Genome Characterization of Lactiplantibacillus plantarum Strain UTNGt2 Originated from Theobroma grandiflorum (White Cacao) of Ecuadorian Amazon: Antimicrobial Peptides from Safety to Potential Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. General Genome Overview of UTNGt2 Strain
2.2. Phylogenetic Analysis
2.3. Gene Prediction and Genome Annotation
2.4. Prediction of Antibiotic Resistance Genes, Virulence Factors, Pathogenicity, and Prophage
2.5. CRISPR/Cas System Prediction
2.6. Prediction of Bacteriocins and Bioactive Products
3. Materials and Methods
3.1. Strain and Culture Conditions
3.2. NGS de Novo Assembly of UTNGt2
3.3. Evolutionary Relationship
3.4. Gene Prediction and Genome Annotation
3.5. Functional Annotation
3.6. Prediction of Genes Involved in Food Safety
3.7. Prediction of Putative Gene Cluster Coding Bacteriocins and Other Bioactive Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodrigo-Torres, L.; Yépez, A.; Aznar, R.; Arahal, D.R. Genomic insights into five strains of Lactobacillus plantarum with biotechnological potential isolated from chicha, a traditional maize-based fermented beverage from Northwestern Argentina. Front. Microbiol. 2019, 10, 2232. [Google Scholar] [CrossRef] [PubMed]
- Brandt, K.; Nethery, M.A.; O’Flaherty, S.; Barrangou, R. Genomic characterization of Lactobacillus fermentum DSM 20052. BMC Genom. 2020, 21, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Barrangou, R.; Lahtinen, S.; Ibrahim, F.; Ouwehand, A. Genus Lactobacillus. In Lactic Acid Bacteria: Microbiological and Functional Aspects, 4th ed.; Lahtinen, S., Ouwehand, A.C., Salminen, S., von Wrigh, A., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 77–86. [Google Scholar]
- Fernández, L.; Langa, S.; Martín, V.; Maldonado, A.; Jiménez, E.; Martín, R.; Rodríguez, J.M. The human milk microbiota: Origin and potential roles in health and disease. Pharmacol. Res. 2013, 69, 1–10. [Google Scholar] [CrossRef]
- Swain, M.R.; Anandharaj, M.; Ray, R.C.; Rani, R.P. Fermented fruits and vegetables of Asia: A potential source of probiotics. Biotechnol. Res. Int. 2014, 2014, 250424. [Google Scholar] [CrossRef] [PubMed]
- Yépez, A.; Luz, C.; Meca, G.; Vignolo, G.; Mañes, J.; Aznar, R. Biopreservation potential of lactic acid bacteria from Andean fermented food of vegetal origin. Food Control. 2017, 78, 393–400. [Google Scholar] [CrossRef]
- Adesulu-Dahunsi, A.; Jeyaram, K.; Sanni, A. Probiotic and technological properties of exopolysaccharide producing lactic acid bacteria isolated from cereal-based nigerian fermented food products. Food Control. 2018, 92, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Goel, A.; Halami, P.M.; Tamang, J.P. Genome analysis of Lactobacillus plantarum isolated from some Indian fermented foods for bacteriocin production and probiotic marker genes. Front. Microbiol. 2020, 11, 40. [Google Scholar] [CrossRef] [PubMed]
- Leuschner, R.G.; Robinson, T.P.; Hugas, M.; Cocconcelli, P.S.; Richard-Forget, F.; Klein, G.; Licht, T.R.; Nguyen-The, C.; Querol, A.; Richardson, M.; et al. Qualified presumption of safety (QPS): A generic risk assessment approach for biological agents notified to the European Food Safety Authority (EFSA). Trends Food Sci. Technol. 2010, 21, 425–435. [Google Scholar] [CrossRef]
- Laulund, S.; Wind, A.; Derkx, P.M.F.; Zuliani, V. Regulatory and safety requirements for food cultures. Microorganisms 2017, 5, 28. [Google Scholar] [CrossRef] [Green Version]
- EFSA FEEDAP Panel. Guidance on the Characterisation of microorganisms used as feed additives or as production organisms. EFSA J. 2018, 16, e05206. [Google Scholar] [CrossRef]
- Sun, Z.; Harris, H.M.B.; McCann, A.; Guo, C.; Argimón, S.; Zhang, W.; Yang, X.; Jeffery, I.B.; Cooney, J.C.; Kagawa, T.F.; et al. Expanding the Biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nat. Commun. 2015, 6, 8322. [Google Scholar] [CrossRef]
- Oliveira, J.; Costa, K.; Acurcio, L.; Sandes, S.; Cassali, G.; Uetanabaro, A.; Costa, A.; Nicoli, J.; Neumann, E.; Porto, A. In vitro and in vivo evaluation of two potential probiotic lactobacilli isolated from cocoa fermentation (Theobroma cacao L.). J. Funct. Foods 2018, 47, 184–191. [Google Scholar] [CrossRef]
- Tenea, G.N.; Jarrin-V, P.; Yepez, L. Microbiota of Wild Fruits from the Amazon Region of Ecuador: Linking Diversity and Functional Potential of Lactic Acid Bacteria with their Origin [Online First]. IntechOpen. 2020. Available online: https://www.intechopen.com/online-first/microbiota-of-wild-fruits-from-the-amazon-region-of-ecuador-linking-diversity-and-functional-potenti (accessed on 20 January 2021).
