Phenothiazinium Photosensitizers Associated with Silver Nanoparticles in Enhancement of Antimicrobial Photodynamic Therapy
Abstract
:1. Introduction
2. Results
2.1. Biosynthesis and Characterization of Silver Nanoparticles
2.2. The Association of AgNPs with MB, NMBN, and NMBN-Zn
2.3. Antifungal Activity of AgNPs-PS in APDT
3. Discussion
4. Materials and Methods
4.1. Materials and Fungal Strains
4.2. Biosynthesis and Characterization of AgNPs
4.3. Antimicrobial Photodynamic Therapy (APDT) with Phenothiazinium Photosensitizers and Association with AgNPs
4.3.1. Photosensitizers
4.3.2. Light
4.3.3. The Association of AgNPs with MB, NMBN, and NMBN-Zn
4.3.4. Evaluation of APDT Effect on C. albicans and F. keratoplasticum Based on Minimum Inhibitory Concentration (MIC)
4.3.5. Evaluation of APDT Effect Based on the Survival of C. albicans and F. keratoplasticum
4.4. Toxicity test in Galleria mellonella
4.5. Statistics
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pfaller, M.A. Antifungal Drug Resistance: Mechanisms, Epidemiology, and Consequences for Treatment. Am. J. Med. 2012, 125, S3–S13. [Google Scholar] [CrossRef] [PubMed]
- Parker, J.E.; Warrilow, A.G.S.; Price, C.L.; Mullins, J.G.L.; Kelly, D.E.; Kelly, S.L. Resistance to antifungals that target CYP51. J. Chem. Biol. 2014, 7, 143–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kordalewska, M.; Zhao, Y.; Lockhart, S.R.; Chowdhary, A.; Berrio, I.; Perlin, D.S. Rapid and accurate molecular identification of the emerging multidrug-resistant pathogen Candida auris. J. Clin. Microbiol. 2017, 55, 2445–2452. [Google Scholar] [CrossRef] [Green Version]
- Perlin, D.S.; Rautemaa-Richardson, R.; Alastruey-Izquierdo, A. The global problem of antifungal resistance: Prevalence, mechanisms, and management. Lancet Infect. Dis. 2017, 17, e383–e392. [Google Scholar] [CrossRef]
- Freire, F.; Ferraresi, C.; Jorge, A.O.C.; Hamblin, M. Photodynamic therapy of oral Candida infection in a mouse model. Photodiagn. Photodyn. Ther. 2017, 17, A42. [Google Scholar] [CrossRef] [Green Version]
- de Menezes, H.D.; Tonani, L.; Bachmann, L.; Wainwright, M.; Braga, G.Ú.L.; von Zeska Kress, M.R. Photodynamic treatment with phenothiazinium photosensitizers kills both ungerminated and germinated microconidia of the pathogenic fungi Fusarium oxysporum, Fusarium moniliforme and Fusarium solani. J. Photochem. Photobiol. B Biol. 2016, 164, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wainwright, M.; McLean, A. Rational design of phenothiazinium derivatives and photoantimicrobial drug discovery. Dye Pigment. 2017, 136, 590–600. [Google Scholar] [CrossRef]
- Castano, A.P.; Demidova, T.N.; Hamblin, M.R. Mechanisms in photodynamic therapy: Part one—Photosensitizers, photochemistry and cellular localization. Photodiagn. Photodyn. Ther. 2004, 1, 279–293. [Google Scholar] [CrossRef] [Green Version]
- Misba, L.; Kulshrestha, S.; Khan, A.U. Antibiofilm action of a toluidine blue O-silver nanoparticle conjugate on Streptococcus mutans: A mechanism of type I photodynamic therapy. Biofouling 2016, 32, 313–328. [Google Scholar] [CrossRef]
- Kaabipour, S.; Hemmati, S. A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures. Beilstein J. Nanotechnol 2021, 12, 102–136. [Google Scholar] [CrossRef]
