Antimicrobial Resistance Patterns of Escherichia coli Isolated from Sheep and Beef Farms in England and Wales: A Comparison of Disk Diffusion Interpretation Methods
Abstract
:1. Introduction
2. Results
2.1. Comparison of Methods to Interpret Resistance
2.2. Farm-Level Susceptibility
2.3. Cluster Analysis
2.4. Multilevel Logistic Regression Model
2.4.1. Base Model
2.4.2. Univariable Multilevel Logistic Regression Models
2.4.3. Multivariable Multilevel Logistic Regression Model
3. Discussion
Limitations
4. Materials and Methods
4.1. Participant Recruitment
4.2. Sample Collection
4.3. Isolation of Escherichia coli
4.4. Antimicrobial Susceptibility Testing
4.5. Terminology
4.6. Data Analysis
4.6.1. Determining Cut-Off Values
4.6.2. Descriptive Statistics
4.6.3. Cluster Analysis
4.6.4. Multilevel Logistic Regression Base Model
4.6.5. Multivariable Multilevel Random-Intercept Logistic Regression
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marshall, B.M.; Levy, S.B. Food Animals and Antimicrobials: Impacts on Human Health. Clin. Microbiol. Rev. 2011, 24, 718–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, P.; Remnant, J.G.; Green, M.J.; Gascoigne, E.; Gibbon, N.; Hyde, R.; Porteous, J.R.; Schubert, K.; Lovatt, F.; Corbishley, A. Quantitative analysis of antibiotic usage in British sheep flocks. Vet. Rec. 2017, 181, 511. [Google Scholar] [CrossRef] [PubMed]
- Doidge, C.; Hudson, C.D.; Burgess, R.; Lovatt, F.; Kaler, J. Antimicrobial use practices and opinions of beef farmers in England and Wales. Vet. Rec. 2020, 187, e119. [Google Scholar] [CrossRef]
- DEFRA. Farming Statistics Final Land Use, Livestock Populations and Agricultural Workforce at 1 June 2018—England. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/869064/structure-jun2018final-eng-28feb20.pdf (accessed on 4 November 2020).
- Welsh Government. Farming Facts and Figure, Wales. 2019. Available online: https://gov.wales/sites/default/files/statistics-and-research/2019-07/farming-facts-and-figures-2019-492.pdf (accessed on 12 December 2020).
- VMD. UK Veterinary Antibiotic Resistance and Sales Surveillance Report. 2019. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/936107/UK-VARSS_2019_Report__2020_.pdf (accessed on 19 November 2020).
- Hennessey, M.; Whatford, L.; Payne-Gifford, S.; Johnson, K.F.; Van Winden, S.; Barling, D.; Häsler, B. Antimicrobial & antiparasitic use and resistance in British sheep and cattle: A systematic review. Prev. Vet. Med. 2020, 185, 105174. [Google Scholar] [CrossRef] [PubMed]
- Vali, L.; Hamouda, A.; Hoyle, D.V.; Pearce, M.C.; Whitaker, L.H.R.; Jenkins, C.; Knight, H.I.; Smith, A.W.; Amyes, S.G.B. Antibiotic resistance and molecular epidemiology of Escherichia coli O26, O103 and O145 shed by two cohorts of Scottish beef cattle. J. Antimicrob. Chemother. 2007, 59, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Enne, V.I.; Cassar, C.; Sprigings, K.; Woodward, M.J.; Bennett, P.M. A high prevalence of antimicrobial resistant Escherichia coli isolated from pigs and a low prevalence of antimicrobial resistant E. coli from cattle and sheep in Great Britain at slaughter. FEMS Microbiol. Lett. 2008, 278, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Silva, N.; Phythian, C.J.; Currie, C.; Tassi, R.; Ballingall, K.T.; Magro, G.; McNeilly, T.N.; Zadoks, R.N. Antimicrobial resistance in ovine bacteria: A sheep in wolf’s clothing? PLoS ONE 2020, 15, e0238708. [Google Scholar] [CrossRef]
- Snow, L.C.; Wearing, H.; Stephenson, B.; Teale, C.J.; Coldham, N.G. Investigation of the presence of ESBL-producing Escherichia coli in the North Wales and West Midlands areas of the UK in 2007 to 2008 using scanning surveillance. Vet. Rec. 2011, 169, 656. [Google Scholar] [CrossRef] [PubMed]