- Flórez, A.B.; Mayo, B. Genome Analysis of Lactobacillus plantarum LL441 and Genetic Characterisation of the Locus for the Lantibiotic Plantaricin C. Front. Microbiol. 2018, 9, 1916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tenea, G.N.; Delgado Pozo, T.D. Antimicrobial peptides from Lactobacillus plantarum UTNGt2 prevent harmful bacteria growth on fresh tomatoes. J. Microbiol. Biotechnol. 2019, 29, 1553–1560. [Google Scholar] [CrossRef] [PubMed]
- Pabari, K.; Pithva, S.; Kothari, C.; Purama, R.K.; Kondepudi, K.K.; Vyas, B.R.M.; Kothari, R.; Ambalam, P. Evaluation of probiotic properties and prebiotic utilization potential of Weissella paramesenteroides isolated from fruits. Probiotics Antimicrob. Proteins 2020, 12, 1126–1138. [Google Scholar] [CrossRef] [PubMed]
- Medrano, S.; Brito Grandes, B. Obtención de Deshidratados de Borojo (Borojoa patinoi) y Copoazú (Theobroma grandiflorum) utilizando Procesos Térmicos de Secado con Aire Forzado; INIAP, Estación Experimental Santa Catalina, Departamento de Nutrición y Calidad: Quito, Ecuador, 2009; Available online: https://repositorio.iniap.gob.ec/handle/41000/974 (accessed on 6 March 2021).
- Alviarez, G.E.; Murillo, A.W.; Murillo, P.E.; Rojano, B.A.; Méndez, A.J.J. Caracterización y extracción lipídica de las semillas del cacao amazónico (Theobroma grandiflorum). Cienc. en Desarro. 2016, 7, 103–109. Available online: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-74882016000100013&lng=en&tlng=es (accessed on 6 March 2021). [CrossRef] [Green Version]
- Garzón, K.; Ortega, C.; Tenea, G.N. Characterization of bacteriocin-producing lactic acid bacteria isolated from native fruits of Ecuadorian Amazon. Pol. J. Microbiol. 2017, 66, 473–481. [Google Scholar] [CrossRef] [Green Version]
- Tenea, G.N. Peptide extracts from native lactic acid bacteria generate ghost cells and spheroplasts upon interaction with Salmonella enterica, as promising food antimicrobials. BioMed Res. Int. 2020, 2020, 6152356. [Google Scholar] [CrossRef]
- De Jong, A.; Van Hijum, S.A.F.T.; Bijlsma, J.J.E.; Kok, J.; Kuipers, O.P. BAGEL: A web-based bacteriocin genome mining tool. Nucleic Acids Res. 2006, 34, W273–W279. [Google Scholar] [CrossRef]
- Medema, M.H.; Blin, K.; Cimermancic, P.; De Jager, V.; Zakrzewski, P.; Fischbach, M.A.; Weber, T.; Takano, E.; Breitling, R. antiSMASH: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 2011, 39, W339–W346. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef] [PubMed]
- Chun, J.; Oren, A.; Ventosa, A.; Christensen, H.; Arahal, D.R.; Da Costa, M.S.; Rooney, A.P.; Yi, H.; Xu, X.-W.; De Meyer, S.; et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 2018, 68, 461–466. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Additives and Products or Substances used in Animal Feeds. Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J. 2012, 10, 2740. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Q. Relationship between tetracycline antibiotic susceptibility and genotype in oral cavity Lactobacilli clinical isolates. Antimicrob. Resist. Infect. Control. 2019, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Huys, G.; D’Haene, K.; Swings, J. Genetic basis of tetracycline and minocycline resistance in potentially probiotic Lactobacillus plantarum Strain CCUG 43738. Antimicrob. Agents Chemother. 2006, 50, 1550–1551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennedsen, M.; Stuer-Lauridsen, B.; Danielsen, M.; Johansen, E. Screening for antimicrobial resistance genes and virulence factors via genome sequencing. Appl. Environ. Microbiol. 