- Padnya, P.; Gorbachuk, V.; Stoikov, I. The Role of Calix[n]arenes and Pillar[n]arenes in the Design of Silver Nanoparticles: Self-Assembly and Application. Int. J. Mol. Sci. 2020, 21, 1425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, S.; Munir, S.; Zeb, N.; Ullah, A.; Khan, B.; Ali, J.; Bilal, M.; Omer, M.; Alamzeb, M.; Salman, S.M.; et al. Green nanotechnology: A review on green synthesis of silver nanoparticles—An ecofriendly approach. Int. J. Nanomed. 2019, 14, 5087–5107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keshari, A.K.; Srivastava, R.; Yadav, S.; Nath, G.; Gond, S.K. Synergistic activity of green silver nanoparticles with antibiotics. Nanomed. Res. J. 2020, 5, 44–54. [Google Scholar]
- Alizadeh behbahani, B.; Noshad, M.; Falah, F. The combined effect of the combined Fennel and Clove essential oils on Staphylococcus epidermidis, Bacillus cereus, Salmonella typhi and Enterobacter aerogenes using Checkerboard assay (fractional inhibitory concentration index). Food Sci. Technol. 2020. [Google Scholar] [CrossRef]
- Rodrigues, G.B.; Dias-Baruffi, M.; Holman, N.; Wainwright, M.; Braga, G.U.L. In vitro photodynamic inactivation of Candida species and mouse fibroblasts with phenothiazinium photosensitisers and red light. Photodiagn. Photodyn. Ther. 2013, 10, 141–149. [Google Scholar] [CrossRef]
- Idowu, M.; Nyokong, T. Photophysical and photochemical properties of zinc and aluminum phthalocyanines in the presence of magnetic fluid. J. Photochem. Photobiol. A Chem. 2007, 188, 200–206. [Google Scholar] [CrossRef]
- Vankayala, R.; Kuo, C.L.; Sagadevan, A.; Chen, P.H.; Chiang, C.S.; Hwang, K.C. Morphology dependent photosensitization and formation of singlet oxygen (1Δg) by gold and silver nanoparticles and its application in cancer treatment. J. Mater. Chem B 2013, 1, 4379–4387. [Google Scholar] [CrossRef] [PubMed]
- Narband, N.; Tubby, S.; Parkin, I.; Gil-Tomas, J.; Ready, D.; Nair, S.; Wilson, M. Gold Nanoparticles Enhance the Toluidine Blue-Induced Lethal Photosensitisation of Staphylococcus aureus. Curr. Nanosci. 2008, 4, 409–414. [Google Scholar] [CrossRef]
- Gil-Tomás, J.; Tubby, S.; Parkin, I.P.; Narband, N.; Dekker, L.; Nair, S.P.; Wilson, M.; Street, C. Lethal photosensitisation of Staphylococcus aureus using a toluidine blue O–tiopronin–gold nanoparticle conjugate. J. Mater. Chem. 2007, 17, 3739. [Google Scholar] [CrossRef]
- Sherwani, M.A.; Tufail, S.; Khan, A.A.; Owais, M. Gold Nanoparticle-Photosensitizer Conjugate Based Photodynamic Inactivation of Biofilm Producing Cells: Potential for Treatment of C. albicans Infection in BALB/c Mice. PLoS ONE 2015, 10, e0131684. [Google Scholar] [CrossRef]
- Ahmad, A.; Mukherjee, P.; Senapati, S.; Mandal, D.; Khan, M.I.; Kumar, R.; Sastry, M. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B Biointerfaces 2003, 28, 313–318. [Google Scholar] [CrossRef]
- Abbas, S.; Abadi, H.-N. Controlled Biosynthesis of Silver Nanoparticles Using Culture Supernatant of Filamentous Fungus. Iran. J. Chem. Chem. Eng. 2017, 36, 33–42. [Google Scholar]
