Leaves and Fruits Preparations of Pistacia lentiscus L.: A Review on the Ethnopharmacological Uses and Implications in Inflammation and Infection
Abstract
:1. Introduction
2. Botany and Taxonomy
PlL Belongs to the Genus Pistacia, Anacardiaceae Family, Order Sapindales
- Pistacia vera L., which is characteristic of the temperate areas of Asia Minor, and grown abundantly in Greece, the Aegean Islands and in Sicily (Italy). This species has been known since ancient times as attested in reports of the Old Testament. Additionally, there have been notices of Pistacia vera by Persian and Greek populations since the 6th and the 3rd century B.C., respectively.
- Pistacia terebinthus L., originating from the island of Chios, has spread to all the Mediterranean coasts over the centuries. Today, it is mostly present in Portugal, Palestine and North Africa, and in the Middle East of Asia till the western borders of India. In Italy, it is mainly found in the southern part of the peninsula and in Sardinia and Sicily.
- Pistacia lentiscus L., also known as mastic tree or lentisk (Figure 1).
3. Historical and Cultural Use
4. Ethnopharmacology
5. Phytochemical Constituents
6. Anti-Inflammatory and Antioxidative Activities
6.1. Inhibitory Activity against Proinflammatory Cytokines and against Arachidonic Acid Cascade
6.2. Inhibiting Activity against ROS Molecules
7. Potential Cytotoxicity
8. Antimicrobial Activity
9. Summary and Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thabit, A.K.; Crandon, J.L.; Nicolau, D.P. Antimicrobial resistance: Impact on clinical and economic outcomes and the need for new antimicrobials. Expert Opin. Pharmacother. 2015, 16, 159–177. [Google Scholar] [CrossRef]
- Fiala, C.; Pasic, M.D. Aspirin: Bitter pill or miracle drug? Clin. Biochem. 2020, 85, 1–4. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, Z.; Sun, Y.; Yang, B.; Wang, Q.; Kuang, H. Traditional uses, phytochemistry and pharmacology of genus Syringa: A comprehensive review. J. Ethnopharmacol. 2021, 266, 113465. [Google Scholar] [CrossRef] [PubMed]
- El Omari, N.; Ezzahrae Guaouguaou, F.; El Menyiy, N.; Benali, T.; Aanniz, T.; Chamkhi, I.; Balahbib, A.; Taha, D.; Shariati, M.A.; Zengin, G.; et al. Phytochemical and biological activities of Pinus halepensis mill., and their ethnomedicinal use. J. Ethnopharmacol. 2021, 268, 113661. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products As Sources of New Drugs over the 30 Years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar] [CrossRef] [Green Version]
- De Cássia da Silveira e Sá, R.; Andrade, L.N.; de Sousa, D.P. A review on anti-inflammatory activity of monoterpenes. Molecules 2013, 18, 1227–1254. [Google Scholar] [CrossRef]
- Gonçalves, E.C.D.; Baldasso, G.M.; Bicca, M.A.; Paes, R.S.; Capasso, R.; Dutra, R.C. Terpenoids, Cannabimimetic Ligands, beyond the Cannabis Plant. Molecules 2020, 25, 1567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNaught, A.D.; Wilkinson, A. IUPAC Compendium of Chemical Terminology, 2nd ed.; Blackwell Science Publications: Oxford, UK, 1997. [Google Scholar]
- Russo, E.B. Cannabis Pharmacology: The Usual Suspects and a Few Promising Leads. Adv. Pharmacol. 2017, 80, 67–134. [Google Scholar] [CrossRef]
- Kim, T.; Song, B.; Cho, K.S.; Lee, I.-S. Therapeutic Potential of Volatile Terpenes and Terpenoids from Forests for Inflammatory Diseases. Int. J. Mol. Sci. 2020, 21, 2187. [Google Scholar] [CrossRef] [Green Version]
- Basu, A.; Masek, E.; Ebersole, J.L. Dietary Polyphenols and Periodontitis-A Mini-Review of Literature. Molecules 2018, 23, 1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quartu, M.; Serra, M.P.; Boi, M.; Pillolla, G.; Melis, T.; Poddighe, L.; Del Fiacco, M.; Falconieri, D.; Carta, G.; Murru, E.; et al. Effect of acute administration of Pistacia lentiscus L. essential oil on rat cerebral cortex following transient bilateral common carotid artery occlusion. Lipids Health Dis. 2012, 11, 8. [Google Scholar] [CrossRef] [Green Version]
- Pachi, V.K.; Mikropoulou, E.V.; Gkiouvetidis, P.; Siafakas, K.; Argyropoulou, A.; Angelis, A.; Mitakou, S.; Halabalaki, M. Traditional uses, phytochemistry and pharmacology of Chios mastic gum (Pistacia lentiscus var. Chia, Anacardiaceae): A review. J. Ethnopharmacol. 2020, 254, 112485. [Google Scholar] [CrossRef]
- Papada, E.; Kaliora, A.C. Antioxidant and Anti-Inflammatory Properties of Mastiha: A Review of Preclinical and Clinical Studies. Antioxidants 2019, 8, 208. [Google Scholar] [CrossRef] [Green Version]
- Piccolella, S.; Nocera, P.; Carillo, P.; Woodrow, P.; Greco, V.; Manti, L.; Fiorentino, A.; Pacifico, S. An Apolar Pistacia Lentiscus L. Leaf Extract: GC-MS Metabolic Profiling and Evaluation of Cytotoxicity and Apoptosis Inducing Effects on SH-SY5Y and SK-N-BE(2)C Cell Lines. Food Chem. Toxicol. 2016, 95, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Zohary, M. A Mono-Graphical Study of the Genus Pistacia. Palest. J. Bot. Jerus. Ser. 1952, 5, 187–228. [Google Scholar]
- Rauf, A.; Patel, S.; Uddin, G.; Siddiqui, B.S.; Ahmad, B.; Muhammad, N.; Mabkhot, Y.N.; Hadda, T.B. Phytochemical, ethnomedicinal uses and pharmacological profile of genus Pistacia. Biomed. Pharmacother. 2017, 86, 393–404. [Google Scholar] [CrossRef]
- Treitler, J.T.; Drissen, T.; Stadtmann, R.; Zerbe, S.; Mantilla-Contreras, J. Complementing endozoochorous seed dispersal patterns by donkeys and goats in a semi-natural island ecosystem. BMC Ecol. 2017, 17, 42. [Google Scholar] [CrossRef] [Green Version]
- Barra, A.; Coroneo, V.; Dessi, S.; Cabras, P.; Angioni, A. Characterization of the volatile constituents in the essential oil of Pistacia lentiscus L. from different origins and its antifungal and antioxidant activity. J. Agric. Food Chem. 2007, 55, 7093–7098. [Google Scholar] [CrossRef] [PubMed]
- Rostas, M.; Maag, D.; Ikegami, M.; Inbar, M. Gall volatiles defend aphids against a browsing mammal. BMC Evol. Biol. 2013, 13, 193. [Google Scholar] [CrossRef] [Green Version]