- Velasova, M.; Smith, R.P.; Lemma, F.; Horton, R.A.; Duggett, N.; Evans, J.; Tongue, S.C.; Anjum, M.F.; Randall, L. Detection of extended-spectrum β-lactam, AmpC and carbapenem resistance in Enterobacteriaceae in beef cattle in Great Britain in 2015. J. Appl. Microbiol. 2019, 126, 1081–1095. [Google Scholar] [CrossRef] [PubMed]
- Varga, C.; Rajić, A.; McFall, M.E.; Reid-Smith, R.J.; Deckert, A.E.; Checkley, S.L.; McEwen, S.A. Associations between reported on-farm antimicrobial use practices and observed antimicrobial resistance in generic fecal Escherichia coli isolated from Alberta finishing swine farms. Prev. Vet. Med. 2009, 88, 185–192. [Google Scholar] [CrossRef]
- Bosman, A.; Wagenaar, J.; Stegeman, J.; Vernooij, J.; Mevius, D. Antimicrobial resistance in commensal Escherichia coli in veal calves is associated with antimicrobial drug use. Epidemiol. Infect. 2014, 142, 1893–1904. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, J.F.; Boland, F.M.; Egan, J.B.; Fanning, S.W.; Markey, B.K.; Leonard, F.C. Antimicrobial Resistance of Faecal Escherichia coli Isolates from Pig Farms with Different Durations of In-feed Antimicrobial Use. Zoonoses Public Health 2016, 63, 241–250. [Google Scholar] [CrossRef]
- Berge, A.C.; Hancock, D.D.; Sischo, W.M.; Besser, T.E. Geographic, farm, and animal factors associated with multiple antimicrobial resistance in fecal Escherichia coli isolates from cattle in the western United States. J. Am. Vet. Med. Assoc. 2010, 236, 1338–1344. [Google Scholar] [CrossRef]
- Mainda, G.; Bessell, P.R.; Muma, J.B.; McAteer, S.P.; Chase-Topping, M.E.; Gibbons, J.; Stevens, M.P.; Gally, D.L.; Bronsvoort, B.M.D. Prevalence and patterns of antimicrobial resistance among Escherichia coli isolated from Zambian dairy cattle across different production systems. Sci. Rep. 2015, 5, srep12439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mir, R.A.; Weppelmann, T.A.; Johnson, J.A.; Archer, D.; Morris, J.G., Jr.; Jeong, K.C. Identification and Characterization of Cefotaxime Resistant Bacteria in Beef Cattle. PLoS ONE 2016, 11, e0163279. [Google Scholar] [CrossRef] [Green Version]
- Mir, R.A.; Weppelmann, T.A.; Teng, L.; Kirpich, A.; Elzo, M.A.; Driver, J.D.; Jeong, K.C. Colonization Dynamics of Cefotaxime Resistant Bacteria in Beef Cattle Raised Without Cephalosporin Antibiotics. Front. Microbiol. 2018, 9, 500. [Google Scholar] [CrossRef] [PubMed]
- Markland, S.; Weppelmann, T.A.; Ma, Z.; Lee, S.; Mir, R.A.; Teng, L.; Ginn, A.; Lee, C.; Ukhanova, M.; Galindo, S.; et al. High Prevalence of Cefotaxime Resistant Bacteria in Grazing Beef Cattle: A Cross Sectional Study. Front. Microbiol. 2019, 10, 176. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Mir, R.A.; Park, S.H.; Kim, D.; Kim, H.-Y.; Boughton, R.K.; Morris, J.G., Jr.; Jeong, K.C. Prevalence of extended-spectrum β-lactamases in the local farm environment and livestock: Challenges to mitigate antimicrobial resistance. Crit. Rev. Microbiol. 2020, 46, 1–14. [Google Scholar] [CrossRef] [PubMed]
- EUCAST. EUCAST Disk Diffusion Method for Antimicrobial Susceptibility Testing. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/2020_manuals/Manual_v_8.0_EUCAST_Disk_Test_2020.pdf (accessed on 24 November 2020).
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; Clinical and Laboratory Standards Institute: Pittsburgh, PA, USA, 2020. [Google Scholar]
- EUCAST. Breakpoint Tables for Interpretation of MICs and Zone Diameters; Version 8.1; EUCAST: Växjö, Sweden, 2018; Available online: http://www.eucast.org (accessed on 24 November 2020).