- Ishida, K.; Cipriano, T.F.; Rocha, G.M.; Weissmüller, G.; Gomes, F.; Miranda, K.; Rozental, S. Silver nanoparticle production by the fungus Fusarium oxysporum: Nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts. Mem. Inst. Oswaldo Cruz 2013, 109, 220–228. [Google Scholar] [CrossRef]
- Durán, N.; Marcato, P.D.; Alves, O.L.; De Souza, G.I.; Esposito, E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanobiotechnol. 2005, 3, 8. [Google Scholar] [CrossRef] [Green Version]
- Khandel, P.; Shahi, S.K. Mycogenic nanoparticles and their bio-prospective applications: Current status and future challenges. J. Nanostruct. Chem. 2018, 8, 369–391. [Google Scholar] [CrossRef] [Green Version]
- Elagamey, E.; Narula, K.; Sinha, A.; Ghosh, S.; Abdellatef, M.A.E.; Chakraborty, N.; Chakraborty, S. Quantitative Extracellular Matrix Proteomics Suggests Cell Wall Reprogramming in Host-Specific Immunity during Vascular Wilt Caused by Fusarium oxysporum in Chickpea. Proteomics 2017. [Google Scholar] [CrossRef]
- Schoffelmeer, E.A.M.; Vossen, J.H.; Van Doorn, A.A.; Cornelissen, B.J.C.; Haring, M.A. FEM1, a Fusarium oxysporum glycoprotein that is covalently linked to the cell wall matrix and is conserved in filamentous fungi. Mol. Gen. Genet. 2001, 265, 143–152. [Google Scholar]
- Bansal, V.; Rautaray, D.; Ahmad, A.; Sastry, M. Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J. Mater. Chem. 2004, 14, 3303–3305. [Google Scholar] [CrossRef]
- Bleackley, M.R.; Samuel, M.; Garcia-Ceron, D.; McKenna, J.A.; Lowe, R.G.T.; Pathan, M.; Zhao, K.; Ang, C.-S.; Mathivanan, S.; Anderson, M.A. Extracellular Vesicles From the Cotton Pathogen Fusarium oxysporum f. sp. vasinfectum Induce a Phytotoxic Response in Plants. Front. Plant Sci. 2020, 10, 1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, R.A.; Tatum, J.H. Novel anthraquinones from stationary cultures of Fusarium oxysporum. J. Ferment. Bioeng. 1998, 85, 359–361. [Google Scholar] [CrossRef]
- da Rosa-Garzon, N.G.; Laure, H.J.; Rosa, J.C.; Cabral, H. Fusarium oxysporum cultured with complex nitrogen sources can degrade agricultural residues: Evidence from analysis of secreted enzymes and intracellular proteome. Renew. Energy 2019, 133, 941–950. [Google Scholar] [CrossRef]
- Rodríguez-León, E.; Iñiguez-Palomares, R.; Navarro, R.; Herrera-Urbina, R.; Tánori, J.; Iñiguez-Palomares, C.; Maldonado, A. Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts). Nanoscale Res. Lett. 2013, 8, 318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makama, S.; Kloet, S.K.; Piella, J.; van den Berg, H.; de Ruijter, N.C.A.; Puntes, V.F.; Rietjens, I.M.C.M.; van den Brink, N.W. Effects of Systematic Variation in Size and Surface Coating of Silver Nanoparticles on Their In Vitro Toxicity to Macrophage RAW 264.7 Cells. Toxicol. Sci. 2018, 162, 79–88. [Google Scholar] [CrossRef]
- Mie, G. Contributions to the Optics of Turbid Media: Particularly of Colloidal Metal Solutions; H.M.S.O.: London, UK, 1976. [Google Scholar]
- DurÁn, N.; Marcato, P.D.; Ingle, A.; Gade, A.; Rai, M. Fungi-Mediated Synthesis of Silver Nanoparticles: Characterization Processes and Applications. In Progress in Mycology; Springer: Dordrecht, The Netherlands, 2010; pp. 425–449. [Google Scholar]