- Inbar, M.; Wink, M.; Wool, D. The evolution of host plant manipulation by insects: Molecular and ecological evidence from gall-forming aphids on Pistacia. Mol. Phylogenet. Evol. 2004, 32, 504–511. [Google Scholar] [CrossRef]
- Rand, K.; Bar, E.; Ben-Ari, M.; Lewinsohn, E.; Inbar, M. The mono—and sesquiterpene content of aphid-induced galls on Pistacia palaestina is not a simple reflection of their composition in intact leaves. J. Chem. Ecol. 2014, 40, 632–642. [Google Scholar] [CrossRef]
- Elgubbi, H.; Alfageih, L.; Zorab, A.; Elmeheshi, F. Pistacia lentiscus tree and its role in riddance of some environmental polluters. EC Nutr. 2017, 10, 8–14. [Google Scholar]
- Cabiddu, A.; Delgadillo-Puga, C.; Decandia, M.; Molle, A.G. Extensive ruminant production systems and milk quality with emphasis on unsaturated fatty acids, volatile compounds, antioxidant protection degree and phenol content. Animals 2019, 9, 771. [Google Scholar] [CrossRef] [Green Version]
- Ballero, M.; Poli, F.; Sacchetti, G.; Loi, M.C. Ethnobotanical research in the territory of Fluminimaggiore (south-western Sardinia). Fitoterapia 2001, 72, 788–801. [Google Scholar] [CrossRef]
- Palmese, M.T.; Uncini Manganelli, R.E.; Tomei, P.E. An ethno-pharmacobotanical survey in the Sarrabus district (south-east Sardinia). Fitoterapia 2001, 72, 619–643. [Google Scholar] [CrossRef]
- Leporatti, M.L.; Ghedira, K. Comparative analysis of medicinal plants used in traditional medicine in Italy and Tunisia. J. Ethnobiol. Ethnomed. 2009, 5, 31. [Google Scholar] [CrossRef] [Green Version]
- Leonti, M.; Staub, P.O.; Cabras, S.; Castellanos, M.E.; Casu, L. From cumulative cultural transmission to evidence-based medicine: Evolution of medicinal plant knowledge in Southern Italy. Front. Pharmacol. 2015, 6, 207. [Google Scholar] [CrossRef] [Green Version]
- Maxia, A.; Lancioni, M.C.; Balia, A.N.; Alborghetti, R.; Pieroni, A.; Loi, M.C. Medical ethnobotany of the Tabarkins, a Northern Italian (Ligurian) minority in south-western Sardinia. Genet. Resour. Crop. Evol. 2008, 55, 911–924. [Google Scholar] [CrossRef]
- Di Rosa, A. Erbe e Piante Medicinali in Sardegna, 3rd ed.; Carlo Delfino Ed.: Sassari, Italy, 2018. [Google Scholar]
- Loi, M.C.; Frajus, L.; Maxia, A. Le piante utilizzate nella medicina popolare nel territorio Di Gesturi (Sardegna Centro-Meridionale). Atti. Soc. Tosc. Sci. Flat. Mem. 2002, 109, 167–176. [Google Scholar]
- Scherrer, A.M.; Motti, R.; Weckerle, C.S. Traditional plant use in the areas of Monte Vesole and Ascea, Cilento National Park (Campania, Southern Italy). J. Ethnopharmacol. 2005, 97, 129–143. [Google Scholar] [CrossRef]
- Benitez, G.; Gonzalez-Tejero, M.R.; Molero-Mesa, J. Knowledge of ethnoveterinary medicine in the Province of Granada, Andalusia, Spain. J. Ethnopharmacol. 2012, 139, 429–439. [Google Scholar] [CrossRef]
- Gras, A.; Serrasolses, G.; Valles, J.; Garnatje, T. Traditional knowledge in semi-rural close to industrial areas: Ethnobotanical studies in western Girones (Catalonia, Iberian Peninsula). J. Ethnobiol. Ethnomed. 2019, 15, 19. [Google Scholar] [CrossRef]
- Trabelsi, H.; Cherif, O.A.; Sakouhi, F.; Villeneuve, P.; Renaud, J.; Barouh, N.; Boukhchina, S.; Mayer, P. Total lipid content, fatty acids and 4-desmethylsterols accumulation in developing fruit of Pistacia lentiscus L. growing wild in Tunisia. Food Chem. 2012, 131, 434–440. [Google Scholar] [CrossRef]
- Saiah, H.; Allem, R.; Kebir, F.Z.R. Antioxidant and antibacterial activities of six Algerian medicinal plants. Int. J. Pharm. Pharm. Sci. 2016, 8, 367–374. [Google Scholar]
- Jamila, F.; Mostafa, E. Ethnobotanical survey of medicinal plants used by people in Oriental Morocco to manage various ailments. J. Ethnopharmacol. 2014, 154, 76–87. [Google Scholar] [CrossRef]
- Janakat, S.; Al-Merie, H. Evaluation of hepatoprotective effect of Pistacia lentiscus, Phillyrea latifolia and Nicotiana glauca. J. Ethnopharmacol. 2002, 83, 135–138. [Google Scholar] [CrossRef]
- Lev, E.; Amar, Z. Ethnopharmacological survey of traditional drugs sold in the Kingdom of Jordan. J. Ethnopharmacol. 2002, 82, 131–145. [Google Scholar] [CrossRef]
- Lev, E. Ethno-diversity within current ethno-pharmacology as part of Israeli traditional medicine—A review. J. Ethnobiol. Ethnomed. 2006, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Rahimi, R.; Mozaffari, S.; Abdollahi, M. On the use of herbal medicines in management of inflammatory bowel diseases: A systematic review of animal and human studies. Dig. Sci. 2009, 54, 471–480. [Google Scholar] [CrossRef]
- Farzaei, M.H.; Shams-Ardekani, M.R.; Abbasabadi, Z.; Rahimi, R. Scientific evaluation of edible fruits and spices used for the treatment of peptic ulcer in traditional Iranian medicine. ISRN Gastroenterol. 2013, 2013, 136932. [Google Scholar] [CrossRef] [Green Version]
- Giner-Larza, E.M.; Manez, S.; Recio, M.C.; Giner, R.M.; Prieto, J.M.; Cerda-Nicolas, M.; Rios, J.L. Oleanonic acid, a 3-oxotriterpene from Pistacia, inhibits leukotriene synthesis and has anti-inflammatory activity. Eur. J. Pharmacol. 2001, 428, 137–143. [Google Scholar] [CrossRef]
- Missoun, F.; Bouabedelli, F.; Benhamimed, E.; Baghdad, A.; Djebli, N. Phytochemical study and antibacterial activity of different extracts of Pistacia lentiscus L collected from Dahra Region West of Algeria. J. Fundam. Appl. Sci. 2017, 9, 669–684. [Google Scholar] [CrossRef]
- Piluzza, G.; Virdis, S.; Serralutzu, F.; Bullitta, S. Uses of plants, animal and mineral substances in Mediterranean ethno-veterinary practices for the care of small ruminants. J. Ethnopharmacol. 2015, 168, 87–99. [Google Scholar] [CrossRef]
- Tassou, C.C.; Chorianopoulos, N.G.; Skandamis, P.N.; Nychas, G.J.E. Herbs, spices and their active components as natural antimicrobials in foods. In Handbook of Herbs and Spices; Peter, K.V., Ed.; Woodhead Publishing: Cambridge, UK, 2012; Volume 2, pp. 17–50. [Google Scholar]
- Farmacopea Ufficiale della Repubblica Italiana; Istituto Poligrafico e Zecca dello Stato: Roma, Italy, 2008.