2011, 77, 2785–2787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evanovich, E.; de Souza Mendonça Mattos, P.J.; Guerreiro, J.F. Comparative genomic analysis of Lactobacillus plantarum: An Overview. Int. J. Genom. 2019, 2019, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abriouel, H.; Pérez Montoro, B.P.; Casado Muñoz, M.C.; Knapp, C.W.; Gálvez, A.; Benomar, N. In silico genomic insights into aspects of food safety and defense mechanisms of a potentially probiotic Lactobacillus pentosus MP-10 isolated from brines of naturally fermented Aloreña green table olives. PLoS ONE 2017, 12, e0176801. [Google Scholar] [CrossRef] [Green Version]
- Mercanti, D.J.; Rousseau, G.M.; Capra, M.L.; Quiberoni, A.; Tremblay, D.M.; Labrie, S.J.; Moineau, S. Genomic diversity of phages infecting probiotic strains of Lactobacillus paracasei. Appl. Environ. Microbiol. 2015, 82, 95–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, A.; Barrangou, R. Applications of CRISPR-Cas systems in lactic acid bacteria. FEMS Microbiol. Rev. 2020, 44, 523–537. [Google Scholar] [CrossRef]
- Barrangou, R.; Horvath, P. A decade of discovery: CRISPR functions and applications. Nat. Microbiol. 2017, 2, 17092. [Google Scholar] [CrossRef] [PubMed]
- Nussenzweig, P.M.; McGinn, J.; Marraffini, L.A. Cas9 cleavage of viral genomes primes the acquisition of new immunological memories. Cell Host Microbe 2019, 26, 515–526.e6. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.-B.; Malaphan, W.; Zendo, T.; Nakayama, J.; Sonomoto, K. Enterocin X, a novel two-peptide bacteriocin from Enterococcus faecium KU-B5, has an antibacterial spectrum entirely different from those of its component peptides. Appl. Environ. Microbiol. 2010, 76, 4542–4545. [Google Scholar] [CrossRef] [Green Version]
- Lederberg, J. Bacterial protoplasts induced by penicillin. Proc. Natl. Acad. Sci. USA 1956, 42, 574–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peach, K.C.; Bray, W.M.; Winslow, D.; Linington, P.F.; Linington, R.G. Mechanism of action-based classification of antibiotics using high-content bacterial image analysis. Mol. BioSyst. 2013, 9, 1837–1848. [Google Scholar] [CrossRef]
- Harris, L.A.; Saint-Vincent, P.M.B.; Guo, X.; Hudson, G.A.; DiCaprio, A.J.; Zhu, L.; Mitchell, D.A. Reactivity-based screening for citrulline-containing natural products reveals a family of bacterial peptidyl arginine deiminases. ACS Chem. Biol. 2020, 15, 3167–3175. [Google Scholar] [CrossRef] [PubMed]
- Harwood, C.R.; Mouillon, J.-M.; Pohl, S.; Arnau, J. Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiol. Rev. 2018, 42, 721–738. [Google Scholar] [CrossRef]
- Chen, R.; Wong, H.L.; Burns, B.P. New approaches to detect biosynthetic gene clusters in the environment. Medicines 2019, 6, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tenea, G.N.; Hurtado, P.; Ortega, C. A novel Weissella cibaria strain UTNGt21O isolated from wild Solanum quitoense fruit: Genome sequence and characterization of a peptide with highly inhibitory potential toward gram-negative bacteria. Foods 2020, 9, 1242. [Google Scholar] [CrossRef]
- Seppey, M.; Manni, M.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness. Meth. Mol. Biol. 2019, 1962, 227–245. [Google Scholar] [CrossRef]
- Wu, L.; Ma, J. The Global Catalogue of Microorganisms (GCM) 10K type strain sequencing project: Providing services to taxonomists for standard genome sequencing and annotation. Int. J. Syst. Evol. Microbiol. 2019, 69, 895–898. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed]