- EUCAST. EUCAST Definitions of Clinical Breakpoints and Epidemiological Cutoff Values. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/EUCAST_SOPs/EUCAST_definitions_of_clinical_breakpoints_and_ECOFFs.pdf (accessed on 24 November 2020).
- Kahlmeter, G. Defining antibiotic resistance-towards international harmonization. Upsala J. Med Sci. 2014, 119, 78–86. [Google Scholar] [CrossRef]
- Dias, D.; Torres, R.T.; Kronvall, G.; Fonseca, C.; Mendo, S.; Caetano, T. Assessment of antibiotic resistance of Escherichia coli isolates and screening of Salmonella spp. in wild ungulates from Portugal. Res. Microbiol. 2015, 166, 584–593. [Google Scholar] [CrossRef]
- Kronvall, G.; Smith, P. Normalized resistance interpretation, the NRI method. APMIS 2016, 124, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.V.; Siler, J.D.; Ng, J.C.; Davis, M.A.; Grohn, Y.T.; Warnick, L.D. Effect of on-farm use of antimicrobial drugs on resistance in fecal Escherichia coli of preweaned dairy calves. J. Dairy Sci. 2014, 97, 7644–7654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, Y.-J.; Kim, D.-H.; Roh, H.J.; Park, M.-A.; Park, C.-I.; Smith, P. Epidemiological cut-off values for disc diffusion data generated by standard test protocols from Edwardsiella tarda and Vibrio harveyi. Aquac. Int. 2016, 24, 1153–1161. [Google Scholar] [CrossRef]
- Smith, P.; Schwarz, T.; Verner-Jeffreys, D.W. Use of normalised resistance analyses to set interpretive criteria for antibiotic disc diffusion data produce by Aeromonas spp. Aquaculture 2012, 326–329, 27–35. [Google Scholar] [CrossRef]
- Li, X.-Z.; Mehrotra, M.; Ghimire, S.; Adewoye, L. β-Lactam resistance and β-lactamases in bacteria of animal origin. Vet. Microbiol. 2007, 121, 197–214. [Google Scholar] [CrossRef]
- EUCAST. Subcommittee for Detection of Resistance Mechanisms and Specific Resistances of Clinical and/or Epidemiological Importance. EUCAST Guidelines for Detection of Resistance Mechanisms and Specific Resistances of Clinical and/or Epidemiological Importance, Version 2.0. Available online: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Resistance_mechanisms/EUCAST_detection_of_resistance_mechanisms_170711.pdf (accessed on 24 November 2020).
- Cheney, T.E.A.; Smith, R.P.; Hutchinson, J.P.; Brunton, L.A.; Pritchard, G.; Teale, C.J. Cross-sectional survey of antibiotic resistance in Escherichia coli isolated from diseased farm livestock in England and Wales. Epidemiol. Infect. 2015, 143, 2653–2659. [Google Scholar] [CrossRef] [Green Version]
- Schubert, H.; Morley, K.; Puddy, E.F.; Arbon, R.; Findlay, J.; Mounsey, O.; Gould, V.C.; Vass, L.; Evans, M.; Rees, G.M.; et al. Reduced Antibacterial Drug Resistance and blaCTX-M β-Lactamase Gene Carriage in Cattle-Associated Escherichia coli at Low Temperatures, at Sites Dominated by Older Animals, and on Pastureland: Implications for Surveillance. Appl. Environ. Microbiol. 2021, 87, e01468-20. [Google Scholar] [CrossRef]
- Doidge, C.; Ruston, A.; Lovatt, F.; Hudson, C.; King, L.; Kaler, J. Farmers’ Perceptions of Preventing Antibiotic Resistance on Sheep and Beef Farms: Risk, Responsibility, and Action. Front. Vet. Sci. 2020, 7, 524. [Google Scholar] [CrossRef]
- RUMA. Targets Task Force Report. Available online: https://www.ruma.org.uk/wp-content/uploads/2020/11/Targets-Task-Force-Report-2020-FINAL-181120-download.pdf (accessed on 30 November 2020).