- Franz, C.; Novak, J. Sources of essential oils. In Handbook of Essential Oils: Science, Technology, and Applications; Baser, K.H.C., Buchbauer, G., Eds.; CPR Press Taylor & Francis Group: Boca Raton, FL, USA, 2010; pp. 39–82. [Google Scholar]
- Milia, E.; Usai, M.; Szotakova, B.; Elstnerova, M.; Kralova, V.; D’Hallewin, G.; Spissu, Y.; Barberis, A.; Marchetti, M.; Bortone, A.; et al. The Pharmaceutical Ability of Pistacia Lentiscus L. Leaves Essential Oil Against Periodontal Bacteria and Candida Sp. and Its Anti-Inflammatory Potential. Antibiotics 2020, 9, 281. [Google Scholar] [CrossRef]
- Russo, E.B. Taming THC: Potential Cannabis Synergy and Phytocannabinoid-Terpenoid Entourage Effects. Br. J. Pharmacol. 2011, 163, 1344–1364. [Google Scholar] [CrossRef]
- Gardeli, C.; Vassiliki, P.; Athanasios, M.; Kibouris, T.; Komaitis, M. Essential Oil Composition of Pistacia Lentiscus L. and Myrtus Communis L.: Evaluation of Antioxidant Capacity of Methanolic Extracts. Food Chem. 2008, 107, 1120–1130. [Google Scholar] [CrossRef]
- De Pooter, H.L.; Schamp, N.M.; Aboutabl, E.A.; Tohamy, S.F.; Doss, S.L. Essential oils from the leaves of three Pistacia species grown in Egypt. Flavour Fragr. J. 1991, 6, 229–232. [Google Scholar] [CrossRef]
- Boelens, M.H.; Jimenez, R. Chemical composition of the essential oils from the gum and from various parts of Pistacia lentiscus l. (mastic gum tree). Flavour Fragr. J. 1991, 6, 271–275. [Google Scholar] [CrossRef]
- Zrira, S.; Elamrani, A.; Benjilali, B. Chemical composition of the essential oil of Pistacia lentiscus L. from Morocco—A seasonal variation. Flavour Fragr. J. 2003, 18, 475–480. [Google Scholar] [CrossRef]
- Ben Douissa, F.; Hayder, N.; Chekir-Ghedira, L.; Hammami, M.; Ghedira, K.; Mariotte, A.M.; Dijoux-Franca, M.G. New study of the essential oil from leaves of Pistacia lentiscus L. (Anacardiaceae) from Tunisia. Flavour Fragr. J. 2005, 20, 410–414. [Google Scholar] [CrossRef]
- Bozorgi, M.; Memariani, Z.; Mobli, M.; Salehi Surmaghi, M.H.; Shams-Ardekani, M.R.; Rahimi, R. Five Pistacia species (P. vera, P. atlantica, P. terebinthus, P. khinjuk, and P. lentiscus): A Review of Their Traditional Uses, Phytochemistry, and Pharmacology. Sci. World J. 2013, 2013, 219815. [Google Scholar] [CrossRef] [Green Version]
- Vogelman, T.C. Plant tissue optics. Rev. Plant Physiol. Plant Mol. Biol. 1993, 44, 231–251. [Google Scholar] [CrossRef]
- Orru, G.; Demontis, C.; Mameli, A.; Tuveri, E.; Coni, P.; Pichiri, G.; Coghe, F.; Rosa, A.; Rossi, P.; D’Hallewin, G. The Selective Interaction of Pistacia Lentiscus Oil vs. Human Streptococci, an Old Functional Food Revisited with New Tools. Front. Microbiol. 2017, 8, 2067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stagos, D. Antioxidant Activity of Polyphenolic Plant Extracts. Antioxidants 2019, 9, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romani, A.; Pinelli, P.; Galardi, C.; Mulinacci, N.; Tattini, M. Identification and quantification of galloyl derivatives, flavonoid glycosides and anthocyanins in leaves of Pistacia lentiscus L. Phytochem. Anal. 2002, 13, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Perez, C.; Quirantes-Pine, R.; Amessis-Ouchemoukh, N.; Madani, K.; Segura-Carretero, A.; Fernandez-Gutierrez, A. A metabolite-profiling approach allows the identification of new compounds from Pistacia lentiscus leaves. J. Pharm. Biomed. Anal. 2013, 77, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Magiatis, P.; Melliou, E.; Skaltsounis, A.L.; Chinou, I.B.; Mitaku, S. Chemical composition and antimicrobial activity of the essential oils of Pistacia lentiscus var. chia. Planta Med. 1999, 65, 749–752. [Google Scholar] [CrossRef]
- Duru, M.E.; Cakir, A.; Kordali, S.; Zengin, H.; Harmandar, M.; Izumi, S.; Hirata, T. Chemical composition and antifungal properties of essential oils of three Pistacia species. Fitoterapia 2003, 74, 170–176. [Google Scholar] [CrossRef]
- Dob, T.; Dahmane, D.; Chelghoum, C. Chemical composition of the essential oils of Pistacia lentiscus L. from Algeria. J. Essent. Oil Res. 2006, 18, 335–338. [Google Scholar] [CrossRef]
- Said, S.A.; Fernandez, C.; Greff, S.; Torre, F.; Derridj, A.; Gauquelin, T.; Mevy, J.P. Inter-Population Variability of Terpenoid Composition in Leaves of Pistacia lentiscus L. from Algeria: A Chemoecological Approach. Molecules 2011, 16, 2646–2657. [Google Scholar] [CrossRef]
- Aouinti, F.; Imelouane, B.; Tahri, M.; Wathelet, J.P.; Amhamdi, H.; Elbachiri, A. New study of the essential oil, mineral composition and antibacterial activity of Pistacia lentiscus L. from Eastern Morocco. Res. Chem. Intermed. 2014, 40, 2873–2886. [Google Scholar] [CrossRef]
- Bampouli, A.; Kyriakopoulou, K.; Papaefstathiou, G.; Louli, V.; Krokida, M.; Magoulas, K. Comparison of different extraction methods of Pistacia lentiscus var. chia leaves: Yield, antioxidant activity and essential oil chemical composition. J. Appl. Res. Med. Aromat. Plants 2014, 1, 81–91. [Google Scholar] [CrossRef]
- Mezni, F.; Aouadhi, C.; Khouja, M.L.; Khaldi, A.; Maaroufi, A. In vitro antimicrobial activity of Pistacia lentiscus L. edible oil and phenolic extract. Nat. Prod. Res. 2015, 29, 565–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aissi, O.; Boussaid, M.; Messaoud, C. Essential oil composition in natural populations of Pistacia lentiscus L. from Tunisia: Effect of ecological factors and incidence on antioxidant and antiacetylcholinesterase activities. Ind. Crop. Prod. 2016, 91, 56–65. [Google Scholar] [CrossRef]
- Ben Khedir, S.; Mzid, M.; Bardaa, S.; Moalla, D.; Sahnoun, Z.; Rebai, T. In vivo evaluation of the anti-inflammatory effect of Pistacia lentiscus fruit oil and its effects on oxidative stress. Evid. Based Complement. Altern. Med. 2016, 2016, 6108203. [Google Scholar] [CrossRef] [Green Version]