- Ondov, B.D.; Treangen, T.J.; Melsted, P.; Mallonee, A.B.; Bergman, N.H.; Koren, S.; Phillippy, A.M. Mash: Fast genome and metagenome distance estimation using MinHash. Genome Biol. 2016, 17, 132. [Google Scholar] [CrossRef] [Green Version]
- Richter, M.; Rosselló-Móra, R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 2009, 106, 19126–19131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, C.; Rodriguez-R, L.M.; Phillippy, A.M.; Konstantinidis, K.T.; Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 2018, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Klasen, J.R.; Barbez, E.; Meier, L.; Meinshausen, N.; Bühlmann, P.; Koornneef, M.; Busch, W.; Schneeberger, K. A multi-marker association method for genome-wide association studies without the need for population structure correction. Nat. Commun. 2016, 7, 13299. [Google Scholar] [CrossRef] [Green Version]
- Hyatt, D.; Chen, G.-L.; Locascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010, 11, 119. [Google Scholar] [CrossRef] [Green Version]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Grant, J.R.; Stothard, P. The CGView Server: A comparative genomics tool for circular genomes. Nucleic Acids Res. 2008, 36, W181–W184. [Google Scholar] [CrossRef]
- Jones, P.; Binns, D.; Chang, H.-Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huerta-Cepas, J.; Szklarczyk, D.; Heller, D.; Hernández-Plaza, A.; Forslund, S.K.; Cook, H.; Mende, D.R.; Letunic, I.; Rattei, T.; Jensen, L.J.; et al. eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019, 47, D309–D314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, B.; Raphenya, A.R.; Alcock, B.; Waglechner, N.; Guo, P.; Tsang, K.K.; Lago, B.A.; Dave, B.M.; Pereira, S.; Sharma, A.N.; et al. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017, 45, D566–D573. [Google Scholar] [CrossRef] [PubMed]
- Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016, 44, W16–W21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zheng, D.; Jin, Q.; Chen, L.; Yang, J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2019, 47, D687–D692. [Google Scholar] [CrossRef] [PubMed]
- Couvin, D.; Bernheim, A.; Toffano-Nioche, C.; Touchon, M.; Michalik, J.; Néron, B.; Rocha, E.P.C.; Vergnaud, G.; Gautheret, D.; Pourcel, C. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 2018, 46, W246–W251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosentino, S.; Voldby Larsen, M.; Møller Aarestrup, F.; Lund, O. Correction: PathogenFinder—Distinguishing friend from foe using bacterial whole genome sequence data. PLoS ONE 2013, 8, e77302. [Google Scholar] [CrossRef]
- Van Heel, A.J.; De Jong, A.; Montalbán-López, M.; Kok, J.; Kuipers, O.P. BAGEL3: Automated identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides. Nucleic Acids Res. 2013, 41, W448–W453. [Google Scholar] [CrossRef] [PubMed]
- Blin, K.; Shaw, S.; Steinke, K.; Villebro, R.; Ziemert, N.; Lee, S.Y.; Medema, M.H.; Weber, T. antiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019, 47, W81–W87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Accession | Description | Query # | Query Length | I_Pct. (%) |
---|---|---|---|---|
CP013750.1 | CP013750.1 Lactobacillus plantarum strain KP plasmid unnamed1, complete sequence | 1 | 87,144 | 99 |
CP009236.1 | CP009236.1 L. plantarum strain 5–2, complete genome | 4 | 436,043 | 99 |
CP025991.1 | CP025991.1 Lactiplantibacillus plantarum subsp. plantarum strain LB1-2 chromosome, complete genome | 1 | 63,686 | 99 |
CP012343.1 | CP012343.1 L. plantarum strain ZS2058, complete genome | 1 | 48,000 | 99 |
CP034694.1 | CP034694.1 Lactiplantibacillus plantarum strain FBL-3a chromosome, complete genome | 17 | 1,859,159 | 99 |