- Harada, K.; Asai, T. Role of antimicrobial selective pressure and secondary factors on antimicrobial resistance prevalence in Escherichia coli from food-producing animals in Japan. J. Biomed. Biotechnol. 2010, 2010, 180682. [Google Scholar] [CrossRef] [Green Version]
- EMA. Categorisation of Antibiotics in the European Union. Available online: https://www.ema.europa.eu/en/documents/report/categorisation-antibiotics-european-union-answer-request-european-commission-updating-scientific_en.pdf (accessed on 30 November 2020).
- Knapp, C.W.; McCluskey, S.M.; Singh, B.K.; Campbell, C.D.; Hudson, G.; Graham, D.W. Antibiotic Resistance Gene Abundances Correlate with Metal and Geochemical Conditions in Archived Scottish Soils. PLoS ONE 2011, 6, e27300. [Google Scholar] [CrossRef]
- Knapp, C.W.; Callan, A.C.; Aitken, B.; Shearn, R.; Koenders, A.; Hinwood, A. Relationship between antibiotic resistance genes and metals in residential soil samples from Western Australia. Environ. Sci. Pollut. Res. 2017, 24, 2484–2494. [Google Scholar] [CrossRef]
- Song, J.; Rensing, C.; Holm, P.E.; Virta, M.; Brandt, K.K. Comparison of Metals and Tetracycline as Selective Agents for Development of Tetracycline Resistant Bacterial Communities in Agricultural Soil. Environ. Sci. Technol. 2017, 51, 3040–3047. [Google Scholar] [CrossRef] [PubMed]
- Arya, S.; Williams, A.; Reina, S.V.; Knapp, C.W.; Kreft, J.-U.; Hobman, J.L.; Stekel, D.J. Towards a general model for predicting minimal metal concentrations co-selecting for antibiotic resistance plasmids. Environ. Pollut. 2021, 275, 116602. [Google Scholar] [CrossRef] [PubMed]
- Carson, C.A.; Reid-Smith, R.; Irwin, R.J.; Martin, W.S.; McEwen, S.A. Antimicrobial resistance in generic fecal Escherichia coli from 29 beef farms in Ontario. Can. J. Vet. Res. 2008, 72, 119–128. [Google Scholar]
- Schmid, A.; Hörmansdorfer, S.; Messelhäusser, U.; Käsbohrer, A.; Sauter-Louis, C.; Mansfeld, R. Prevalence of Extended-Spectrum β-Lactamase-Producing Escherichia coli on Bavarian Dairy and Beef Cattle Farms. Appl. Environ. Microbiol. 2013, 79, 3027–3032. [Google Scholar] [CrossRef] [Green Version]
- APHA. Livestock Demographic Data Group: Cattle Population Report. Available online: http://apha.defra.gov.uk/documents/surveillance/diseases/lddg-pop-report-cattle-1118.pdf (accessed on 2 February 2021).
- APHA. Livestock Demographic Data Group: Sheep Population Report. Available online: http://apha.defra.gov.uk/documents/surveillance/diseases/lddg-pop-report-sheep-1118.pdf (accessed on 2 February 2021).
- Benedict, K.M.; Gow, S.P.; Checkley, S.; Booker, C.W.; McAllister, T.A.; Morley, P.S. Methodological comparisons for antimicrobial resistance surveillance in feedlot cattle. BMC Vet. Res. 2013, 9, 216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosager, W.N.; Peter, N.J.; Lind, J.S.E.; Svend, H.; Matthew, D.; Steen, P.K. Comparison of antimicrobial resistance in E. coli isolated from rectal and floor samples in pens with diarrhoeic nursery pigs in Denmark. Prev. Vet. Med. 2017, 147, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.; Finnegan, W.; Ngo, T.; Kronvall, G. Influence of incubation temperature and time on the precision of MIC and disc diffusion antimicrobial susceptibility test data. Aquaculture 2018, 490, 19–24. [Google Scholar] [CrossRef]
- Fleiss, J.L.; Levin, B.; Paik, M.C. Statistical Methods for Rates and Proportions, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Romesburg, C. Cluster Analysis for Researchers; Lulu Press: Morrisville, NC, USA, 2004. [Google Scholar]
- Met Office. Historic Station Data. Available online: https://www.metoffice.gov.uk/research/climate/maps-and-data/historic-station-data (accessed on 24 November 2020).
