Antibacterial Activities of Homemade Matrices Miming Essential Oils Compared to Commercial Ones
Abstract
:1. Introduction
2. Materials and Methods
2.1. Essential Oils, Biological and Chemical Material
2.2. Preparation of Homemade Mixtures
2.3. GC–MS Analysis
2.4. Cytotoxic Activity
2.5. Antibacterial Activity
2.6. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lima, L.M.; da Silva, B.N.M.; Barbosa, G.; Barreiro, E.J. β-lactam antibiotics: An overview from a medicinal chemistry perspective. Eur. J. Med. Chem. 2020, 208, 112829. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Han, R.; Xu, Y.; Li, N.; Wang, J.; Dan, W. Recent progress of antibacterial natural products: Future antibiotics candidates. Bioorg. Chem. 2020, 101, 103922. [Google Scholar] [CrossRef]
- Tariq, S.; Wani, S.; Rasool, W.; Shafi, K.; Bhat, M.A.; Prabhakar, A.; Shalla, A.H.; Rather, M.A. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb. Pathog. 2019, 134, 103580. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Tang, J.; Khare, T.; Kular, V. The alarming antimicrobial resistance in ESKAPEE pathogens: Can essential oils come to the rescue? Fitoterapia 2020, 140, 104433. [Google Scholar] [CrossRef] [PubMed]
- Goodier, M.C.; Zhang, A.J.; Boyd, A.H.; Hylwa, S.A.; Goldfarb, N.I.; Warshaw, E.M. Use of essential oils: A general population survey. Contact Dermat. 2019, 80, 391–393. [Google Scholar] [CrossRef] [PubMed]
- Jugreet, B.S.; Suroowan, S.; Rengasamy, R.R.K.; Mahomoodally, M.F. Chemistry, bioactivities, mode of action and industrial applications of essential oils. Trends Food Sci. Technol. 2020, 101, 89–105. [Google Scholar] [CrossRef]
- Deyno, S.; Mtewa, A.G.; Abebe, A.; Hymete, A.; Makonnen, E.; Bazira, J.; Alele, P.E. Essential oils as topical anti-infective agents: A systematic review and meta-analysis. Complementary Ther. Med. 2019, 47, 102224. [Google Scholar] [CrossRef]
- Sindle, A.; Martin, K. Essential oils—Natural products not necessarily safe. Int. J. Women’s Dermatol. 2020. [Google Scholar] [CrossRef]
- De Groot, A.; Schmidt, E. Essential Oils, Part III: Chemical Composition. Dermatitis 2016, 27, 161–169. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 2016, 210, 402–414. [Google Scholar] [CrossRef]
- Najafloo, R.; Behyari, M.; Imani, R.; Nour, S. A mini-review of thymol incorporated materials: Applications in antibacterial wound dressing. J. Drug Deliv. Sci. Technol. 2020, 60, 101904. [Google Scholar] [CrossRef]
- Alvarez-Echazú, M.I.; Olivetti, C.E.; Anesini, C.; Perez, C.J.; Alvarez, G.S.; Desimone, M.F. Development and evaluation of thymol-chitosan hydrogels with antimicrobial-antioxidant activity for oral local delivery. Mater. Sci. Eng. 2017, 81, 588–596. [Google Scholar] [CrossRef]
- Walczak, M.; Michalska-Sionkowska, M.; Kaczmarek, B.; Sionkowska, A. Surface and antibacterial properties of thin films based on collagen and thymol. Mater. Today Commun. 2020, 22, 100949. [Google Scholar] [CrossRef]
- WHO. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of new Antibiotics. 2017. Available online: https://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/ (accessed on 6 January 2020).