- Buriani, A.; Fortinguerra, S.; Sorrenti, V.; Dall’Acqua, S.; Innocenti, G.; Montopoli, M.; Gabbia, D.; Carrara, M. Human Adenocarcinoma Cell Line Sensitivity to Essential Oil Phytocomplexes from Pistacia Species: A Multivariate Approach. Molecules 2017, 22, 1336. [Google Scholar] [CrossRef] [Green Version]
- Marengo, A.; Piras, A.; Falconieri, D.; Porcedda, S.; Caboni, P.; Cortis, P.; Foddis, C.; Loi, C.; Goncalves, M.J.; Salgueiro, L.; et al. Chemical and biomolecular analyses to discriminate three taxa of Pistacia genus from Sardinia Island (Italy) and their antifungal activity. Nat. Prod. Res. 2018, 32, 2766–2774. [Google Scholar] [CrossRef] [PubMed]
- Ammari, M.; Othman, H.; Hajri, A.; Sakly, M.; Abdelmelek, H. Pistacia lentiscus oil attenuates memory dysfunction and decreases levels of biomarkers of oxidative stress induced by lipopolysaccharide in rats. Brain Res. Bull. 2018, 140, 140–147. [Google Scholar] [CrossRef]
- Yosr, Z.; Imen, B.H.Y.; Rym, J.; Chokri, M.; Mohamed, B. Sex-related differences in essential oil composition, phenol contents and antioxidant activity of aerial parts in Pistacia lentiscus L. during seasons. Ind. Crop. Prod. 2018, 121, 151–159. [Google Scholar] [CrossRef]
- Bouyahya, A.; Assemian, I.C.C.; Mouzount, H.; Bourais, I.; Et-Touys, A.; Fellah, H.; Benjouad, A.; Dakka, N.; Bakri, Y. Could volatile compounds from leaves and fruits of Pistacia lentiscus constitute a novel source of anticancer, antioxidant, antiparasitic and antibacterial drugs? Ind. Crop. Prod. 2019, 128, 62–69. [Google Scholar] [CrossRef]
- Longo, L.; Scardino, A.; Vasapollo, G. Identification and quantification of anthocyanins in the berries of Pistacia lentiscus L., Phillyrea latifolia L. and Rubia peregrina L. Innov. Food Sci. Emerg. Technol. 2007, 8, 360–364. [Google Scholar] [CrossRef]
- Pacifico, S.; Piccolella, S.; Marciano, S.; Galasso, S.; Nocera, P.; Piscopo, V.; Fiorentino, A.; Monaco, P. LC-MS/MS Profiling of a Mastic Leaf Phenol Enriched Extract and Its Effects on H2O2 and A beta(25-35) Oxidative Injury in SK-B-NE(C)-2 Cells. J. Agric. Food Chem. 2014, 62, 11957–11966. [Google Scholar] [CrossRef] [PubMed]
- Mezni, F.; Slama, A.; Ksouri, R.; Hamdaoui, G.; Khouja, M.L.; Khaldi, A. Phenolic profile and effect of growing area on Pistacia lentiscus seed oil. Food Chem. 2018, 257, 206–210. [Google Scholar] [CrossRef]
- Gori, A.; Nascimento, L.B.; Ferrini, F.; Centritto, M.; Brunetti, C. Seasonal and Diurnal Variation in Leaf Phenolics of Three Medicinal Mediterranean Wild Species: What Is the Best Harvesting Moment to Obtain the Richest and the Most Antioxidant Extracts? Molecules 2020, 25, 956. [Google Scholar] [CrossRef] [Green Version]
- El Bishbishy, M.H.; Gad, H.A.; Aborehab, N.M. Chemometric discrimination of three Pistacia species via their metabolic profiling and their possible in vitro effects on memory functions. J. Pharm. Biomed. Anal. 2020, 177, 112840. [Google Scholar] [CrossRef]
- Zeng, Y.; Song, J.-X.; Shen, X.-C. Herbal remedies supply a novel prospect for the treatment of atherosclerosis: A review of current mechanism studies. Phytother. Res. PTR 2012, 26, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Chen, W.; Yi, K.J.; Wu, Z.Q.; Si, Y.L.; Han, W.D.; Zhao, Y.L. The evaluation of catechins that contain a galloyl moiety as potential HIV-1 integrase inhibitors. Clin. Immunol. 2010, 137, 347–356. [Google Scholar] [CrossRef]
- Wang, B.; Yao, M.; Lv, L.; Ling, Z.; Li, L. The Human Microbiota in Health and Disease. Engineering 2017, 3, 71–82. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Jiang, F.; Liu, P.; Chen, W.; Yi, K.J. Catechins containing a galloyl moiety as potential anti-HIV-1 compounds. Drug Discov. Today 2012, 17, 630–635. [Google Scholar] [CrossRef]
- Campbell, E.L.; Colgan, S.P. Control and dysregulation of redox signalling in the gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 106–120. [Google Scholar] [CrossRef]
- Benhammou, N.; Bekkara, F.A.; Panovska, T.K. Antioxidant and antimicrobial activities of the Pistacia lentiscus and Pistacia atlantica extracts. Afr. J. Pharm. Pharmacol. 2008, 2, 22–28. [Google Scholar]
- Vamanu, E.; Gatea, F. Correlations between Microbiota Bioactivity and Bioavailability of Functional Compounds: A Mini-Review. Biomedicines 2020, 8, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Zheng, J.; Li, Y.; Xu, D.P.; Li, S.; Chen, Y.M.; Li, H.B. Natural Polyphenols for Prevention and Treatment of Cancer. Nutrients 2016, 8, 515. [Google Scholar] [CrossRef] [PubMed]
- González, R.; Ballester, I.; López-Posadas, R.; Suárez, M.D.; Zarzuelo, A.; Martínez-Augustin, O.; Sánchez de Medina, F. Effects of flavonoids and other polyphenols on inflammation. Crit. Rev. Food Sci. Nutr. 2011, 51, 331–362. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.P.; Son, K.H.; Chang, H.W.; Kang, S.S. Anti-inflammatory plant flavonoids and cellular action mechanisms. J. Pharmacol. Sci. 2004, 96, 229–245. [Google Scholar] [CrossRef] [Green Version]
- Comalada, M.; Ballester, I.; Bailón, E.; Sierra, S.; Xaus, J.; Gálvez, J.; de Medina, F.S.; Zarzuelo, A. Inhibition of pro-inflammatory markers in primary bone marrow-derived mouse macrophages by naturally occurring flavonoids: Analysis of the structure-activity relationship. Biochem. Pharmacol. 2006, 72, 1010–1021. [Google Scholar] [CrossRef] [PubMed]
- Malireddy, S.; Kotha, S.R.; Secor, J.D.; Gurney, T.O.; Abbott, J.L.; Maulik, G.; Maddipati, K.R.; Parinandi, N.L. Phytochemical Antioxidants Modulate Mammalian Cellular Epigenome: Implications in Health and Disease. Antioxid. Redox Signal. 2012, 17, 327–339. [Google Scholar] [CrossRef] [Green Version]