- Pabisch, S.; Feichtenschlager, B.; Kickelbick, G.; Peterlik, H. Effect of interparticle interactions on size determination of zirconia and silica based systems—A comparison of SAXS, DLS, BET, XRD and TEM. Chem. Phys. Lett. 2012, 521, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Marcato, P.D.; Durán, M.; Huber, S.; Rai, M.; Melo, P.S.; Alves, O.L.; Durán, N. Biogenic silver nanoparticles and its antifungal activity as a new topical transungual drug. J. Nano Res. 2012, 20, 99–107. [Google Scholar] [CrossRef]
- Marcato, P.D.; De Paula, L.B.; Melo, P.S.; Ferreira, I.R.; Almeida, A.B.A.; Torsoni, A.S.; Alves, O.L. In vivo evaluation of complex biogenic silver nanoparticle and enoxaparin in wound healing. J. Nanomater. 2015. [Google Scholar] [CrossRef] [Green Version]
- Birla, S.S.; Gaikwad, S.C.; Gade, A.K.; Rai, M.K. Rapid Synthesis of Silver Nanoparticles from Fusarium oxysporum by Optimizing Physicocultural Conditions. Sci. World J. 2013. [Google Scholar] [CrossRef] [Green Version]
- Gaikwad, S.C.; Birla, S.S.; Ingle, A.P.; Gade, A.K.; Marcato, P.D.; Rai, M.; Duran, N. Screening of different Fusarium species to select potential species for the synthesis of silver nanoparticles. J. Braz. Chem. Soc. 2013, 24, 1974–1982. [Google Scholar]
- Van Dong, P.; Ha, C.H.; Binh, L.T.; Kasbohm, J. Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles. Int. Nano Lett. 2012, 2, 9. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.K.; Yngard, R.A.; Lin, Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 2009, 145, 83–96. [Google Scholar] [CrossRef]
- Picoli, S.U.; Durán, M.; Andrade, P.F.; Duran, N. Research Article Frontiers in Nanoscience and Nanotechnology Front. Nanosci. Nanotechnol. 2016, 2, 107–110. [Google Scholar]
- Du, L.; Xu, Q.; Huang, M.; Xian, L.; Feng, J.-X. Synthesis of small silver nanoparticles under light radiation by fungus Penicillium oxalicum and its application for the catalytic reduction of methylene blue. Mater. Chem. Phys. 2015, 160, 40–47. [Google Scholar] [CrossRef]
- Soleimani, F.F.; Saleh, T.; Shojaosadati, S.A.; Poursalehi, R. Green Synthesis of Different Shapes of Silver Nanostructures and Evaluation of Their Antibacterial and Cytotoxic Activity. Bionanoscience 2018, 8, 72–80. [Google Scholar] [CrossRef]
- Kitching, H.; Kenyon, A.J.; Parkin, I.P. The interaction of gold and silver nanoparticles with a range of anionic and cationic dyes. Phys. Chem. Chem. Phys. 2014, 16, 6050–6059. [Google Scholar] [CrossRef]
- Longhi, C.; Santos, J.P.; Morey, A.T.; Marcato, P.D.; Durán, N.; Pinge-Filho, P.; Nakazato, G.; Yamada-Ogatta, S.F.; Yamauchi, L.M. Combination of fluconazole with silver nanoparticles produced by Fusarium oxysporum improves antifungal effect against planktonic cells and biofilm of drug-resistant Candida albicans. Med. Mycol. 2016, 54, 428–432. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-J.; Sung, W.S.; Suh, B.K.; Moon, S.-K.; Choi, J.-S.; Kim, J.G.; Lee, D.G. Antifungal activity and mode of action of silver nano-particles on Candida albicans. BioMetals 2009, 22, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.; Lee, J.; Hwang, J.H.; Kim, K.-J.; Lee, D.G. Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals. FEBS J. 2012, 279, 1327–1338. [Google Scholar] [CrossRef]
