Shelf-Life Optimisation of Plasma Polymerised (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPOpp) Coatings; A New Possible Approach to Tackle Infections in Chronic Wounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Consumables
2.3. Database and Software
2.4. Plasma Reactor
2.5. Standardised Instruments
2.6. Bacteria
2.7. Sample Preparation
2.7.1. Cutting Silicon Wafers
2.7.2. RCA Cleaning
2.7.3. Plasma Polymer Deposition
2.7.4. Sample Preservation for Storage
2.7.5. Ellipsometry
2.7.6. X-ray Photoelectron Spectroscopy
2.7.7. Electron Paramagnetic Resonance
2.7.8. Fluorescence Microscopy
2.7.9. XTT Assay
3. Results and Discussion
3.1. Thickness Measurement of Plasma Polymers
3.2. XPS
3.3. EPR
3.4. Microbiological Testing
3.4.1. Fluorescence Microscopy
3.4.2. XTT Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ludwig, M. Facharztwissen Angiologie. In Zentrum für Kardiologie/Angiologie am Klinikum Starnberg; Springer: Berlin/Heidelberg, Germany, 2020; pp. 86–87. [Google Scholar] [CrossRef]
- Martinengo, L.; Olsson, M.; Bajpai, R.; Soljak, M.; Upton, Z.; Schmidtchen, A.; Car, J.; Jarbrink, K. Prevalence of chronic wounds in the general population: Systematic review and meta-analysis of observational studies. Ann. Epidemiol. 2019, 29, 8–15. [Google Scholar] [CrossRef]
- Heyer, K.; Herberger, K.; Protz, K.; Glaeske, G.; Augustin, M. Epidemiology of chronic wounds in Germany: Analysis of statutory health insurance data. Wound Rep. Regen 2016, 24, 434–442. [Google Scholar] [CrossRef]
- Frykberg, R.G.; Banks, J. Challenges in the Treatment of Chronic Wounds. Adv. Wound Care 2015, 4, 560–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsson, M.; Jarbrink, K.; Divakar, U.; Bajpai, R.; Upton, Z.; Schmidtchen, A.; Car, J. The humanistic and economic burden of chronic wounds: A systematic review. Wound Rep. Regen 2019, 27, 114–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richmond, N.A.; Maderal, A.D.; Vivas, A.C. Evidence-based management of common chronic lower extremity ulcers. Dermatol. Ther. 2013, 26, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, D.G.; Wrobel, J.; Robbins, J.M. Guest Editorial: Are diabetes-related wounds and amputations worse than cancer? Int. Wound J. 2007, 4, 286–287. [Google Scholar] [CrossRef] [PubMed]
- Bjarnsholt, T.; Kirketerp-Moller, K.; Jensen, P.O.; Madsen, K.G.; Phipps, R.; Krogfelt, K.; Hoiby, N.; Givskov, M. Why chronic wounds will not heal: A novel hypothesis. Wound Rep. Regen 2008, 16, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Michl, T.D.; Tran, D.T.T.; Kuckling, H.F.; Zhalgasbaikyzy, A.; Ivanovska, B.; Garcia, L.E.G.; Visalakshan, R.M.; Vasilev, K. It takes two for chronic wounds to heal: Dispersing bacterial biofilm and modulating inflammation with dual action plasma coatings. RSC Adv. 2020, 10, 7368–7376. [Google Scholar] [CrossRef] [Green Version]
- Omar, A.; Wright, J.B.; Schultz, G.; Burrell, R.; Nadworny, P. Microbial Biofilms and Chronic Wounds. Microorganisms 2017, 5, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howell-Jones, R.S.; Wilson, M.J.; Hill, K.E.; Howard, A.J.; Price, P.E.; Thomas, D.W. A review of the microbiology, antibiotic usage and resistance in chronic skin wounds. J. Antimicrob. Chemother. 2005, 55, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Han, G.; Ceilley, R. Chronic Wound Healing: A Review of Current Management and Treatments. Adv. Ther. 2017, 34, 599–610. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R. Upward trend in acute anaphylaxis continued in 1998-9. BMJ 2000, 321, 1021–1022. [Google Scholar]