- Santangelo, C.; Varì, R.; Scazzocchio, B.; Di Benedetto, R.; Filesi, C.; Masella, R. Polyphenols, intracellular signalling and inflammation. Ann. Ist. Super. Sanita 2007, 43, 394–405. [Google Scholar]
- Atmani, D.; Chaher, N.; Berboucha, M.; Ayouni, K.; Lounis, H.; Boudaoud, H.; Debbache, N.; Atmani, D. Antioxidant capacity and phenol content of selected Algerian medicinal plants. Food Chem. 2009, 112, 303–309. [Google Scholar] [CrossRef]
- Bullitta, S.; Piluzza, G.; Manunta, M.D.I. Cell-based and chemical assays of the ability to modulate the production of intracellular Reactive Oxygen Species of eleven Mediterranean plant species related to ethnobotanic traditions. Genet. Resour. Crop. Evol. 2013, 60, 403–412. [Google Scholar] [CrossRef]
- Remila, S.; Atmani-Kilani, D.; Delemasure, S.; Connat, J.L.; Azib, L.; Richard, T.; Atmani, D. Antioxidant, cytoprotective, anti-inflammatory and anticancer activities of Pistacia lentiscus (Anacardiaceae) leaf and fruit extracts. Eur. J. Integr. Med. 2015, 7, 274–286. [Google Scholar] [CrossRef]
- Dellai, A.; Souissi, H.; Borgi, W.; Bouraoui, A.; Chouchane, N. Antiinflammatory and antiulcerogenic activities of Pistacia lentiscus L. leaves extracts. Ind. Crop. Prod. 2013, 49, 879–882. [Google Scholar] [CrossRef]
- Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef] [Green Version]
- García-Martínez, O.; De Luna-Bertos, E.; Ramos-Torrecillas, J.; Ruiz, C.; Milia, E.; Lorenzo, M.L.; Jimenez, B.; Sánchez-Ortiz, A.; Rivas, A. Phenolic Compounds in Extra Virgin Olive Oil Stimulate Human Osteoblastic Cell Proliferation. PLoS ONE 2016, 11, e0150045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chirumbolo, S.; Bjørklund, G. Sulforaphane and 5-fluorouracil synergistically inducing autophagy in breast cancer: A possible role for the Nrf2-Keap1-ARE signaling? Food Chem. Toxicol. 2018, 112, 414–415. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Jiang, Z.; Lu, H.; Xu, Z.; Tong, R.; Shi, J.; Jia, G. Recent Advances of Natural Polyphenols Activators for Keap1-Nrf2 Signaling Pathway. Chem. Biodivers. 2019, 16, e1900400. [Google Scholar] [CrossRef]
- Baratto, M.C.; Tattini, M.; Galardi, C.; Pinelli, P.; Romani, A.; Visioli, F.; Basosi, R.; Pogni, R. Antioxidant activity of galloyl quinic derivatives isolated from P-lentiscus leaves. Free. Radic. Res. 2003, 37, 405–412. [Google Scholar] [CrossRef]
- Catalani, S.; Palma, F.; Battistelli, S.; Benedetti, S. Oxidative stress and apoptosis induction in human thyroid carcinoma cells exposed to the essential oil from Pistacia lentiscus aerial parts. PLoS ONE 2017, 12, e0172138. [Google Scholar] [CrossRef]
- Cappadone, C.; Mandrone, M.; Chiocchio, I.; Sanna, C.; Malucelli, E.; Bassi, V.; Picone, G.; Poli, F. Antitumor Potential and Phytochemical Profile of Plants from Sardinia (Italy), a Hotspot for Biodiversity in the Mediterranean Basin. Plants 2020, 9, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen-Heininger, Y.M.W.; Poynter, M.E.; Baeuerle, P.A. Recent advances towards understanding redox mechanisms in the activation of nuclear factor kappa B. Free Radic. Biol. Med. 2000, 28, 1317–1327. [Google Scholar] [CrossRef]
- Quartu, M.; Poddighe, L.; Melis, T.; Serra, M.P.; Boi, M.; Lisai, S.; Carta, G.; Murru, E.; Muredda, L.; Collu, M.; et al. Involvement of the endocannabinoid system in the physiological response to transient common carotid artery occlusion and reperfusion. Lipids Health Dis. 2017, 16, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iauk, L.; Ragusa, S.; Rapisarda, A.; Franco, S.; Nicolosi, V.M. In vitro antimicrobial activity of Pistacia lentiscus L. extracts: Preliminary report. J. Chemother. 1996, 8, 207–209. [Google Scholar] [CrossRef]
- Mandrone, M.; Bonvicini, F.; Lianza, M.; Sanna, C.; Maxia, A.; Gentilomi, G.A.; Poli, F. Sardinian plants with antimicrobial potential. Biological screening with multivariate data treatment of thirty-six extracts. Ind. Crop. Prod. 2019, 137, 557–565. [Google Scholar] [CrossRef]
- Turchetti, B.; Pinelli, P.; Buzzini, P.; Romani, A.; Heimler, D.; Franconi, F.; Martini, A. In vitro antimycotic activity of some plant extracts towards yeast and yeast-like strains. Phytother. Res. 2005, 19, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Krishna, G.; Gopalakrishnan, G. Chapter 27—Alternative in Vitro Models for Safety and Toxicity Evaluation of Nutraceuticals. In Nutraceuticals; Gupta, R.C., Ed.; Academic Press: Boston, MA, USA, 2016; pp. 355–385. ISBN 978-0-12-802147-7. [Google Scholar]
- Yang, C.S.; Landau, J.M.; Huang, M.T.; Newmark, H.L. Inhibition of Carcinogenesis by Dietary Polyphenolic Compounds. Ann. Rev. Nutr. 2001, 21, 381–406. [Google Scholar] [CrossRef] [Green Version]
- Carrol, D.H.; Chassagne, F.; Dettweiler, M.; Quave, C.L. Antibacterial Activity of Plant Species Used for Oral Health against Porphyromonas Gingivalis. PLoS ONE 2020, 15, e0239316. [Google Scholar] [CrossRef] [PubMed]
- Tariq, S.; Wani, S.; Rasool, W.; Shafi, K.; Bhat, M.A.; Prabhakar, A.; Shalla, A.H.; Rather, M.A. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb. Pathog. 2019, 134, 103580. [Google Scholar] [CrossRef]
- Djenane, D.; Yanguela, J.; Montanes, L.; Djerbal, M.; Roncales, P. Antimicrobial activity of Pistacia lentiscus and Satureja montana essential oils against Listeria monocytogenes CECT 935 using laboratory media: Efficacy and synergistic potential in minced beef. Food Control. 2011, 22, 1046–1053. [Google Scholar] [CrossRef]
- Liu, X.N.; Wang, D.; Yu, C.X.; Li, T.; Liu, J.Q.; Sun, S.J. Potential Antifungal Targets against a Candida Biofilm Based on an Enzyme in the Arachidonic Acid Cascade-A Review. Front. Microbiol. 2016, 7, 1925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Group | Species |