- Orchard, A.; van Vuuren, S. Commercial essential oils as potential antimicrobials to treat skin diseases. Evid Based Complement. Altern. Med. 2017, 4517971. [Google Scholar] [CrossRef] [Green Version]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Oliveira-Ribeiro, S.; Fontaine, V.; Mathieu, V.; Zhiri, A.; Baudoux, D.; Stévigny, C.; Souard, F. Antibacterial and cytotoxic activities of ten commercially available essential oils. Antibiotics 2020, 9, 717. [Google Scholar] [CrossRef]
- De Groot, A.; Schmidt, E. Essential oils, Part II: General aspects. Dermatitis 2016, 27, 43–49. [Google Scholar] [CrossRef]
- Ellington, M.J.; Reuter, S.; Harris, S.R.; Holden, M.T.G.; Cartwright, E.J.; Greaves, D.; Gerver, S.; Hope, R.; Brown, N.M.; Török, E.M.; et al. Emergent and evolving antimicrobial resistance cassettes in community-associated fusidic acid and meticillin-resistant Staphylococcus aureus. Int. J. Antimicrob. Agents 2015, 45, 477–484. [Google Scholar] [CrossRef]
- Udo, E.; Al-Fouzan, W.; Boloki, H.; Al Musaileem, W.; Verghese, T. Investigation of fusidic acid resistance determinants in Methicillin-Resistant Staphylococcus aureus obtained in Kuwait hospitals. J. Infect. Public Health 2020, 13, 324. [Google Scholar] [CrossRef]
- Manion, C.R.; Widder, R.M. Essentials of essential oils. Am. J. Heal Pharm. 2017, 74, e153–e162. [Google Scholar] [CrossRef] [PubMed]
- Trindade, H.; Pedro, L.G.; Figueiredo, A.C.; Barroso, J.G. Chemotypes and terpene synthase genes in Thymus genus: State of the art. Ind. Crop. Prod. 2018, 124, 530–547. [Google Scholar] [CrossRef]
- European Pharmacopoeia. Thym type thymol (huile essentielle de). In La Pharmacopée Européenne, 10th ed.; EDQM—Council of Europe: Strasbourg, France, 2019; pp. 1788–1789. [Google Scholar]
- Anwar, S.; Ahmed, N.; Habibatni, S.; Abusamra, Y. Ajwain (Trachyspermum ammi L.) Oils. In Essential Oils in Food Preservation, Flavor and Safety; Elsevier: Amsterdam, The Netherlands, 2016; pp. 181–192. [Google Scholar]
- Bairwa, R.; Rajawat, B.; Sodha, R. Trachyspermum ammi. Pharmacogn. Rev. 2012, 6, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Döll-Boscardin, P.M.; Sartoratto, A.; Maia, B.H.L.D.N.S.; de Paula, J.P.; Nakashima, T.; Farago, P.V.; Kanunfre, C.C. In VitroCytotoxic Potential of Essential Oils ofEucalyptus benthamiiand Its Related Terpenes on Tumor Cell Lines. Evidence-Based Complement. Altern. Med. 2012, 2012, 1–8. [Google Scholar] [CrossRef] [Green Version]
- EUCAST (The European Committee on Antimicrobial Susceptibility Testing). Breakpoint Tables for Interpretation of MICs and Zone Diameters; Version 10.0. 2020. Available online: http://www.eucast.org (accessed on 1 February 2021).
- Cos, P.; Vlietinck, A.J.; Berghe, D.V.; Maes, L. Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J. Ethnophar. 2006, 106, 290–302. [Google Scholar] [CrossRef]
- Janssen, A.M.; Scheffer, J.J.; Baerheim Svendsen, A. Antimicrobial activity of essential oils: A 1976–1986 literature review. Aspects of the test methods. Planta Med. 1987, 53, 395–398. [Google Scholar] [CrossRef] [Green Version]
- Kalemba, D.; Kunicka, A. Antibacterial and antifungal properties of essential oils. Curr. Med. Chem. 2003, 10, 813–829. [Google Scholar] [CrossRef]
