] [CrossRef] [Green Version]
- Møller, T.S.; Overgaard, M.; Nielsen, S.S.; Bortolaia, V.; Sommer, M.O.; Guardabassi, L.; Olsen, J.E. Relation between tetR and tetA expression in tetracycline resistant Escherichia coli. BMC Microbiol. 2016, 16, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poirel, L.; Stephan, R.; Perreten, V.; Nordmann, P. The carbapenemase threat in the animal world: The wrong culprit. J. Antimicrob. Chemother. 2014, 69, 2007–2008. [Google Scholar] [CrossRef] [Green Version]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Jajere, S.M. A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance. Vet. World 2019, 12, 504–521. [Google Scholar] [CrossRef] [Green Version]
- Sobur, A.M.; Ievy, S.; Haque, Z.F.; Nahar, A.; Zaman, S.B.; Rahman, M.T. Emergence of colistin-resistant Escherichia coli in poultry, house flies, and pond water in Mymensingh, Bangladesh. J. Adv. Vet. Anim. Res. 2019, 6, 50–53. [Google Scholar] [PubMed]
- Wang, R.; Cao, W.; Cerniglia, C.E. PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples. Appl. Environ. Microbiol. 1996, 62, 1242–1247. [Google Scholar] [CrossRef] [Green Version]
- Fratamico, P.M. Comparison of culture, polymerase chain reaction (PCR), TaqMan Salmonella, and Transia Card Salmonella assays for detection of Salmonella spp. in naturally-contaminated ground chicken, ground turkey, and ground beef. Mol. Cell. Probes 2003, 17, 215–221. [Google Scholar] [CrossRef]
- Randall, L.P.; Cooles, S.W.; Osborn, M.K.; Piddock, L.J.; Woodward, M.J. Antibiotic resistance genes, integrons and multiple antibiotic resistance in thirty-five serotypes of Salmonella enterica isolated from humans and animals in the UK. J. Antimicrob. Chemother. 2004, 53, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Bayer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disc method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 26th ed.; CLSI Supplement M100s; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2016. [Google Scholar]
- Sweeney, M.T.; Lubbers, B.V.; Schwarz, S.; Watts, J.L. Applying definitions for multidrug resistance, extensive drug resistance and pandrug resistance to clinically significant livestock and companion animal bacterial pathogens. J. Antimicrob. Chemother. 2018, 73, 1460–1463. [Google Scholar] [CrossRef]
- Ashour, H.M. One Health—People, Animals, and the Environment. Clin. Infect. Dis. 2014, 59, 1510. [Google Scholar] [CrossRef] [Green Version]
Microorganism | Categories | Prevalence | Antibiotic Resistance Pattern (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
LEV | E | GEN | C | CIP | S | IMP | MEM | TE | |||
E. coli | Healthy | 30 | 4 | 30 | 0 | 0 | 17 | 4 | 0 | 30 | 4 |
(100) | (13.33) | (100) | (0) | (0) | (56.67) | (13.33) | (0) | (100) | (13.33) | ||
Diseased | 25 | 11 | 25 | 9 | 11 | 20 | 5 | 0 | 10 | 25 | |
(100) | (44) | (100) | (36) | (44) | (80) | (20) | (0) | (40) | (100) | ||
p-value (Healthy vs. Diseased) | N/C | 0.011 | N/C | <0.001 | <0.001 | 0.066 | 0.716 | N/C | <0.001 | <0.001 | |
Salmonella spp. | Healthy | 11 | 2 | 11 | 5 | 6 | 6 | 4 | 4 | 7 | 11 |
(36.67) | (18.18) | (100) | (45.45) | (54.54) | (54.54) | (36.36) | (36.36%) | (63.63) | (100) | ||