CP031771.1 | CP031771.1 Lactiplantibacillus plantarum subsp. plantarum strain E1 chromosome | 1 | 1169 | 99 |
CP021932.1 | CP021932.1 Lactiplantibacillus plantarum strain TMW 1.1478 chromosome, complete genome | 1 | 249,265 | 99 |
CP035143.1 | CP035143.1 Lactiplantibacillus plantarum strain SRCM103357 chromosome, complete genome | 1 | 1748 | 100 |
CP046262.1 | CP046262.1 Lactiplantibacillus plantarum strain KCCP11226 chromosome, complete genome | 1 | 4509 | 100 |
CP031702.1 | CP031702.1 Lactiplantibacillus plantarum strain IDCC3501 chromosome, complete genome | 1 | 10,237 | 100 |
CP032464.1 | CP032464.1 Lactiplantibacillus plantarum strain ATG-K6 chromosome, complete genome | 1 | 260,051 | 99 |
CP023728.1 | CP023728.1 Lactiplantibacillus plantarum strain 10CH chromosome, complete genome | 1 | 243,437 | 99 |
Sample | Number of Genes | Number of CDS | CARD | MetaCyc | PHI | CAZy | VFDB | SwissProt | KEGG | COG |
---|---|---|---|---|---|---|---|---|---|---|
Gt2 | 3155 | 3052 | 39 (1.27%) | 413 (13.49%) | 113 (3.69%) | 107 (3.50%) | 103 (3.36%) | 1129 (36.88%) | 2989 (97.65%) | 2334 (76.25%) |
CRISPR_ID | Start | End | Length (bp) | Potential Orientation | Consensus_Repeat | Number of CRISPRs_with_Same_Repeat (CRISPRdb) | Repeat_Length | Spacers Number | Number Repeats Matching Consensus | Conservation_Repeats (% Identity) | Evidence_Level |
---|---|---|---|---|---|---|---|---|---|---|---|
contig1_1 | 50,489 | 51,250 | 761 | Reverse | GTTCTAAACCTGTTTGATATGACTACTATTCAAGAC | 3 | 36 | 11 | 12 | 100.00 | 4 |
contig8_1 | 73,175 | 73,277 | 102 | Reverse | ATGGCGAAGAAGAAGAACCAGAATACGACAAACC | 0 | 34 | 1 | 1 | 97.06 | 1 |
contig8_2 | 150,018 | 150,117 | 99 | Unknown | TGCACTGGTAACTGAGCTGGCGCTG | 0 | 25 | 1 | 1 | 96.00 | 1 |
contig9_1 | 97,887 | 97,972 | 85 | Reverse | AATAAGATACTTTAAGTTTCTTA | 0 | 23 | 1 | 1 | 95.65 | 1 |
Sequence ID | Cas-Type/Subtype | Gene Status | System | Type | Begin | End | Strand |
---|---|---|---|---|---|---|---|
contig1_50 | Csn2_0_IIA | Mandatory | CAS-TypeIIA | CDS | 51,275 | 51,952 | - |
contig1_51 | Cas2_0_I-II-III | Accessory | CAS | CDS | 51,949 | 52,254 | - |
contig1_52 | Cas1_0_II | Accessory | CAS-TypeIIC | CDS | 52,232 | 53,137 | - |
contig1_53 | Cas9_0_II | Accessory | CAS-TypeIIC | CDS | 53,331 | 57,407 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tenea, G.N.; Ortega, C. Genome Characterization of Lactiplantibacillus plantarum Strain UTNGt2 Originated from Theobroma grandiflorum (White Cacao) of Ecuadorian Amazon: Antimicrobial Peptides from Safety to Potential Applications. Antibiotics 2021, 10, 383. https://doi.org/10.3390/antibiotics10040383
Tenea GN, Ortega C. Genome Characterization of Lactiplantibacillus plantarum Strain UTNGt2 Originated from Theobroma grandiflorum (White Cacao) of Ecuadorian Amazon: Antimicrobial Peptides from Safety to Potential Applications. Antibiotics. 2021; 10(4):383. https://doi.org/10.3390/antibiotics10040383
Chicago/Turabian StyleTenea, Gabriela N., and Clara Ortega. 2021. "Genome Characterization of Lactiplantibacillus plantarum Strain UTNGt2 Originated from Theobroma grandiflorum (White Cacao) of Ecuadorian Amazon: Antimicrobial Peptides from Safety to Potential Applications" Antibiotics 10, no. 4: 383. https://doi.org/10.3390/antibiotics10040383
APA StyleTenea, G. N., & Ortega, C. (2021). Genome Characterization of Lactiplantibacillus plantarum Strain UTNGt2 Originated from Theobroma grandiflorum (White Cacao) of Ecuadorian Amazon: Antimicrobial Peptides from Safety to Potential Applications. Antibiotics, 10(4), 383. https://doi.org/10.3390/antibiotics10040383