The Association between the Risk of Aortic Aneurysm/Aortic Dissection and the Use of Fluroquinolones: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection and Data Extraction
2.3. Quality Assessment
2.4. Outcome Measure and Statistical Analysis
3. Results
3.1. Literature Search and Evaluation for Study Inclusion
3.2. Study Characteristics
3.3. Quality Assessment
3.4. Outcome Analysis
3.5. Sensitivity Analysis
3.6. Publication Bias
3.7. Subgroup Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mattos, K.P.H.; Visacri, M.B.; Quintanilha, J.C.F.; Lloret, G.R.; Cursino, M.A.; Levin, A.S.; Levy, C.E.; Moriel, P. Brazil’s resolutions to regulate the sale of antibiotics: Impact on consumption and Escherichia coli resistance rates. J. Glob. Antimicrob. Resist. 2017, 10, 195–199. [Google Scholar] [CrossRef]
- Kabbani, S.; Hersh, A.L.; Shapiro, D.J.; Fleming-Dutra, K.E.; Pavia, A.T.; Hicks, L.A. Opportunities to improve fluoroquinolone prescribing in the United States for adult ambulatory care visits. Clin. Infect. Dis. 2018, 67, 134–136. [Google Scholar] [CrossRef]
- Lin, H.; Dyar, O.J.; Rosales-Klintz, S.; Zhang, J.; Tomson, G.; Hao, M.; Lundborg, C.S. Trends and patterns of antibiotic consumption in Shanghai municipality, China: A 6 year surveillance with sales records, 2009–2014. J. Antimicrob. Chemother. 2016, 71, 1723–1739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, J.; Li, Q.; Sun, Q. Antibiotic consumption in Shandong Province, China: An analysis of provincial pharmaceutical centralized bidding procurement data at public healthcare institutions, 2012–2016. J. Antimicrob. Chemother. 2018, 73, 814–820. [Google Scholar] [CrossRef]
- Chui, C.S.; Wong, I.C.; Wong, L.Y.; Chan, E.W. Association between oral fluoroquinolone use and the development of retinal detachment: A systematic review and meta-analysis of observational studies. J. Antimicrob. Chemother. 2015, 70, 971–978. [Google Scholar] [CrossRef] [Green Version]
- Stephenson, A.L.; Wu, W.; Cortes, D.; Rochon, P.A. Tendon injury and fluoroquinolone use: A systematic review. Drug Saf. 2013, 36, 709–721. [Google Scholar] [CrossRef] [PubMed]
- LeMaire, S.A.; Zhang, L.; Luo, W.; Ren, P.; Azares, A.R.; Wang, Y.; Zhang, C.; Coselli, J.S.; Shen, Y.H. Effect of ciprofloxacin on susceptibility to aortic dissection and rupture in mice. JAMA Surg. 2018, 153, e181804. [Google Scholar] [CrossRef] [PubMed]
- Akerman, A.W.; Stroud, R.E.; Barrs, R.W.; Grespin, R.T.; McDonald, L.T.; LaRue, R.A.C.; Mukherjee, R.; Ikonomdis, J.S.; Jones, J.A.; Ruddy, J.M. Elevated wall tension initiates interleukin-6 expression and abdominal aortic dilation. Ann. Vasc. Surg. 2018, 46, 193–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.C.; Lee, M.G.; Hsieh, R.; Porta, L.; Lee, W.C.; Lee, S.H.; Chang, S.S. Oral fluoroquinolone and the risk of aortic dissection. J. Am. Coll. Cardiol. 2018, 72, 1369–1378. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C.; Lee, M.T.; Chen, Y.S.; Lee, S.H.; Chen, Y.S.; Chen, S.C.; Chang, S.C. Risk of Aortic Dissection and aortic aneurysm in patients taking oral fluoroquinolone. JAMA Intern. Med. 2015, 175, 1839–1847. [Google Scholar] [CrossRef]
- Daneman, N.; Lu, H.; Redelmeier, D.A. Fluoroquinolones and collagen associated severe adverse events: A longitudinal cohort study. BMJ Open 2015, 5, e010077. [Google Scholar] [CrossRef] [Green Version]
- Pasternak, B.; Inghammar, M.; Svanström, H. Fluoroquinolone use and risk of aortic aneurysm and dissection: Nationwide cohort study. BMJ 2018, 360, k678. [Google Scholar] [CrossRef] [Green Version]