- UK Soil Observatory. Advanced Soil Geochemical Atlas of England and Wales. Available online: http://ukso.org/static-maps/advanced-soil-geochemical-atlas-of-england-and-wales.html (accessed on 5 December 2020).
- Saini, V.; McClure, J.; Léger, D.; Dufour, S.; Sheldon, A.; Scholl, D.; Barkema, H. Antimicrobial use on Canadian dairy farms. J. Dairy Sci. 2012, 95, 1209–1221. [Google Scholar] [CrossRef]
- Charlton, C.; Rabash, J.; Browne, W.; Healy, M.; Cameron, B. MLwiN; 3.02; Centre for Multilevel Modelling, University of Bristol: Brisotl, UK, 2017. [Google Scholar]
- Leyland, A.H.; Groenewegen, P.P. Apportioning Variation in Multilevel Models. In Multilevel Modelling for Public Health and Health Services Research; Leyland, A.H., Groenewegen, P.P., Eds.; Springer: Cham, Switzerland, 2020; pp. 89–104. [Google Scholar] [CrossRef]
Farm No. | Region | n Beef Cattle (All Ages) | n Ewes | n Sheep Isolates | n Beef Isolates |
---|---|---|---|---|---|
1 | West Midlands | 220 | 0 | 0 | 30 |
2 | West Midlands | 205 | 370 | 10 | 15 |
3 | West Midlands | 281 | 900 | 13 | 16 |
4 | Wales | 125 | 750 | 15 | 16 |
5 | South West England | 2240 | 0 | 0 | 32 |
6 | West Midlands | 172 | 350 | 25 | 15 |
7 | West Midlands | 342 | 0 | 0 | 32 |
8 | South West England | 500 | 0 | 0 | 36 |
9 | South West England | 218 | 1058 | 33 | 0 |
10 | Wales | 236 | 840 | 30 | 0 |
11 | Wales | 93 | 550 | 26 | 17 |
12 | Wales | 0 | 250 | 15 | 0 |
13 | Wales | 109 | 584 | 30 | 0 |
14 | South East England | 198 | 800 | 10 | 13 |
15 | Wales | 39 | 538 | 28 | 0 |
16 | Wales | 41 | 500 | 39 | 0 |
17 | Wales | 179 | 1850 | 15 | 15 |
18 | Wales | 600 | 800 | 15 | 15 |
19 | West Midlands | 107 | 0 | 0 | 30 |
20 | Wales | 161 | 582 | 30 | 0 |
21 | West Midlands | 0 | 300 | 39 | 0 |
22 | South West England | 49 | 480 | 29 | 0 |
23 | West Midlands | 157 | 520 | 40 | 0 |
24 | South West England | 64 | 560 | 30 | 0 |
25 | South West England | 209 | 600 | 29 | 0 |
26 | North East England | 200 | 500 | 25 | 15 |
27 | North West England | 420 | 0 | 0 | 30 |
28 | South West England | 241 | 0 | 0 | 30 |
29 | Wales | 0 | 300 | 28 | 0 |
30 | Wales | 145 | 466 | 27 | 15 |
31 | Wales | 23 | 360 | 39 | 0 |
32 | Wales | 564 | 1600 | 15 | 15 |
33 | West Midlands | 285 | 0 | 0 | 29 |
34 | West Midlands | 0 | 600 | 31 | 0 |
35 | Wales | 40 | 425 | 33 | 0 |
Antimicrobials | Disk Content | Clinical Breakpoint (S ≥ mm) | ECOFF WT ≥ mm | Sheep COWT WT ≥ mm | SD | Beef COWT WT ≥ mm | SD |
---|---|---|---|---|---|---|---|
Neomycin | 30 μg | - | - | 13 | 1.46 | 14 | 1.87 |
Spectinomycin | 100 μg | - | - | 19 | 1.91 | 18 | 2.06 |
Tetracycline | 30 μg | 15 | - | 25 | 2.25 | 26 | 2.17 |
Amoxicillin/Clavulanic Acid | 20–10 µg | 19 | 16 | 15 | 3.15 | 15 * | 3.66 |
Ciprofloxacin | 5 µg | 25 | 25 | 27 * | 3.72 | 32 | 2.42 |
Ampicillin | 10 µg | 14 | 14 | 12 | 3.26 | 11 * | 3.61 |