- Liu, G.; Bao, Z.; Wu, J. Injectable baicalin/F127 hydrogel with antioxidant activity for enhanced wound healing. Chin. Chem. Lett. 2020, 31, 1817–1821. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Z.; Huang, J.; Zhao, M.; Wu, J. In situ formation of injectable hydrogels for chronic wound healing. J. Mater. Chem. B 2020, 8, 8768–8780. [Google Scholar] [CrossRef]
- Fromm-Dornieden, C.; Rembe, J.D.; Schafer, N.; Bohm, J.; Stuermer, E.K. Cetylpyridinium chloride and miramistin as antiseptic substances in chronic wound management—prospects and limitations. J. Med. Microbiol. 2015, 64, 407–414. [Google Scholar] [CrossRef] [Green Version]
- Jones, V.; Grey, J.E.; Harding, K.G. Wound dressings. BMJ 2006, 332, 777–780. [Google Scholar] [CrossRef] [PubMed]
- Percival, S.L.; Bowler, P.; Woods, E.J. Assessing the effect of an antimicrobial wound dressing on biofilms. Wound Rep. Regen 2008, 16, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Londahl, M.; Katzman, P.; Nilsson, A.; Hammarlund, C. Hyperbaric Oxygen Therapy Facilitates Healing of Chronic Foot Ulcers in Patients With Diabetes. Diabetes Care 2010, 33, 998–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wackenfors, A.; Sjogren, J.; Gustafsson, R.; Algotsson, L.; Ingemansson, R.; Malmsjo, M. Effects of vacuum-assisted closure therapy on inguinal wound edge microvascular blood flow. Wound Rep. Regen 2004, 12, 600–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mostafa, J.; Ali, Y.; Zohre, R.; Samaneh, R. Electromagnetic Fields and Ultrasound Waves in Wound Treatment: A Comparative Review of Therapeutic Outcomes. Biosci. Biotechnol. Res. Asia 2015, 12, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Akhavan, B.; Croes, M.; Wise, S.G.; Zhai, C.; Hung, J.; Stewart, C.; Ionescu, M.; Weinans, H.; Gan, Y.; Amin Yavari, S.; et al. Radical-functionalized plasma polymers: Stable biomimetic interfaces for bone implant applications. Appl. Mater. Today 2019, 16, 456–473. [Google Scholar] [CrossRef]
- Akhavan, B.; Wise, S.G.; Bilek, M.M.M. Substrate-Regulated Growth of Plasma-Polymerized Films on Carbide-Forming Metals. Langmuir 2016, 32, 10835–10843. [Google Scholar] [CrossRef] [PubMed]
- Akhavan, B.; Menges, B.; Förch, R. Inhomogeneous Growth of Micrometer Thick Plasma Polymerized Films. Langmuir 2016, 32, 4792–4799. [Google Scholar] [CrossRef]
- Akhavan, B.; Michl, T.D.; Giles, C.; Ho, K.; Martin, L.; Sharifahmadian, O.; Wise, S.G.; Coad, B.R.; Kumar, N.; Griesser, H.J.; et al. Plasma activated coatings with dual action against fungi and bacteria. Appl. Mater. Today 2018, 12, 72–84. [Google Scholar] [CrossRef]
- Michl, T.D.; Barz, J.; Giles, C.; Haupt, M.; Henze, J.H.; Mayer, J.; Futrega, K.; Doran, M.R.; Oehr, C.; Vasilev, K.; et al. Plasma Polymerization of TEMPO Yields Coatings Containing Stable Nitroxide Radicals for Controlling Interactions with Prokaryotic and Eukaryotic Cells. ACS Appl. Nano Mater. 2018, 1, 6587–6595. [Google Scholar] [CrossRef]
- Michl, T.D.; Tran, D.T.T.; Bottle, K.; Kuckling, H.F.; Zhalgasbaikyzy, A.; Ivanovska, B.; Cavallaro, A.A.; Araque Toledo, M.A.; Sherman, P.J.; Al-Bataineh, S.A.; et al. To be a radical or not to be one? The fate of the stable nitroxide radical TEMPO [(2,2,6,6-Tetramethylpiperidin-1-yl)oxyl] undergoing plasma polymerization into thin-film coatings. Biointerphases 2020, 15, 031015. [Google Scholar] [CrossRef] [PubMed]