- Newton, E.R.; Akerman, A.W.; Strassle, P.D.; Kibbe, M.R. Association of fluoroquinolone use with short-term risk of development of aortic aneurysm. JAMA Surg. 2021, 156, 264–272. [Google Scholar] [CrossRef]
- Dai, X.C.; Yang, X.X.; Ma, L.; Tang, G.M.; Pan, Y.Y.; Hu, H.L. Relationship between fluoroquinolones and the risk of aortic diseases: A meta-analysis of observational studies. BMC Cardiovasc. Disord. 2020, 20, 49. [Google Scholar] [CrossRef]
- Noman, A.T.; Qazi, A.H.; Alqasrawi, M.; Ayinde, H.; Tleyjeh, I.M.; Lindower, P.; Abdulhak, A.A.B. Fluoroquinolones and the risk of aortopathy: A systematic review and meta-analysis. Int. J. Cardiol. 2019, 274, 299–302. [Google Scholar] [CrossRef]
- Rawla, P.; El Helou, M.L.; Vellipuram, A.R. Fluoroquinolones and the risk of aortic aneurysm or aortic dissection: A systematic review and meta-analysis. Cardiovasc. Hematol. Agents Med. Chem. 2019, 17, 3–10. [Google Scholar] [CrossRef]
- Singh, S.; Nautiyal, A. Aortic dissection and aortic aneurysms associated with fluoroquinolones: A systematic review and meta-analysis. Am. J. Med. 2017, 130, 1449–1457.e9. [Google Scholar] [CrossRef] [Green Version]
- US Food and Drug Administration. FDA Drug Safety Communication: FDA Warns about Increased Risk of Ruptures or Tears in the Aorta Blood Vessel with Fluoroquinolone Antibiotics in Certain Patients. 2018. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-warns-about-increased-risk-ruptures-or-tears-aorta-blood-vessel-fluoroquinolone-antibiotics (accessed on 4 October 2020).
- European Medicines Agency; Pharmacovigilance Risk Assessment Committee (PRAC). Minutes of PRAC Meeting on 10–13 May 2016. 2016. Available online: https://www.ema.europa.eu/docs/en_GB/document_library/Minutes/2016/07/ (accessed on 4 October 2020).
- Dong, Y.H.; Chang, C.H.; Wang, J.L.; Wu, L.C.; Lin, J.W.; Toh, S. Association of infections and use of fluoroquinolones with the risk of aortic aneurysm or aortic dissection. JAMA Intern. Med. 2020, 180, 1587–1595. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, C.; Bykov, K.; Fischer, M.A.; Connolly, J.G.; Gagne, J.J.; Fralick, M. Association of fluoroquinolones with the risk of aortic aneurysm or aortic dissection. JAMA Intern. Med. 2020, 180, 1596–1605. [Google Scholar] [CrossRef] [PubMed]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Steward, L.A.; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015, 350, g7647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [Green Version]
- Guyatt, G.H.; Oxman, A.D.; Vist, G.; Kunz, R.; Falck-Ytter, Y.; Alonso-Coello, P.; Schunemann, H.J.; GRADE Working Group. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008, 336, 924–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guyatt, G.H.; Oxman, A.D.; Vist, G.; Kunz, R.; Brozek, J.; Alonso-Coello, P.; Montori, V.; Akl, E.A.; Djulbegovic, B.; Falck-Ytter, Y.; et al. GRADE guidelines: 4. Rating the quality of evidence—Study limitations (risk of bias). J. Clin. Epidemiol. 2011, 64, 407–415. [Google Scholar] [CrossRef]
- Guyatt, G.H.; Oxman, A.D.; Montori, V.; Vist, G.; Kunz, R.; Brozek, J.; Alonso-Coello, P.; Djulbegovic, B.; Atkins, D.; Falck-Ytter, Y.; et al. GRADE guidelines: 5. Rating the quality of evidence—Publication bias. J. Clin. Epidemiol. 2011, 64, 1277–1282. [Google Scholar] [CrossRef]
- Guyatt, G.H.; Oxman, A.D.; Kunz, R.; Brozek, J.; Alonso-Coello, P.; Rind, D.; Devereaux, P.J.; Montori, V.M.; Freyschuss, B.; Vist, G.; et al. GRADE guidelines 6. Rating the quality of evidence—Imprecision. J. Clin. Epidemiol. 2011, 64, 1283–1293. [Google Scholar] [CrossRef]