Sulfamethoxazole-Trimethoprim | 23.75–1.25 µg | 14 | 21 | 24 | 2.96 | 24 | 2.72 |
Chloramphenicol | 30 µg | 17 | 17 | 18 * | 3.50 | 17 * | 3.65 |
Cefotaxime | 5 µg | 20 | 21 | 26 | 2.26 | 26 | 3.04 |
Imipenem | 10 µg | 22 | 24 | 27 | 2.82 | 27 * | 3.88 |
Antimicrobial | n Isolates Sheep | Clinical Breakpoint (% S) | ECOFF (% WT) | Sheep COWT (% WT) | Kappa |
---|---|---|---|---|---|
Neomycin | 699 | - | - | 99.6% | N/A |
Spectinomycin | 699 | - | - | 95.9% | N/A |
Tetracycline | 699 | 93.0% | - | 92.1% | 0.938 |
Amoxicillin/Clavulanic Acid | 699 | 95.4% | 97.4% | 98.1% | 0.689 |
Ciprofloxacin | 699 | 100% | 100% | 100% | N/A |
Ampicillin | 699 | 94.7% | 94.7% | 95.1% | 0.971 |
Sulfamethoxazole-Trimethoprim | 699 | 98.0% | 98.0% | 97.9% | 0.976 |
Chloramphenicol | 699 | 99.3% | 99.3% | 99.3% | 1.000 |
Cefotaxime | 699 | 99.7% | 99.1% | 98.7% | 0.585 |
Imipenem | 699 | 100% | 100% | 100% | N/A |
Antimicrobial | n Isolates Beef | Clinical Breakpoint (% S) | ECOFF (% WT) | Beef COWT (% WT) | Kappa |
---|---|---|---|---|---|
Neomycin | 416 | - | - | 100% | N/A |
Spectinomycin | 416 | - | - | 99.0% | N/A |
Tetracycline | 416 | 88.2% | - | 87.7% | 0.977 |
Amoxicillin/Clavulanic Acid | 416 | 98.3% | 99.5% | 99.8% | 0.395 |
Ciprofloxacin | 416 | 99.8% | 99.8% | 99.0% | 0.423 |
Ampicillin | 416 | 97.8% | 97.8% | 97.8% | 1.000 |
Sulfamethoxazole-Trimethoprim | 416 | 99.5% | 99.5% | 98.1% | 0.495 |
Chloramphenicol | 416 | 97.6% | 97.6% | 97.6% | 1.000 |
Cefotaxime | 416 | 99.5% | 99.3% | 99.0% | 0.776 |
Imipenem | 416 | 100% | 100% | 100% | N/A |
Antimicrobial | Farms Having All Isolates as Wild Type | |
---|---|---|
COWT | Clinical breakpoint | |
Neomycin | 33/35 (94%) | - |
Spectinomycin | 21/35 (60%) | - |
Tetracycline | 9/35 (26%) | 10/35 (29%) |
Amoxicillin/Clavulanic Acid | 30/35 (86%) | 18/35 (51%) |
Ciprofloxacin | 32/35 (91%) | 34/35 (97%) |
Ampicillin | 17/35 (49%) | 16/35 (46%) |
Sulfamethoxazole-Trimethoprim | 22/35 (63%) | 26/35 (74%) |
Chloramphenicol | 27/35 (77%) | 27/35 (77%) |
Cefotaxime | 31/35 (86%) | 32/35 (91%) |
Imipenem | 35/35 (100%) | 35/35 (100%) |
Factor | Unit | n | Odds Ratio (95% CI) | p-Value |
---|---|---|---|---|
Flock size | n ewes | 1115 | 0.91 (0.46, 1.81) | 0.792 |
Herd size | n cattle > 12 months | 1115 | 0.90 (0.44, 1.82) | 0.761 |
Region: Wales | No | 737 | ||
Yes | 378 | 1.62 (0.37, 7.11) | 0.523 | |
Region: West Midlands (England) | No | 790 | ||
Yes | 325 | 1.08 (0.23, 5.13) | 0.924 | |
Region: Southern England | No | 823 | ||
Yes | 242 | 0.39 (0.07, 2.25) | 0.292 | |
Indoor samples | No | 568 | ||
Yes | 547 | 2.90 (0.77, 10.97) | 0.116 | |
Mixed species farm | No | 362 | ||
Yes | 753 | 1.93 (0.41, 9.09) | 0.404 | |
Animal species sample origin | Cattle | 416 | ||
Sheep | 699 | 0.38 (0.11, 1.28) | 0.118 | |
Maximum average temperature of sampling month | °C | 1115 | 0.90 (0.45, 1.79) | 0.760 |