- Paziani, M.H.; Tonani, L.; de Menezes, H.D.; Bachmann, L.; Wainwright, M.; Braga, G.Ú.L.; von Zeska Kress, M.R. Antimicrobial photodynamic therapy with phenothiazinium photosensitizers in non-vertebrate model Galleria mellonella infected with Fusarium keratoplasticum and Fusarium moniliforme. Photodiagn. Photodyn. Ther. 2019, 25, 197–203. [Google Scholar] [CrossRef]
- Rodrigues, G.B.; Primo, F.L.; Tedesco, A.C.; Braga, G.U.L. In Vitro Photodynamic Inactivation of Cryptococcus neoformans Melanized Cells with Chloroaluminum Phthalocyanine Nanoemulsion. Photochem. Photobiol. 2012, 88, 440–447. [Google Scholar] [CrossRef]
- de Menezes, H.D.; Rodrigues, G.B.; de Teixeira, S.P.; Massola, N.S.; Bachmann, L.; Wainwright, M.; Braga, G.U.L. In vitro photodynamic inactivation of plant-pathogenic fungi Colletotrichum acutatum and Colletotrichum gloeosporioides with Novel Phenothiazinium photosensitizers. Appl. Environ. Microbiol. 2014, 80, 1623–1632. [Google Scholar] [CrossRef] [Green Version]
- Hone, D.C.; Walker, P.I.; Evans-Gowing, R.; Fitzgerald, S.; Beeby, A.; Chambrier, I.; Cook, M.J.; Russell, D.A. Generation of Cytotoxic Singlet Oxygen via Phthalocyanine-Stabilized Gold Nanoparticles: A Potential Delivery Vehicle for Photodynamic Therapy. Langmuir 2002, 18, 2985–2987. [Google Scholar] [CrossRef]
- Ding, R.; Yu, X.; Wang, P.; Zhang, J.; Zhou, Y.; Cao, X.; Tang, H.; Ayres, N.; Zhang, P. Hybrid photosensitizer based on amphiphilic block copolymer stabilized silver nanoparticles for highly efficient photodynamic inactivation of bacteria. RSC Adv. 2016, 6, 20392–20398. [Google Scholar] [CrossRef]
- Khan, S.; Alam, F.; Azam, A.; Khan, A.U. Gold nanoparticles enhance methylene blue-induced photodynamic therapy: A novel therapeutic approach to inhibit Candida albicans biofilm. Int. J. Nanomed. 2012, 7, 3245–3257. [Google Scholar] [CrossRef] [Green Version]
- Ramarao, N.; Nielsen-Leroux, C.; Lereclus, D. The insect Galleria mellonella as a powerful infection model to investigate bacterial pathogenesis. J. Vis. Exp. 2012. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, B.B.; O’Brien, E.; Khoury, J.B.E.; Mylonakis, E. Methods for using Galleria mellonella as a model host to study fungal pathogenesis. Virulence 2010, 1, 475–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mylonakis, E.; Moreno, R.; El Khoury, J.B.; Idnurm, A.; Heitman, J.; Calderwood, S.B.; Ausubel, F.M.; Diener, A. Galleria mellonella as a model system to study Cryptococcus neoformans pathogenesis. Infect. Immun. 2005, 73, 3842–3850. [Google Scholar] [CrossRef] [Green Version]
- Brennan, M.; Thomas, D.Y.; Whiteway, M.; Kavanagh, K. Correlation between virulence of Candida albicans mutants in mice and Galleria mellonella larvae. FEMS Immunol. Med. Microbiol. 2002, 34, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Ignasiak, K.; Maxwell, A. Galleria mellonella (greater wax moth) larvae as a model for antibiotic susceptibility testing and acute toxicity trials. BMC Res. Notes 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound/ Radiant Exposure | 0 J cm−2 | 5 J cm−2 | 10 J cm−2 | 15 J cm−2 |
---|---|---|---|---|
AgNO3 | 1.56 | 1.56 | 1.56 | 0.39 * |
AgNPs | 1.56 | 1.56 | 1.56 | 1.56 * |
MB | >12.79 | 12.79 | 6.39 | 1.59 * |