---|---|
Lenticella | Pistacia mexicana HBK |
Pistacia texana Swingle | |
Eu lentiscus | Pistacia lentiscus L. (mastic tree) |
Pistacia saporte Burbar | |
Pistacia weinmannifolia Poisson | |
Butmela | Pistacia atlantica Desf. |
Eu terebintus | Pistacia chinensis Bge. |
Pistacia khinjuk Stocks | |
Pistacia palaestina Bois. | |
Pistacia terebinthus L. | |
Pistacia vera L. |
Geographical Area | Ailment/Uses | Ref. |
---|---|---|
Sardinia, Italy | Oral cavity inflammation and infection, tooth ache, osteoarthritis, bronchitis, cough sedative, antipyretic, allergies, asthma, ulcerations, gastrointestinal disorders, wound healing and haemostatic | [19,25,26,27,28,29,30,31] |
Southern regions of Italy (Calabria and Campania) | Inflammation of the mouth, tooth ache, mycosis, herpes and refreshing feet | [27,32] |
Central regions of Italy (Abruzzi, Marche and Tuscany), Spain | Hypertension and cardiac diseases | [27,33] |
Spain | Analgesic, teeth strengthening, hypertension and cardiac diseases | [33,34] |
Tunisia | Antipyretic, astringent, eczema, paralysis, antimicrobial, throat infections, asthma, hypertension, cardiac diseases, paralysis, diuretic properties, renal stones, jaundice, antiatherogenic effect, antihepatotoxic and gastrointestinal diseases | [27,35] |
Algeria | Stomach ache, dyspepsia, peptic ulcer, diarrhea and rheumatism | [36] |
Morocco and North Africa | Hypertension, cardiac diseases and diabetes | [37] |
Libya | Immuno-stimulant and antimicrobial | [23] |
Jordan | Ameliorate jaundice | [38,39] |
Israel | Heartburn and soothes stomach | [40] |
Iran | Gum tissue strengthened, breath deodorizer, brain and liver tonic and gastrointestinal ailments | [41,42] |
Turkey | Throat infections, asthma, eczema, stomach ache, renal stones, paralysis, diarrhea, jaundice, anti-inflammatory, antimicrobial, antipyretic, stimulant and astringent | [43] |
Plant Material | Origin | Main Components of Essential Oils or Plant Extracts | Test Assays | Ref. |
---|---|---|---|---|
Essential oils from | ||||
Leaves | Spain | β-myrcene (19%), α-terpineol + terpinen-4-ol (15%), α-pinene (11%) | GC-MS | [53] |
Unripe fruit | β-myrcene (54%), α-pinene (22%), | GC-MS | ||
Ripe fruit | β-myrcene (19%), α-pinene (11%), δ-3-carene | GC-MS | ||
Leaves | Egypt | δ-3-carene (65%), sesquiterpene alcohols (4%) | GC-MS | [52] |
Leaves | Greece | Myrcene (20.6%), germacrene D (13.3%), E-caryophyllene (8.3%), α-cadinol (7.3%), t5-cadinene (7.0%) | GC-MS | [62] |
Leaves | Turkey | Terpinen-4-ol (29.9%), α-terpineol, (11.6%), limonene (10.6%), (Z)-3-Hex-1-enyl benzoate (6.7%), α-pinene (4.2%), β-caryophyllene (3.2%) | GC-MS | [63] |
Leaves | Morocco | Myrcene (39.2%), limonene (10.3%), β-gurjunene (7.8), germacrene (4.3%), α-pinene (2.9%), muurolene (2.9%) | GC-FID; GC-MS | [54] |
Leaves | Tunisia | α-pinene (16.8%), 4-terpinenol (11.9%), β-phellandrene (8.9%), sabinene (5.7%9, γ-terpinene (5.5%) and β-pinene (4.3%) | GC–MS | [55] |
Aerial parts | Algeria (Algiers) | Longifolene (12.8%), γ-cadinene (6.2%), trans-β-terpineol (5%), α-acorneol (4.6%), γ-muurolene (4.2%), β-pinene (3.7%) | GC, GC-MS | [64] |
Algeria (Tizi-Ouzou) | Longifolene (16.4%), trans-β-terpineol (15.6%), terpinen-4-ol (7%), γ-muurolene (5.7%), β-pinene (3.3%), α-pinene (2.8%) | GC, GC-MS | ||
Algeria (Oran) | α-pinene (19%), trans-β-terpineol (13.1%), sabinene (12.6%), β-pinene, (6.5%), (E)-β-ocimene (5.5%), longifolene (5.2%) | GC, GC-MS | ||
Leaves | Sardinia (Italy) | α-pinene (14.8–22.6%), terpinen-4-ol (14.2–28.3%), β-myrcene (1.0–18.3%), p-cymene (14.8–16.2%), sabinene (2.5–8.1%), limonene (0.9–3.8%) | GC-MS | [19] |
Leaves | Greece | α-pinene (9.4–24.9%), terpinen-4-ol (6.8–10.6%), p-cymene (0.5–7.5%), limonene (9.0–17.8%), γ-terpinene (3.1–3.6%) | GC-MS | [51] |
Leaves | Sardinia (Italy) | α-pinene, α-thujene, camphene, sabinene, β-pinene, myrcene, α-phellandrene, α-terpinene, para-cymene, β-phellandrene, trans-ocemene, γ-terpene, terpinolene, 2-nonanone, linalool, isopentyl isovalerate, terpin-4-ol, α-terpiniol and others. | GC-MS | [29] |
Leaves | Algeria | β-caryophyllene (54–198 μg g−1 dw), δ-cadinene (15–186 μg g−1 dw), cubebol (15–117 μg g−1 dw), β-bisabolene (22.1- 105 μg g−1 dw), α-pinene (1.9–105 μg g−1 dw), γ-muurolene (29.7–67.3 μg g−1 dw) | GC-MS | [65] |
Leaves | Sardinia (Italy) | Germacrene D (19.9%), β-caryophyllene (6.6%), α-pinene (6.3%), myrcene (3.9%), β-phellandrene (3.7%), α-humulene (2.4%) | GC-MS | [12] |
Leaves | Eastern Morocco | Taforalt and Saidia areas: limonene, α-pinene, α-terpineol and β-caryophyllene;Laayoune and Jerada areas: myrcene and β-caryophyllene. | GC-MS | [66] |
Fresh leaves | Greece | δ-germacrene (24.78%), myrcene (19.5%), α-cadinol (9.53%), γ-cadinene (5.59%), trans-caryophyllene (5.03%), limonene (4.84%) | GC-MS | [67] |
Dried leaves | δ-cadinene (17.04%), α-amorphene (10.32%), δ-germacrene (9.01%), trans-caryophyllene (6.32%), α-cubebene (5.55%), naphthalene (4.13%) | GC-MS | ||
Ripe fruits | Tunisia | Phenolic composition of seed oil (concentrations not shown) | GC-MS | [68] |
Leaves | Tunisia | Germacrene D (11.9%), pinene (9.9%), limonene (8.5%), δ-cadinene (8.5%), β-caryophyllene (8.2%), terpinen 4-ol (5.1%) | GC-FID, GC-MS | [69] |
Fruits | Tunisia | α-pinene (13.35%), α-phellandrene (10.12%), β-phellandrene (10.45%), sabinene (7.01%), germacrene-D (6.86%), β-caryophyllene (4.58%) | GC-MS | [70] |
Leaves | Tuscany (Italy) | α-pinene (24.6–9.2%), 1–4 terpineol (14.9–7.1%), β-phellandrene (11.4–4.7%), β-pinene (8.6–1.2%), β-mircene (9.2–0.7%), α-terpineol (8.4–4.9%) | GC-MS | [71] |