- Guyatt, G.H.; Oxman, A.D.; Kunz, R.; Woodcock, J.; Brozek, J.; Helfand, M.; Alonso-Coello, P.; Glasziou, P.; Jaeschke, R.; Akl, E.A.; et al. GRADE guidelines: 7. Rating the quality of evidence—Inconsistency. J. Clin. Epidemiol. 2011, 64, 1294–1302. [Google Scholar] [CrossRef] [PubMed]
- Guyatt, G.H.; Oxman, A.D.; Kunz, R.; Woodcock, J.; Brozek, J.; Helfand, M.; Alonso-Coello, P.; Falck-Ytter, Y.; Jaeschke, R.; Vist, G.; et al. GRADE guidelines: 8. Rating the quality of evidence—Indirectness. J. Clin. Epidemiol. 2011, 64, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Guyatt, G.H.; Oxman, A.D.; Sultan, S.; Glasziou, P.; Akl, E.A.; Alonso-Coello, P.; Atkins, D.; Kunz, R.; Brozek, J.; Montori, V.; et al. GRADE guidelines: 9. Rating up the quality of evidence. J. Clin. Epidemiol. 2011, 64, 1311–1316. [Google Scholar] [CrossRef] [PubMed]
- Schünemann, H.J.; Cuello, C.; Akl, E.A.; Mustafa, R.A.; Meerpohl, J.J.; Thayer, K.; Morgan, R.L.; Gartlehner, G.; Kunz, R.; Katikireddi, S.V.; et al. GRADE guidelines: 18. How ROBINS-I and other tools to assess risk of bias in nonrandomized studies should be used to rate the certainty of a body of evidence. J. Clin. Epidemiol. 2019, 111, 105–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Der Simonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- Borenstein, M.; Hedges, L.V.; Higginsm, J.P.; Rothstein, H.R. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res. Synth. Methods 2010, 1, 97–111. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions Version 6.2 (Updated February 2021); Cochrane: London, UK, 2021; Available online: www.training.cochrane.org/handbook (accessed on 1 May 2020).
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple; graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [Green Version]
- Aspinall, S.L.; Sylvain, N.P.; Zhao, X.; Zhang, R.; Dong, D.; Echevarria, K.; Glassman, P.A.; Goetz, M.B.; Miller, D.R.; Cunningham, F.E. Serious cardiovascular adverse events with fluoroquinolones versus other antibiotics: A self-controlled case series analysis. Pharmacol. Res. Perspect. 2020, 8, e00664. [Google Scholar] [CrossRef]
- Maumus-Robert, S.; Bérard, X.; Mansiaux, Y.; Tubert-Bitter, P.; Debette, S.; Pariente, A. Short-term risk of aortoiliac aneurysm or dissection associated with fluoroquinolone use. J. Am. Coll. Cardiol. 2019, 73, 875–877. [Google Scholar] [CrossRef] [PubMed]
- Latif, A.; Ahsan, M.J.; Kapoor, V.; Lateef, N.; Malik, S.U.; Patel, A.D.; Khan, B.A.; Bittner, M.; Holmberg, M. Fluoroquinolones and the risk of aortopathy: A systematic review and meta-analysis. WMJ 2020, 119, 185–189. [Google Scholar] [PubMed]
Reference | Study Design | Study Location | Follow-Up Duration | Current FQ Exposure | Control Group | Case No. | Age, Year * | Male, % | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Study Group | Control Group | Study Group | Control Group | Study Group | Control Group | Primary Outcome | ||||||
Daneman et al. 2015 | Population-based longitudinal cohort study | Ontario, Canada | Range: 2–17 years | Within 30 days before event | FQ non-users | 657,950 FQ user | 1,086,410 | 65 | 65 | 48.6 | 48.9 | Severe collagen- associated adverse event including AA |
Lee et al. 2015 | Nested case-control study | Taiwan | Mean: 3613.3 days | Within 60 days before event | Not hospitalized for AA or AD | 1477 AA or AD | 147,700 | 74.7 ± 11.7 (AA); 66.2 ± 14.5 (AD) | 71.0 ± 13.7 | 74.1 (AA); 71.5 (AD) | 72.9 | AA or AD |
Pasternak et al. 2018 | Nationwide cohort study with active comparator | Sweden | 120 days | Within 60 days before event | Amoxicillin | 360,088 episodes of FQ use | 360,088 | 67.9 ± 10.8 | 68.0 ± 10.4 | 45 | 45 | AA or AD |