- Clark, G.S. Shelf Life of Medical Devices; Division of Small Manufacturers Assistance Office of Training and Assistance Center for Devices and Radiological Health Food and Drug Administration: White Oak, MD, USA, April 1991. [Google Scholar]
- Cazares, L.H.; Van Tongeren, S.A.; Costantino, J.; Kenny, T.; Garza, N.L.; Donnelly, G.; Lane, D.; Panchal, R.G.; Bavari, S. Heat fixation inactivates viral and bacterial pathogens and is compatible with downstream MALDI mass spectrometry tissue imaging. BMC Microbiol. 2015, 15, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruehl, J.; Hill, N.L.; Walter, E.D.; Millhauser, G.; Braslau, R. A Proximal Bisnitroxide Initiator: Studies in Low-Temperature Nitroxide-Mediated Polymerizations. Macromolecules 2008, 41, 1972–1982. [Google Scholar] [CrossRef] [Green Version]
- Kern, W. The Evolution of Silicon Wafer Cleaning Technology. J. Electrochem. Soc. 2019, 137, 1887–1892. [Google Scholar] [CrossRef]
- Fujiwara, H. Spectroscopic Ellipsometry: Principles and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Michl, T.D.; Jung, D.; Pertoldi, A.; Schulte, A.; Mocny, P.; Klok, H.A.; Schonherr, H.; Giles, C.; Griesser, H.J.; Coad, B.R. An Acid Test: Facile SI-ARGET-ATRP of Methacrylic Acid. Macromol. Chem. Phys. 2018, 219. [Google Scholar] [CrossRef]
- Vautrin-Ul, C.; Boisse-Laporte, C.; Benissad, N.; Chausse, A.; Leprince, P.; Messina, R. Plasma-polymerized coatings using HMDSO precursor for iron protection. Progress Organ. Coat. 2000, 38, 9–15. [Google Scholar] [CrossRef]
- Pihan, S.A.; Tsukruk, T.; Forch, R. Plasma polymerized hexamethyl disiloxane in adhesion applications. Surf. Coat. Technol. 2009, 203, 1856–1862. [Google Scholar] [CrossRef]
- Chu, P.; Chen, J.; Wanga, L.; Huang, N. Plasma-surface modification of biomaterials. Mater. Sci. Eng. R Rep. 2002, 36, 143–206. [Google Scholar] [CrossRef] [Green Version]
- Os, M. Surface Modification by Plasma Polymerization: Film Deposition, Tailoring of Surface Properties and Biocompatibility. Ph.D. Thesis, Universiteit Twente, Enschede, The Netherlands, 2000. [Google Scholar]
- Gengenbach, T.R.; Chatelier, R.C.; Griesser, H.J. Characterization of the ageing of plasma-deposited polymer films: Global analysis of x-ray photoelectron spectroscopy data. Surf. Interface Anal. 1996, 24, 271–281. [Google Scholar] [CrossRef]
- Paynter, R.W. XPS studies of the ageing of plasma-treated polymer surfaces. Surf. Interface Anal. 2000, 29, 56–64. [Google Scholar] [CrossRef]
- Koper, M.T.M. Temperature dependence of the transfer coefficient of simple electrochemical redox reactions due to slow solvent dynamics. J. Phys. Chem. B 1997, 101, 3168–3173. [Google Scholar] [CrossRef]
- Fang, Y.Z.; Yang, S.; Wu, G. Free radicals, antioxidants, and nutrition. Nutrition 2002, 18, 872–879. [Google Scholar] [CrossRef]
- Abragam, A.; Bleaney, B. Electron Paramagnetic Resonance of Transition Ions; OUP: Oxford, UK, 2012. [Google Scholar]
- Voest, E.E.; van Faassen, E.; Marx, J.J. An electron paramagnetic resonance study of the antioxidant properties of the nitroxide free radical TEMPO. Free Radic Biol. Med. 1993, 15, 589–595. [Google Scholar] [CrossRef]
- Geoffroy, M.; Lambelet, P.; Richert, P. Role of hydroxyl radicals and singlet oxygen in the formation of primary radicals in unsaturated lipids: A solid state electron paramagnetic resonance study. J. Agric. Food Chem. 2000, 48, 974–978. [Google Scholar] [CrossRef]