- Zomorodian, K.; Ghadiri, P.; Saharkhiz, M.J.; Moein, M.R.; Mehriar, P.; Bahrani, F.; Golzar, T.; Pakshir, K.; Fani, M.M. Antimicrobial activity of seven essential oils from Iranian aromatic plants against common causes of oral infections. Jundishapur J. Microbiol. 2015. [Google Scholar] [CrossRef] [Green Version]
- Boskovic, M.; Zdravkovic, N.; Ivanovic, J.; Janjic, J.; Djordjevic, J.; Starcevic, M.; Baltic, M.Z. Antimicrobial activity of thyme (Tymus vulgaris) and oregano (Origanum vulgare) essential oils against some food-borne microorganisms. Procedia Food Sci. 2015, 5, 18–21. [Google Scholar] [CrossRef] [Green Version]
- Sienkiewicz, M.; Łysakowska, M.; Denys, P.; Kowalczyk, E. The antimicrobial activity of thyme essential oil against multidrug resistant clinical bacterial strains. Microb. Drug Resist. 2011, 18, 137–148. [Google Scholar] [CrossRef]
- Teixeira, B.; Marques, A.; Ramos, C.; Neng, N.R.; Nogueira, J.M.F.; Saraiva, J.A.; Nunes, M.L. Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Ind. Crop. Prod. 2013, 43, 587–595. [Google Scholar] [CrossRef]
- Kifer, D.; Mužinić, V.; Klarić, M.Š. Antimicrobial potency of single and combined mupirocin and monoterpenes, thymol, menthol and 1,8-cineole against Staphylococcus aureus planktonic and biofilm growth. J. Antibiot. 2016, 69, 689–696. [Google Scholar] [CrossRef]
- Hamoud, R.; Zimmermann, S.; Reichling, J.; Wink, M. Synergistic interactions in two-drug and three-drug combinations (thymol, EDTA and vancomycin) against multi drug resistant bacteria including E. coli. Phytomedicine 2014, 21, 443–447. [Google Scholar] [CrossRef]
- Nostro, A.; Blanco, A.R.; Cannatelli, M.A.; Enea, V.; Flamini, G.; Morelli, I.; Roccaro, A.S.; Alonzo, V. Susceptibility of methicillin-resistant staphylococci to oregano essential oil, carvacrol and thymol. FEMS Microbiol. Lett. 2004, 230, 191–195. [Google Scholar] [CrossRef] [Green Version]
- Cirino, I.C.S.; Menezes-Silva, S.M.P.; Silva, H.T.D.; de Souza, E.L.; Siqueira-Júnior, J.P. The essential oil from Origanum vulgare L. and its individual constituents carvacrol and thymol enhance the effect of tetracycline against Staphylococcus aureus. Chemotherapy 2014, 60, 290–293. [Google Scholar] [CrossRef]
- Nabavi, S.M.; Marchese, A.; Izadi, M.; Curti, V.; Daglia, M.; Nabavi, S.F. Plants belonging to the genus Thymus as antibacterial agents: From farm to pharmacy. Food Chem. 2015, 173, 339–347. [Google Scholar] [CrossRef]
- Di Sotto, A.; Mancinelli, R.; Gullì, M.; Eufemi, M.; Mammola, C.L.; Mazzanti, G.; Di Giacomo, S. Chemopreventive potential of caryophyllane sesquiterpenes: An overview of preliminary evidence. Cancers 2020, 12, 3034. [Google Scholar] [CrossRef]
- Costa, M.; Silva, A.; Silva, A.; Lima, V.; Bezerra-Silva, P.; Rocha, S.; Navarro, D. Essential oils from leaves of medicinal plants of brazilian flora: Chemical composition and activity against Candida species. Medicines 2017, 4, 27. [Google Scholar] [CrossRef] [Green Version]
- Dahham, S.S.; Tabana, Y.M.; Iqbal, M.A.; Ahamed, M.B.K.; Ezzat, M.O.; Majid, A.S.A.; Majid, A.M.S.A. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-Caryophyllene from the essential oil of Aquilaria crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef]