Minimum average temperature of sampling month | °C | 1115 | 0.79 (0.49, 1.95) | 0.939 |
Average rainfall in sampling month | mm | 1115 | 1.23 (0.62, 2.42) | 0.556 |
Tetracycline use | No | 159 | ||
Yes | 956 | 22.21 (1.46, 337.52) | 0.026 | |
Penicillin use | No | 157 | ||
Yes | 958 | 0.62 (0.09, 4.44) | 0.635 | |
Aminoglycoside use | No | 363 | ||
Yes | 752 | 0.52 (0.12, 2.19) | 0.376 | |
Macrolide use | No | 634 | ||
Yes | 481 | 1.95 (0.48, 7.90) | 0.384 | |
Phenicol use | No | 825 | ||
Yes | 290 | 6.98 (1.82, 26.80) | 0.005 | |
Sulphonamide use | No | 993 | ||
Yes | 122 | 2.60 (0.32, 21.03) | 0.371 | |
Soil copper concentration | mg/kg | 1115 | 1.72 (0.97–3.05) | 0.062 |
Soil zinc concentration | mg/kg | 1115 | 0.90 (0.45, 1.78) | 0.755 |
Soil lead concentration | mg/kg | 1115 | 1.60 (0.85, 3.00) | 0.144 |
Soil cobalt concentration | mg/kg | 1115 | 0.65 (0.34, 1.26) | 0.206 |
Variable | Unit | n | Odds Ratio (95% CrI *) | p-Value |
---|---|---|---|---|
Tetracycline use | No | 159 | ||
Yes | 956 | 28.22 (2.50, 520.09) | 0.014 | |
Soil copper concentration | mg/kg | 1115 | 1.78 (1.02, 3.21) | 0.046 |
Random Effects | Variance Estimate (95% CrI *) | |||
Farm | 1.24 (0.003, 4.47) | |||
Sample | 9.36 (4.86, 16.38) |
Antimicrobials | Disk Content | Source |
---|---|---|
Neomycin | 30 μg | N/A |
Spectinomycin | 100 μg | N/A |
Tetracycline | 30 μg | CLSI |
Amoxicillin/Clavulanic Acid | 20–10 µg | EUCAST |
Ciprofloxacin | 5 µg | EUCAST |
Ampicillin | 10 µg | EUCAST |
Sulfamethoxazole-Trimethoprim | 23.75–1.25 µg | EUCAST |
Chloramphenicol | 30 µg | EUCAST |
Cefotaxime | 5 µg | EUCAST |
Imipenem | 10 µg | EUCAST |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doidge, C.; West, H.; Kaler, J. Antimicrobial Resistance Patterns of Escherichia coli Isolated from Sheep and Beef Farms in England and Wales: A Comparison of Disk Diffusion Interpretation Methods. Antibiotics 2021, 10, 453. https://doi.org/10.3390/antibiotics10040453
Doidge C, West H, Kaler J. Antimicrobial Resistance Patterns of Escherichia coli Isolated from Sheep and Beef Farms in England and Wales: A Comparison of Disk Diffusion Interpretation Methods. Antibiotics. 2021; 10(4):453. https://doi.org/10.3390/antibiotics10040453
Chicago/Turabian StyleDoidge, Charlotte, Helen West, and Jasmeet Kaler. 2021. "Antimicrobial Resistance Patterns of Escherichia coli Isolated from Sheep and Beef Farms in England and Wales: A Comparison of Disk Diffusion Interpretation Methods" Antibiotics 10, no. 4: 453. https://doi.org/10.3390/antibiotics10040453
APA StyleDoidge, C., West, H., & Kaler, J. (2021). Antimicrobial Resistance Patterns of Escherichia coli Isolated from Sheep and Beef Farms in England and Wales: A Comparison of Disk Diffusion Interpretation Methods. Antibiotics, 10(4), 453. https://doi.org/10.3390/antibiotics10040453