Leaves and twigs | Sardinia (Italy) | Terpinen-4-ol (25.2%), α-phellandrene (11.9%), β-phellandrene (10.2%), γ-terpinene (10.1%), α-pinene (7.6%) | GC-FID, GC-MS | [72] |
Fruits | Tunisia | 4-{3-[(2hydroxybenzoyl) amino] anilino}4-oxobut-2-enoic acid (28.96%), β-myrcene (11.47%), 3-pentadecylphenol (8.51%), p-tolyl ester (8.36%), amino formic acid (7.51%) | GC–MS | [73] |
Male flowers | Tunisia | β-caryophyllene (12.8%), germacrene-D (9.6%), elemol (8.9%), α-terpineol (7.8%), γ-cadinene (7.1%), bornyl acetate (6.2%) | GC-MS | [74] |
Female flowers | α-limonene (28.7%), germacrene-D (23.7%), elemol (6.7%), β-caryophyllene (6.6%), α-pinene (6.0%), bornyl acetate (3.7%) | GC-MS | ||
Leaves of male plants at flowering | α-limonene (18.8%), germacrene-D (13.1%), β-caryophyllene (8.8%), δ-cadinene (8.7%), γ-cadinene (6.2%), α-pinene (4.8%) | GC-MS | ||
Leaves of female plants at flowering | Germacrene-D (20.7%), δ-cadinene (15.6%), β-caryophyllene (12.1%), γ-cadinene (6.6%), δ-cadinol (6.1%), α-limonene (5%) | GC-MS | ||
Ripe fruits | β-myrcene (75.6%), α-pinene (12.6%), α-limonene (3.2%), α-terpineol (1.4%), camphene (0.8%) | GC-MS | ||
Leaves | Morocco | Myrcene (33.5%), α-pinene (19.2%), limonene (6.6%), α-phellandrene (4.6%), γ-terpineol (3.7%), α-terpineol (3.6%) | GC-MS | B [75] |
Leaves | Sardinia (Italy) | α-pinene (16.9%), terpinen-4-ol (16.5%), sabinene (7.8%), α-phellandrene (7.4%), γ-terpinene (6.3%), β-pinene (4.3%) | GC-MS | [49] |
Plant extracts/solvent used | ||||
Leaves/ethyl acetate and methanol | Italy | 3,5-O-digalloyl quinic acid (26.8 ± 0.15 mg/g DW), 3,4,5-O-trigalloyl quinic acid (10.3 ± 2.45 mg/g DW), 5-O- galloyl quinic acid (9.6 ± 2.45 mg/g DW), myricetin 3-O-rhamnoside (6.8 ± 1.04 mg/g DW), myricetin 3-O-rutinoside (4.5 ± 0.18 mg/g DW), myricetin glucuronide (3.9 ± 0.65 mg/g DW) | HPLC-DAD, HPLC-MS, NMR | [60] |
Berries/methanol | Apulia (Italy) | Cyanidin 3-O-glucoside (71%), delphinidin 3-O-glucoside, cyanidin 3- O arabinoside (28–31%) | HPLC-DAD-MS | [76] |
Fruits during maturation/petroleum ether | Tunisia | Oils, fatty acids and sterols | GC-MS | [35] |
Leaves/methanol | Algeria | 46 compounds (most abundant flavonoids, phenolic acids and their derivatives) | HPLC-ESI-QTOF | [61] |
Leaves/methanol | Italy | 46 secondary metabolites | LC-ESI-MS/MS | [77] |
Fruits/methanol-water | Tunisia | Total phenolic acids 436.4–2762.7 mg/kg; total flavones 75.3–1222.9 mg/kg; total flavonols 24.2–377.4 mg/kg; total secoiridoids 12.6–366.8 mg/kg; total phenols 538.0–4260.6 mg/kg | HPLC-DAD/MSD | [78] |
Leaves/ethanol | Italy | Tannin derivatives (70.5%), myricetin derivatives (22%), quercetin derivatives (7.2%) | HPLC-DAD | [79] |
Leaves/methanol | Egypt | α-pinene (38.1%), 3,5-O-digalloyl quinic acid (13.5%), D-limonene (11.9%), α-phellandrene (10.1%), β-pinene (9.5%), γ muurolene (8.0%), luteolin-3-O-rutinoside (7.8%), quercetin 3-O-di-hexose O-pentose (7.6%), 3,4,5-O-trigalloyl quinic acid (6.1%), quercetin 3-O-glucuronide (4.6%), epicatechin 3-gallate (4.5%), camphene (3.8%) | UHPLC-ESI-MS, GC-MS | [80] |
Exp. Setting | Origin Model | Plant Material | Model | Exp. Protocol | Results | Ref. |
---|---|---|---|---|---|---|
Antioxidant activity | Sardinia, Italy | Leaves oil | Cells free | DPPH as Trolox equivalent antioxidant capacity (TEAC) | Great seasonal variability inhibition | [19] |
Algeria | Leaves extract | Cells free | FRAP | ↑ High | [86] | |
H2O2 scavenging activity | ↓ Low | |||||
Algeria | Leaves extract | Cells free | Ferric reducing antioxidant power (FRAP) | ↑ High and dose dependent | [94] | |
DPPH | ↑↑ Very high | |||||
H2O2 scavenging activity | ↑↑ Very high | |||||
Linoleic acid peroxidation inhibition | ↑↑↑ Outstanding | |||||
Zakynthos (Greece) | Leaves extract | Cells free | DPPH | ↑↑ Very high | [51] | |
Ferric reducing antioxidant power (FRAP) | ↑ High | |||||
Sardinia, Italy | Leaves extract | Cells free | DPPH as Trolox equivalents | ↑↑ High | [95] | |
ABTS as Trolox equivalents | ↑↑ High | |||||
Algeria | Leaves extract | Cells free | DPPH (%) | ↑ High | [35] | |
Ferric reducing antioxidant power (FRAP) | ↑ High | |||||
β-carotene bleaching method (%) | ↑↑ Very high | |||||
Morocco | Fruits oil, leaves oil | Cells free | DPPH | Fruits oil: ↑↑ high Leaves oil: ↑ high | [75] | |
FRAP | Fruits oil: ↑↑ high Leaves oil: ↑ high | |||||
ABTS | Fruits oil: ↑↑ high Leaves oil: ↑ high | |||||
Campania (Italy) | Leaves extract | Cell lines | Lipid peroxidation | ↑↑ Very high | [15] | |
Intracellular ROS | ↑↑Very high | |||||
Oxidized glutathione | ↑↑ Very high | |||||
Sardinia, Italy | Leaves oil | Animals | DHA | ↑↑ High protection | [12] | |
Algeria | Fruits extract, leaves extract | Cells free and cell lines | Intracellular ROS in THP-1 monocytic cells | Fruits extract: dose-dependent protection | [96] | |
ORAC as μmol Trolox Equivalents | Fruits extract: ↑ High; Leaves extract: ↑↑ Very high | |||||
Sardinia, Italy | Leaves oil | Cells free and cell lines, human fibroblasts | H2O2 scavenging activity | ↓ Low | [49] | |
ECC | ↓ Low | |||||
Anti-inflammatory activity | Sardinia, Italy | Leaves oil | Animals | COX-2 | ↑↑ High inhibition | [12] |
Sardinia, Italy | Leaves oil | Animals | TNF-α | ↓↓ High decrease | [29] | |
IL-6 | ↓↓↓ High decrease | |||||
Algeria | Fruits extract, leaves extract | Cells free and cell lines | IL-1β inhibition by ATP stimulated THP-1 | Fruit extract: no reduction; Leaves extract: ↑↑ high | [96] | |
IL-1β inhibition by H2O2 stimulated THP-1 | Fruit extract: ↓ low; Leaves extract: dose-dependent | |||||
Sardinia, Italy | Leaves oil | Cells free and cell lines, Human fibroblasts | COX-1 | Inhibition | [49] | |
COX-2 | ↑ high inhibition | |||||
LOX | no inhibition |
(a) | ||||||
---|---|---|---|---|---|---|