Diseased | 16 | 4 | 16 | 0 | 2 | 6 | 2 | 4 | 4 | 16 | |
(64) | (25) | (100) | (0) | (12.5) | (37.5) | (12.5) | (25%) | (25) | (100) | ||
p-value (Healthy vs. Diseased) | 0.043 | 1.000 | N/C | 0.006 | 0.033 | 0.438 | 0.187 | 0.675 | 0.061 | N/C |
Microorganism | Source | Pattern No. | Antibiotic Resistance Patterns | No. of Antibiotics (Classes) | No. of MDR Isolates (%) | Total (%) | p-Value (Healthy vs. Diseased) |
---|---|---|---|---|---|---|---|
E. coli (n = 55) | Healthy Turkeys (n = 30) | 1 | E, MEM, CIP | 3 (3) | 14 | 24 (80%) | 0.112 |
2 | E, MEM, TE | 3 (3) | 1 | ||||
3 | E, MEM, LEV | 3 (3) | 2 | ||||
4 | E, MEM, S | 3 (3) | 3 | ||||
5 | E, MEM, CIP, LEV | 4 (3) | 1 | ||||
6 | E, MEM, LEV, TE | 4 (4) | 1 | ||||
7 | E, MEM, CIP, TE | 4 (4) | 1 | ||||
8 | E, MEM, S, CIP, TE | 5 (5) | 1 | ||||
Diseased Turkeys (n = 25) | 1 | E, CIP, TE | 3 (3) | 4 | 24 (96%) | ||
2 | E, MEM, TE | 3 (3) | 3 | ||||
3 | E, CIP, LEV, TE | 4 (3) | 3 | ||||
4 | E, GEN, S, CIP, TE | 5 (4) | 3 | ||||
5 | E, MEM, C, CIP, TE | 5 (5) | 2 | ||||
6 | E, MEM, C, S, TE | 5 (5) | 1 | ||||
7 | E, C, GEN, CIP, LEV, TE | 6 (5) | 4 | ||||
8 | E, MEM, C, CIP, LEV, TE | 6 (5) | 2 | ||||
9 | E, MEM, C, GEN, CIP, LEV, TE | 7 (6) | 1 | ||||
10 | E, MEM, C, GEN, S, CIP, LEV, TE | 8 (6) | 1 | ||||
Salmonella spp. (n = 27) | Healthy Turkeys (n = 11) | 1 | E, MEM, C, CIP, TE | 5 (5) | 3 | 8 (72.73%) | 0.056 |
2 | E, C, GEN, CIP, TE | 5 (5) | 1 | ||||
3 | E, MEM, IMP, C, GEN, S, TE | 7 (5) | 2 | ||||
4 | E, MEM, IMP, GEN, S, CIP, LEV, TE | 8 (6) | 2 | ||||
Diseased Turkeys (n = 16) | 1 | E, MEM, TE | 3 (3) | 3 | 16 (100%) | ||
2 | E, IMP, TE | 3 (3) | 3 | ||||
3 | E, CIP, TE | 3 (3) | 5 | ||||
4 | E, LEV, TE | 3 (3) | 2 | ||||
5 | E, IMP, C, TE | 4 (4) | 1 | ||||
6 | E, C, S, LEV, TE | 5 (5) | 1 | ||||
7 | E, MEM, S, CIP, LEV, TE | 6 (5) | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tawyabur, M.; Islam, M.S.; Sobur, M.A.; Hossain, M.J.; Mahmud, M.M.; Paul, S.; Hossain, M.T.; Ashour, H.M.; Rahman, M.T. Isolation and Characterization of Multidrug-Resistant Escherichia coli and Salmonella spp. from Healthy and Diseased Turkeys. Antibiotics 2020, 9, 770. https://doi.org/10.3390/antibiotics9110770
Tawyabur M, Islam MS, Sobur MA, Hossain MJ, Mahmud MM, Paul S, Hossain MT, Ashour HM, Rahman MT. Isolation and Characterization of Multidrug-Resistant Escherichia coli and Salmonella spp. from Healthy and Diseased Turkeys. Antibiotics. 2020; 9(11):770. https://doi.org/10.3390/antibiotics9110770
Chicago/Turabian StyleTawyabur, Md., Md. Saiful Islam, Md. Abdus Sobur, Md. Jannat Hossain, Md. Muket Mahmud, Sumon Paul, Muhammad Tofazzal Hossain, Hossam M. Ashour, and Md. Tanvir Rahman. 2020. "Isolation and Characterization of Multidrug-Resistant Escherichia coli and Salmonella spp. from Healthy and Diseased Turkeys" Antibiotics 9, no. 11: 770. https://doi.org/10.3390/antibiotics9110770
APA StyleTawyabur, M., Islam, M. S., Sobur, M. A., Hossain, M. J., Mahmud, M. M., Paul, S., Hossain, M. T., Ashour, H. M., & Rahman, M. T. (2020). Isolation and Characterization of Multidrug-Resistant Escherichia coli and Salmonella spp. from Healthy and Diseased Turkeys. Antibiotics, 9(11), 770. https://doi.org/10.3390/antibiotics9110770