- Finkelstein, E.; Rosen, G.M.; Rauckman, E.J. Spin trapping of superoxide and hydroxyl radical: Practical aspects. Arch. Biochem. Biophys. 1980, 200, 1–16. [Google Scholar] [CrossRef]
- Samuni, A.; Goldstein, S.; Russo, A.; Mitchell, J.B.; Krishna, M.C.; Neta, P. Kinetics and mechanism of hydroxyl radical and OH-adduct radical reactions with nitroxides and with their hydroxylamines. J. Am. Chem. Soc. 2002, 124, 8719–8724. [Google Scholar] [CrossRef]
- Buttner, H.; Mack, D.; Rohde, H. Structural basis of Staphylococcus epidermidis biofilm formation: Mechanisms and molecular interactions. Front. Cell Infect. Microbiol. 2015, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Tzaneva, V.; Mladenova, I.; Todorova, G.; Petkov, D. Antibiotic treatment and resistance in chronic wounds of vascular origin. Med. Pharm. Rep. 2016, 89, 365–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lichtman, J.W.; Conchello, J.A. Fluorescence microscopy. Nat. Methods 2005, 2, 910–919. [Google Scholar] [CrossRef] [PubMed]
- Jefferson, K.K. What drives bacteria to produce a biofilm? FEMS Microbiol. Lett. 2004, 236, 163–173. [Google Scholar] [CrossRef]
- Yarwood, J.M.; Schlievert, P.M. Quorum sensing in Staphylococcus infections. J. Clin. Investig. 2003, 112, 1620–1625. [Google Scholar] [CrossRef]
- Xu, Z.; Liang, Y.; Lin, S.; Chen, D.; Li, B.; Li, L.; Deng, Y. Crystal Violet and XTT Assays on Staphylococcus aureus Biofilm Quantification. Curr. Microbiol. 2016, 73, 474–482. [Google Scholar] [CrossRef] [PubMed]
- FDA. Remdesivir EUA Fact Sheet for Healthcare Providers; U.S. Food & Drug Administation: Silver Spring, MD, USA, 2020.
- Kenneth, A.; Connors Gordon, L.; Amidon, V.J.S. Chemical Stability of Pharmaceuticals: A Handbook for Pharmacists, 2nd ed.; Wiley: Hoboken, NJ, USA, October 1986. [Google Scholar]
Characteristic | Monomer | Power (W) | Pressure (mTorr) | Time (min) |
---|---|---|---|---|
adhesion layer | HMDSO | 25 | 154 | 1 |
cleaning | air | 50 | 200–400 | 1 |
surface A | EtOH | 40 | 100 | 5 |
surface B | TEMPO | 10 | 104 | 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Böttle, K.; Vasilev, K.; Michl, T.D. Shelf-Life Optimisation of Plasma Polymerised (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPOpp) Coatings; A New Possible Approach to Tackle Infections in Chronic Wounds. Antibiotics 2021, 10, 362. https://doi.org/10.3390/antibiotics10040362
Böttle K, Vasilev K, Michl TD. Shelf-Life Optimisation of Plasma Polymerised (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPOpp) Coatings; A New Possible Approach to Tackle Infections in Chronic Wounds. Antibiotics. 2021; 10(4):362. https://doi.org/10.3390/antibiotics10040362
Chicago/Turabian StyleBöttle, Kilian, Krasimir Vasilev, and Thomas Danny Michl. 2021. "Shelf-Life Optimisation of Plasma Polymerised (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPOpp) Coatings; A New Possible Approach to Tackle Infections in Chronic Wounds" Antibiotics 10, no. 4: 362. https://doi.org/10.3390/antibiotics10040362
APA StyleBöttle, K., Vasilev, K., & Michl, T. D. (2021). Shelf-Life Optimisation of Plasma Polymerised (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPOpp) Coatings; A New Possible Approach to Tackle Infections in Chronic Wounds. Antibiotics, 10(4), 362. https://doi.org/10.3390/antibiotics10040362