Origin | Plant Material | Bacteria | Origin of Strain | Antimicrobial Activity | Ref. | |
Sicily (Italy) | Aerial parts ethanol extract, aerial parts water extracts | Staphylococcus aureus | ATCC 29213 | Yes | [107] | |
Escherichia coli | ATCC 35218 | Yes | ||||
Tunisia | Leaves essential oil | S. aureus | ATCC 25923 | Yes | [55] | |
Enterococcus faecalis | ATCC 29212 | Yes | ||||
Salmonella enteritidis | ATCC 13076 | Yes | ||||
Salmonella typhimurium | NRRLB 4420 | Yes | ||||
E. coli | ATCC 25922 | Yes | ||||
Pseudomonas aeruginosa | ATCC 27853 | Yes | ||||
Algeria | Leaves ethanol extract | S.aureus | ATCC 601 | Yes | [86] | |
Listeria monocytogenes | ATCC 19111 | Yes | ||||
Klebsiella pneumoniae | 5215773 | Yes | ||||
P. aeruginosa | 22212004 | Yes | ||||
S. typhi | 4404540 | Yes | ||||
Proteus mirabilis | 0536040 | Yes | ||||
E. coli | 5044172 | Yes | ||||
Enterobacter cloacae | 1305573 | Yes | ||||
444 | Yes | |||||
Eastern Morocco | Aerial parts from different areas of Morocco essential oils | S.aureus | Not given | Yes | [66] | |
Streptococcus spp. | Not given | Yes | ||||
E. coli | Not given | Yes | ||||
K. pneumoniae | Not given | Yes | ||||
Pseudomonas spp. | Not given | Yes | ||||
Salmonella spp. | Not given | Yes | ||||
Tunisia | Fruits essential oil, phenolic extract | S.aureus | Not given | Yes | [68] | |
Bacillus subtilis | Not given | Yes | ||||
L. monocytogens | Not given | Yes | ||||
E. coli | Not given | Yes | ||||
P. aeruginosa | Not given | Yes | ||||
Aeromonas hydrophila | Not given | Yes | ||||
Salmonellatyphimurium | Not given | Yes | ||||
Algeria | Aerial part methanol extract | S.aureus | Not given | Yes | [36] | |
E. coli | Not given | Yes | ||||
P. aeruginosa | Not given | Yes | ||||
Algeria | Leaves and stems methanol extract, leaves and stems aqueous extracts | S.aureus E. coli | Not given Not given | No No | [44] | |
Sardinia (Italy) | Fruits essential oil | Bacillus clausii | Probiotic | No | [58] | |
Staphylococcushominis | Clinical | No | ||||
S.aureus | ATCC 6538 | No | ||||
Streptococcus pyogenes | Clinical | No | ||||
Streptococcus agalactiae | Clinical | Yes | ||||
Streptococcus salivarius | Probiotic (n = 2) | No | ||||
Streptococcus mitis | Clinical | No | ||||
Streptococcus mutans | Collection | No | ||||
Streptococcus intermedius | Collection | Yes | ||||
Sardinia (Italy) | Fruit methanol extract, leaves methanol extract, | S. aureus | ATCC 25293 | Yes | [108] | |
Staphylococcusepidermidis | ATCC 12,228 | Yes | ||||
E. coli | ATCC 25,922 | In part | ||||
K. pneumoniae | ATCC 9591 | In part | ||||
Sardinia (Italy) | Leaves essential oil | Streptococcus gordonii | ATCC 10,558 | Yes | [49] | |
Actinomyces naeslundii | ATCC 12104 | Yes | ||||
Fusobacterium nucleatum | ATCC 25586 | Yes | ||||
Porphyromonas gingivalis | ATCC 33277 | Yes | ||||
P. gingivalis | Clinical (n = 2) | Yes | ||||
Tannerella forsythia | ATCC 43300 | Yes | ||||
T. forsythia | Clinical (n = 2) | Yes | ||||
(b) | ||||||
Origin | Plant Material | Fungi | Origin of Strain | Antifungal Activity | Ref. | |
Sicily (Italy) | Aerial parts ethanol extract, aerial parts water extracts Leaves ethyl acetate and methanol extract | Candida albicans Candida parapsilosis Candida glabrata Cryptococcus neoformans | Clinical (n = 18) Clinical (n = 9) Clinical (n = 11) Clinical (n = 5) | Yes Yes Yes Yes | [107] | |
Tuscany (Italy) | Leaves ethyl acetate and methanol extract | C.albicans | Clinical | No | [109] | |
C.glabrata | Clinical | No | ||||
C.parapsilosis | Clinical | No | ||||
C. tropicalis | Clinical | No | ||||
C. zeylanoides | Clinical | No | ||||
Algeria | Leaves ethanol extract | C.albicans | 444 | Yes | [86] | |
Tunisia | Fruits essential oil, phenolic extract | Aspergillus flavus | Not given | No | [68] | |
Aspergillus niger | Not given | No | ||||
C.albicans | Not given | In part | ||||
Sardinia (Italy) | Fruits essential oil | C. albicans | Clinical | No | [58] | |
C.glabrata | Clinical | No | ||||
C.krusei | Clinical | No | ||||
Sardinia (Italy) | Leaves essential oil | C.albicans | Laboratory | Yes | [49] | |
C.albicans | Clinical (n = 2) | Yes | ||||
C.glabrata | Laboratory | Yes | ||||
C.glabrata | Clinical (n = 2) | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milia, E.; Bullitta, S.M.; Mastandrea, G.; Szotáková, B.; Schoubben, A.; Langhansová, L.; Quartu, M.; Bortone, A.; Eick, S. Leaves and Fruits Preparations of Pistacia lentiscus L.: A Review on the Ethnopharmacological Uses and Implications in Inflammation and Infection. Antibiotics 2021, 10, 425. https://doi.org/10.3390/antibiotics10040425
Milia E, Bullitta SM, Mastandrea G, Szotáková B, Schoubben A, Langhansová L, Quartu M, Bortone A, Eick S. Leaves and Fruits Preparations of Pistacia lentiscus L.: A Review on the Ethnopharmacological Uses and Implications in Inflammation and Infection. Antibiotics. 2021; 10(4):425. https://doi.org/10.3390/antibiotics10040425
Chicago/Turabian StyleMilia, Egle, Simonetta Maria Bullitta, Giorgio Mastandrea, Barbora Szotáková, Aurélie Schoubben, Lenka Langhansová, Marina Quartu, Antonella Bortone, and Sigrun Eick. 2021. "Leaves and Fruits Preparations of Pistacia lentiscus L.: A Review on the Ethnopharmacological Uses and Implications in Inflammation and Infection" Antibiotics 10, no. 4: 425. https://doi.org/10.3390/antibiotics10040425
APA StyleMilia, E., Bullitta, S. M., Mastandrea, G., Szotáková, B., Schoubben, A., Langhansová, L., Quartu, M., Bortone, A., & Eick, S. (2021). Leaves and Fruits Preparations of Pistacia lentiscus L.: A Review on the Ethnopharmacological Uses and Implications in Inflammation and Infection. Antibiotics, 10(4), 425. https://doi.org/10.3390/antibiotics10040425