Lee et al. 2018 | Case crossover study | Taiwan | 300 or 60–180 days | Within 60 days before event | As their own control during the reference period | 1213 hospitalized AA/AD | 70.6 ± 13.8 | 70.6 ± 13.8 | 72.5 | 72.5 | AA or AD | |
Maumus-Robert et al. 2019 | Case-time-control study | France | 180 days | Within 30 days before event | As their own control window (day 120–180 before event) | 5946 AA or AD | NA | NA | NA | NA | AA or AD | |
Dong et al. 2020 | Nested case-control study | Taiwan | 1303.82 days | Within 60 days before event | Free of AA/AD at the time a case occurred | 28,948 | 289,480 | 67.4 ± 15.0 | 67.4 ± 15.0 | 71.4 | 71.4 | AA or AD |
Gopalakrishnan et al. 2020 | PMS case-control cohort study | US | NA | Within 60 days before event | AZM, SMX/TMP, AMX | 139,772 (PN); 474,182 (UTI) | 139,772 (PN); 474,182 (UTI) | 63.7 ± 11.0 (PN); 62.1 ± 10.4 (UTI) | 63.6 ± 11.0 (PN); 62.0 ± 10.3 (UTI) | 46.4 (PN); 13.3 (UTI) | 46.3 (PN); 13.0 (UTI) | AA/AD |
Aspinall et al. 2020 | Self-controlled case series | US | NA | Within 30 days before event | AMX, AZM, CXM, CFX, DOX, SMX/TMP | 2027 (total); 88,606 (person days) | 2027 (total); 120,804 (person days) | 68.8 ± 8.8 | 68.8 ± 8.8 | 98.3 | 98.3 | AA/AD |
Newton et al. 2021 | Population-based cohort study | US | NA | Within 180 days before event | AMC, AZM, CFX, CLI, SMX/TMP | 9,053,961 | 38,542,584 | 44 (32–55) | 44 (32–55) | 39.1 | 40.1 | AA/AD |
Characteristics | Study No. | Risk Ratio | 95% CI | p-Value |
---|---|---|---|---|
Study design | ||||
Case-time-control study | 2 | 2.49 | 1.16–5.32 | 0.019 |
Cohort study | 6 cohorts in 3 studies | 1.59 | 1.16–2.18 | 0.004 |
Nested case-control study | 2 | 1.51 | 0.60–3.78 | 0.382 |
Sex | ||||
Female | 4 | 1.79 | 1.13–2.83 | 0.013 |
Male | 5 | 1.32 | 1.12–1.55 | 0.001 |
Age group | ||||
50–64 years | 2 | 1.24 | 1.20–1.29 | <0.001 |
≥65 years | 3 | 1.51 | 0.77–2.96 | 0.227 |
Patients with baseline image | 2 | 1.05 | 0.91–1.21 | 0.521 |
Type of infection | ||||
Lower respiratory tract infection/pneumonia | 2 | 1.58 | 0.68–3.69 | 0.284 |
Urinary tract infection | 2 | 0.80 | 0.58–1.10 | 0.168 |
Comparator | ||||
Azithromycin | 2 | 2.31 | 1.54–3.47 | <0.001 |
Amoxicillin | 3 | 1.57 | 1.39–1.78 | <0.001 |
Amoxicillin/clavulanate or ampicillin/sulbactam | 2 | 1.18 | 0.81–1.73 | 0.384 |
Sulfamethoxazole/trimethoprim | 2 | 0.89 | 0.65–1.22 | 0.462 |
Other antibiotic | 3 | 1.14 | 0.90–1.46 | 0.284 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, C.-C.; Wang, Y.-H.; Chen, K.-H.; Chen, C.-H.; Wang, C.-Y. The Association between the Risk of Aortic Aneurysm/Aortic Dissection and the Use of Fluroquinolones: A Systematic Review and Meta-Analysis. Antibiotics 2021, 10, 697. https://doi.org/10.3390/antibiotics10060697
Lai C-C, Wang Y-H, Chen K-H, Chen C-H, Wang C-Y. The Association between the Risk of Aortic Aneurysm/Aortic Dissection and the Use of Fluroquinolones: A Systematic Review and Meta-Analysis. Antibiotics. 2021; 10(6):697. https://doi.org/10.3390/antibiotics10060697
Chicago/Turabian StyleLai, Chih-Cheng, Ya-Hui Wang, Kuang-Hung Chen, Chao-Hsien Chen, and Cheng-Yi Wang. 2021. "The Association between the Risk of Aortic Aneurysm/Aortic Dissection and the Use of Fluroquinolones: A Systematic Review and Meta-Analysis" Antibiotics 10, no. 6: 697. https://doi.org/10.3390/antibiotics10060697
APA StyleLai, C. -C., Wang, Y. -H., Chen, K. -H., Chen, C. -H., & Wang, C. -Y. (2021). The Association between the Risk of Aortic Aneurysm/Aortic Dissection and the Use of Fluroquinolones: A Systematic Review and Meta-Analysis. Antibiotics, 10(6), 697. https://doi.org/10.3390/antibiotics10060697