- Soares, D.C.; Portella, N.A.; Ramos, M.F.S.; Siani, A.C.; Saraiva, E.M. Trans.-β-Caryophyllene: An effective antileishmanial compound found in commercial copaiba oil (Copaifera spp.). Evid. Based Complement. Altern. Med. 2013, 2013, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Amaral, R.G.; Baldissera, M.D.; Grando, T.H.; Couto, J.C.M.; Posser, C.P.; Ramos, A.P.; Sagrillo, M.R.; Vaucher, R.A.; Da Silva, A.S.; Becker, A.P.; et al. Combination of the essential oil constituents α-pinene and β-caryophyllene as a potentiator of trypanocidal action on Trypanosoma evansi. J. Appl. Biomed. 2016, 14, 265–272. [Google Scholar] [CrossRef]
- Izumi, E.; Ueda-Nakamura, T.; Veiga, V.F.; Pinto, A.C.; Nakamura, C.V. Terpenes from Copaifera demonstrated in vitro antiparasitic and synergic activity. J. Med. Chem. 2012, 55, 2994–3001. [Google Scholar] [CrossRef]
- Scandiffio, R.; Geddo, F.; Cottone, E.; Querio, G.; Antoniotti, S.; Gallo, M.P.; Maffei, M.E.; Bovolin, P. Protective effects of (E)-β-caryophyllene (BCP) in chronic inflammation. Nutrients 2020, 12, 3273. [Google Scholar] [CrossRef]
- Hashiesh, H.M.; Meeran, M.F.N.; Sharma, C.; Sadek, B.; Al Kaabi, J.; Ojha, S.K. Therapeutic potential of β-caryophyllene: A dietary cannabinoid in diabetes and associated complications. Nutrients 2020, 12, 2963. [Google Scholar] [CrossRef]
- Pichette, A.; Larouche, P.-L.; Lebrun, M.; Legault, J. Composition and antibacterial activity of Abies balsamea essential oil. Phytother Res. 2006, 20, 371–373. [Google Scholar] [CrossRef]
- DeCarlo, A.; Zeng, T.; Dosoky, N.S.; Satyal, P.; Setzer, W.N. The essential oil composition and antimicrobial activity of liquidambar formosana oleoresin. Plants 2020, 9, 822. [Google Scholar] [CrossRef]
- Langeveld, W.T.; Veldhuizen, E.J.A.; Burt, S.A. Synergy between essential oil components and antibiotics: A review. Crit. Rev. Microbiol. 2014, 40, 76–94. [Google Scholar] [CrossRef]
- Palaniappan, K.; Holley, R.A. Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. Int. J. Food Microbiol. 2010, 140, 164–168. [Google Scholar] [CrossRef]
- Houdkova, M.; Rondevaldova, J.; Doskocil, I.; Kakoska, L. Evaluation of antibacterial potential and toxicity of plant volatile compounds using new broth microdilution volatilization method and modified MTT assay. Fitoterapia 2017, 118, 56–62. [Google Scholar] [CrossRef]
- Rúa, J.; del Valle, P.; de Arriaga, D.; Fernández-Álvarez, L.; García-Armesto, M.R. Combination of carvacrol and thymol: Antimicrobial activity against Staphylococcus aureus and antioxidant activity. Foodborne Pathog. Dis. 2019, 16, 622–629. [Google Scholar] [CrossRef]
Sample | Supplier | Name | Batch # | Origin | Organ | €/L |
---|---|---|---|---|---|---|
AW-S1 | Pranarôm 1 | T. ammi L. | OF36317 | India | Fruit | 92.20 € |
AW-S2 | Terraïa 2 | T. ammi L. | 191517 | India * | Seed | 39.50 € |
AW-S3 | Voshuiles 3 | T. ammi L. | 190250 | India | Seed | 28.50 € |
AW-S4 | Aromazone 4 | T. ammi L. | 20HE0221/1 | India * | Seed | 29.00 € |
AW-S5 | Bioflore 5 | T. ammi L. | IL1903 | India | Fruit | 61.00 € |
AW-S6 | Floressence 6 | T. ammi L. | EXA5294 | India | ns | 42.40 € |
AW-S7 | Botanica 6 | T. ammi L. | ASO101SSF6213 | India * | Fruit | 46.00 € |
AW-S8 | Sjankara 1 | T. ammi L. | 1008.009 | India | Seed | 71.18 € |
TT-S1 | Voshuiles 3 | T. vulgaris L. | 200200 | Spain | F. top | 57.00 € |
TT-S2 | Voshuiles 3 | T. zygis Loefl. (L.) | B20053 | Spain * | A. part | 90.00 € |