NMBN | >13.91 | 1.73 | 0.86 | 0.43 * |
NMBN-Zn | >16.66 | 2.08 | 1.04 | 0.52 * |
AgNPs-MB | 1.56/12.79 | 1.56/12.79 | 0.78/6.39 | 0.39 */1.59 * |
AgNPs-NMBN | 1.56/13.91 | 1.56/13.91 | 0.04/0.21 | 0.04 */0.21 * |
AgNPs-NMBN-Zn | 1.56/16.66 | 0.04/0.52 | 0.04/0.52 | 0.04 */0.13 * |
Compound/ Radiant Exposure | 0 J cm−2 | 5 J cm−2 | 10 J cm−2 | 15 J cm−2 |
---|---|---|---|---|
AgNO3 | 1.56 | 3.12 | 3.12 | 0.78 * |
AgNPs | 6.25 | 6.25 | 6.25 | 6.25 * |
MB | >12.79 | 3.19 | 1.59 | 1.59 * |
NMBN | >13.91 | 0.86 | 0.86 | 0.21 * |
NMBN-Zn | >16.66 | 2.08 | 1.04 | 0.26 * |
AgNPs-MB | 1.56/12.79 | 0.78/0.79 | 0.78/0.79 | 0.78 */0.79 * |
AgNPs-NMBN | 1.56/13.91 | 0.39/0.43 | 0.39/0.21 | 0.39 */0.10 * |
AgNPs-NMBN-Zn | 1.56/16.66 | 0.39/0.26 | 0.39/0.26 | 0.39 */0.26 * |
Compound/ Radiant Exposure | 5 J cm−2 | 10 J cm−2 | 15 J cm−2 | |||
---|---|---|---|---|---|---|
FICI | Effect | FICI | Effect | FICI | Effect | |
AgNPs-MB | 2.0 | indifferent | 1.5 | indifferent | 1.25 | indifferent |
AgNPs-NMBN | 9.0 | antagonistic | 0.26 | synergistic | 0.5 | synergistic |
AgNPs-NMBN-Zn | 0.3 | synergistic | 0.5 | synergistic | 0.3 | synergistic |
Compound/ Radiant Exposure | 5 J cm−2 | 10 J cm−2 | 15 J cm−2 | |||
---|---|---|---|---|---|---|
FICI | Effect | FICI | Effect | FICI | Effect | |
AgNPs-MB | 0.37 | synergistic | 0.6 | additive | 0.6 | additive |
AgNPs-NMBN | 0.56 | additive | 0.30 | synergistic | 0.5 | synergistic |
AgNPs-NMBN-Zn | 0.18 | synergistic | 0.31 | synergistic | 1.1 | indifferent |
Compound (mg kg−1) | Group of Larvae | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
AgNO3 | 0.31 | 0.62 | 1.25 | 2.5 | 5.0 |
AgNPs | 0.31 | 0.62 | 1.25 | 2.5 | 5.0 |
MB | 1.3 | 2.6 | 5.2 | 10.41 | 20.83 |
NMBN | 1.64 | 3.28 | 6.57 | 13.15 | 26.31 |
NMBN-Zn | 1.04 | 2.08 | 4.16 | 8.3 | 16.6 |
AgNPs-MB | 0.31/1.13 | 0.62/2.6 | 1.25/5.20 | 2.5/10.4 | 5.0/20.83 |
AgNPs-NMBN | 0.31/1.64 | 0.62/3.28 | 1.25/6.57 | 2.5/13.15 | 5.0/26.31 |
AgNPs-NMBN-Zn | 0.31/1.04 | 0.62/2.08 | 1.25/4.16 | 2.5/8.3 | 5.0/16.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rigotto Caruso, G.; Tonani, L.; Marcato, P.D.; von Zeska Kress, M.R. Phenothiazinium Photosensitizers Associated with Silver Nanoparticles in Enhancement of Antimicrobial Photodynamic Therapy. Antibiotics 2021, 10, 569. https://doi.org/10.3390/antibiotics10050569
Rigotto Caruso G, Tonani L, Marcato PD, von Zeska Kress MR. Phenothiazinium Photosensitizers Associated with Silver Nanoparticles in Enhancement of Antimicrobial Photodynamic Therapy. Antibiotics. 2021; 10(5):569. https://doi.org/10.3390/antibiotics10050569
Chicago/Turabian StyleRigotto Caruso, Glaucia, Ludmilla Tonani, Priscyla Daniely Marcato, and Marcia Regina von Zeska Kress. 2021. "Phenothiazinium Photosensitizers Associated with Silver Nanoparticles in Enhancement of Antimicrobial Photodynamic Therapy" Antibiotics 10, no. 5: 569. https://doi.org/10.3390/antibiotics10050569
APA StyleRigotto Caruso, G., Tonani, L., Marcato, P. D., & von Zeska Kress, M. R. (2021). Phenothiazinium Photosensitizers Associated with Silver Nanoparticles in Enhancement of Antimicrobial Photodynamic Therapy. Antibiotics, 10(5), 569. https://doi.org/10.3390/antibiotics10050569