TT-S3 | Aromazone 4 | T. vulgaris L. | 19HE0236/5 | Spain | F. top | 55.00 € |
TT-S4 | Aromazone 4 | T. vulgaris L. | 20HE0081/1 | France * | F. top | 88.00 € |
TT-S5 | Bioflore 7 | T. vulgaris L. | IL1812 | France * | F. top | 178.00 € |
TT-S6 | Botanica 6 | T. vulgaris L. | LSB103116 | Spain * | Flower | 74.60 € |
TT-S7 | Valnet 8 | T. vulgaris L. | 18K027E | France * | F. top | 157.40 € |
TT-S8 | Puressentiel 9 | T. zygis Loefl. (L.) | unreadable | France * | A. part | 170.00 € |
Sample | Thymol | p-cymene | γ-terpinene | Carvacrol | Linalool | β-myrcene | β-caryophyllene |
---|---|---|---|---|---|---|---|
TT-S1 | 63.86 ± 1.11 | 20.92 ± 0.38 | 6.64 ± 0.38 | 2.71 ± 0.44 | 0.90 ± 0.11 | 0.39 ± 0.03 | 0.56 ± 0.04 |
TT-S2 | 56.04 ± 0.44 | 22.92 ± 0.32 | 11.55 ± 0.28 | 5.04 ± 0.08 | 0.76 ± 0.05 | 0.30 ± 0.01 | 0.24 ± 0.02 |
TT-S3 | 54.56 ± 0.44 | 26.20 ± 0.37 | 9.55 ± 0.13 | 3.53 ± 0.14 | 1.29 ± 0.06 | 0.21 ± 0.02 | 0.93 ± 0.06 |
TT-S4 | 58.09 ± 1.35 | 23.71 ± 2.55 | 8.80 ± 0.12 | 3.35 ± 0.10 | 1.60 ± 0.29 | 0.38 ± 0.06 | 0.59 ± 0.23 |
TT-S5 | 57.38 ± 1.07 | 24.51 ± 4.00 | 7.16 ± 0.08 | 3.40 ± 0.26 | 2.45 ± 0.52 | 0.25 ± 0.09 | 0.93 ± 0.43 |
TT-S6 | 55.70 ± 0.85 | 28.52 ± 0.78 | 8.98 ± 0.15 | 2.34 ± 0.19 | 1.39 ± 0.05 | 0.28 ± 0.02 | 0.24 ± 0.01 |
TT-S7 | 48.64 ± 0.64 | 32.17 ± 0.91 | 10.23 ± 0.07 | 1.73 ± 0.16 | 0.87 ± 0.04 | 0.43 ± 0.02 | 1.21 ± 0.05 |
TT-S8 | 61.05 ± 0.09 | 26.69 ± 1.30 | 3.42 ± 0.11 | 2.70 ± 0.17 | 1.84 ± 0.09 | 0.19 ± 0.01 | 0.59 ± 0.05 |
Sample | Thymol | γ-terpinene | p-cymene | β-pinene |
---|---|---|---|---|
AW-S1 | 53.66 ± 0.90 | 15.77 ± 0.44 | 26.36 ± 0.68 | 2.04 ± 0.40 |
AW-S2 | 33.69 ± 0.59 | 43.77 ± 1.28 | 19.43 ± 0.34 | 0.97 ± 0.31 |
AW-S3 | 32.41 ± 0.62 | 44.17 ± 1.20 | 21.46 ± 0.81 | 0.83 ± 0.25 |
AW-S4 | 41.26 ± 0.98 | 35.15 ± 0.86 | 20.05 ± 0.89 | 1.27 ± 0.36 |
AW-S5 | 35.57 ± 1.97 | 27.76 ± 0.37 | 36.15 ± 2.43 | 0.00 ± 0.00 |
AW-S6 | 58.12 ± 1.40 | 19.67 ± 0.77 | 19.11 ± 1.97 | 0.54 ± 0.16 |
AW-S7 | 28.21 ± 0.90 | 24.17 ± 0.65 | 44.00 ± 1.43 | 0.32 ± 0.09 |
AW-S8 | 35.62 ± 0.70 | 25.21 ± 0.69 | 38.64 ± 1.31 | 0.00 ± 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira Ribeiro, S.; Fontaine, V.; Mathieu, V.; Abdesselam, Z.; Dominique, B.; Caroline, S.; Florence, S. Antibacterial Activities of Homemade Matrices Miming Essential Oils Compared to Commercial Ones. Antibiotics 2021, 10, 584. https://doi.org/10.3390/antibiotics10050584
Oliveira Ribeiro S, Fontaine V, Mathieu V, Abdesselam Z, Dominique B, Caroline S, Florence S. Antibacterial Activities of Homemade Matrices Miming Essential Oils Compared to Commercial Ones. Antibiotics. 2021; 10(5):584. https://doi.org/10.3390/antibiotics10050584
Chicago/Turabian StyleOliveira Ribeiro, Sofia, Véronique Fontaine, Véronique Mathieu, Zhiri Abdesselam, Baudoux Dominique, Stévigny Caroline, and Souard Florence. 2021. "Antibacterial Activities of Homemade Matrices Miming Essential Oils Compared to Commercial Ones" Antibiotics 10, no. 5: 584. https://doi.org/10.3390/antibiotics10050584
APA StyleOliveira Ribeiro, S., Fontaine, V., Mathieu, V., Abdesselam, Z., Dominique, B., Caroline, S., & Florence, S. (2021). Antibacterial Activities of Homemade Matrices Miming Essential Oils Compared to Commercial Ones. Antibiotics, 10(5), 584. https://doi.org/10.3390/antibiotics10050584