Antiprotozoal Nor-Triterpene Alkaloids from Buxus sempervirens L.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification of Isolated Buxus-Alkaloids
2.2. In Vitro Antiprotozoal Activity of Isolated Compounds
3. Materials and Methods
3.1. Plant Material
3.2. Extraction and Isolation of Alkaloids from the B. sempervirens Leaf Extract
3.3. Alkaline Hydrolysis of the Esters 1 and 6
3.4. Spectroscopic Analysis of Isolated Compounds
3.5. Spectral Data of Isolated Buxus-Alkaloids
3.6. In Vitro Bioassays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neves, J.M.; Matos, C.; Moutinho, C.; Queiroz, G.; Gomes, L.R. Ethnopharmacological notes about ancient uses of medicinal plants in Trás-os-Montes (northern of Portugal). J. Ethnopharmacol. 2009, 124, 270–283. [Google Scholar] [CrossRef] [PubMed]
- Leporatti, M.L.; Pavesi, A.; Posocco, E. Phytotherapy in the Valnerina Marche (Central Italy). J. Ethnopharmacol. 1985, 14, 53–63. [Google Scholar] [CrossRef]
- Atta-ur-Rahman; Choudhary, M.I. Diterpenoid and steroidal alkaloids. Nat. Prod. Rep. 1999, 16, 619–635. [Google Scholar] [CrossRef]
- Ata, A.; Andersh, B.J. Chapter 3 Buxus Steroidal Alkaloids: Chemistry and Biology; The Alkaloids: Chemistry and Biology; Academic Press: London, UK, 2008; pp. 191–213. [Google Scholar]
- Yan, Y.-X.; Sun, Y.; Li, Z.-R.; Zhou, L.; Qiu, M.-H. Chemistry and Biological Activities of Buxus Alkaloids. CBC 2011, 7, 47–64. [Google Scholar] [CrossRef]
- Althaus, J.B.; Jerz, G.; Winterhalter, P.; Kaiser, M.; Brun, R.; Schmidt, T.J. Antiprotozoal activity of Buxus sempervirens and activity-guided isolation of O-tigloylcyclovirobuxeine-B as the main constituent active against Plasmodium falciparum. Molecules 2014, 19, 6184–6201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, S.; Risinger, A.L.; Nair, S.; Peng, J.; Anderson, T.J.C.; Du, L.; Powell, D.R.; Mooberry, S.L.; Cichewicz, R.H. Identification of Compounds with Efficacy against Malaria Parasites from Common North American Plants. J. Nat. Prod. 2016, 79, 490–498. [Google Scholar] [CrossRef] [Green Version]
- Flittner, D.; Kaiser, M.; Mäser, P.; Lopes, N.P.; Schmidt, T.J. The Alkaloid-Enriched Fraction of Pachysandra terminalis (Buxaceae) Shows Prominent Activity against Trypanosoma brucei rhodesiense. Molecules 2021, 26, 591. [Google Scholar] [CrossRef] [PubMed]
- Nnadi, C.O.; Althaus, J.B.; Nwodo, N.J.; Schmidt, T.J. A 3D-QSAR Study on the Antitrypanosomal and Cytotoxic Activities of Steroid Alkaloids by Comparative Molecular Field Analysis. Molecules 2018, 23, 1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kupchan, S.M.; Kennedy, R.M.; Schleigh, W.R.; Ohta, G. Buxus alkaloids—XII. Tetrahedron 1967, 23, 4563–4586. [Google Scholar] [CrossRef]
- Szabó, L.U.; Schmidt, T.J. Target-Guided Isolation of O-tigloylcyclovirobuxeine -B from Buxus sempervirens L. by Centrifugal Partition Chromatography. Molecules 2020, 25, 4804. [Google Scholar] [CrossRef]
- Kupchan, S.M.; Ohta, G. Buxus Alkaloids. X. 1 The Isolation and Constitution of Cyclovirobuxeine-B. J. Org. Chem. 1966, 31, 608–610. [Google Scholar] [CrossRef]
- Nakano, T.; Terao, S. Buxus alkaloids. Part, I. The structures of three new alkaloids, cyclomicrophylline-A., B., and C., from B. microphylla Sieb. et Zucc. Tetrahedron Lett. 1964, 5, 1035–1043. [Google Scholar] [CrossRef]
- Atta-ur-Rahman; Ahmed, D.; Asif, E.; Ahmad, S.; Sener, B.; Turkoz, S. Chemical Constituents of Buxus sempervirens. J. Nat. Prod. 1991, 54, 79–82. [Google Scholar] [CrossRef]
- Nakano, T.; Terao, S. Buxus alkaloids. IV. Isolation and structure elucidation of eight new alkaloids, cyclomicrophylline-A, -B, and -C, dihydrocyclomicrophylline-A and -F, cyclomicrophyllidine-A, dihydrocyclomicrophyllidine-A, and cyclomicrobuxine, from B. microphylla Sieb. et Zucc. var. suffruticosa Makino. J. Chem. Soc. Perkin Trans. 1965, 1, 4512–4537. [Google Scholar]
- Leuthardt, F.L.G.; Glauser, G.; Baur, B. Composition of alkaloids in different box tree varieties and their uptake by the box tree moth Cydalima perspectalis. Chemoecology 2013, 23, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, M.I.; Shahnaz, S.; Parveen, S.; Khalid, A.; Mesaik, M.A.; Ayatollahi, S.A.M. New cholinesterase-inhibiting triterpenoid alkaloids from Buxus hyrcana. Chem. Biodivers. 2006, 3, 1039–1052. [Google Scholar] [CrossRef] [PubMed]
- Döpke, W.; Müller, B.; Und Jeffs, P.W. Buxarin und Buxenon, zwei neue Alkaloide aus Buxus sempervirens L. Die Pharm. Jahrg. 1966, 21, 643. [Google Scholar]
- Ahmed, D.; Choudhary, M.I.; Turkoz, S.; Sener, B. Chemical Constituents of Buxus sempervirens. Planta Med. 1988, 54, 173–174. [Google Scholar] [PubMed]
- Nakano, T.; Terao, S.; Saeki, Y. Buxus alkaloids. Part VII. The isolation and the constitutions of ten new alkaloids from the weak-base fractions of two species, B. microphylla Sieb. et Zucc. var. suffruticosa Makino and B. microphylla Sieb. et Zucc. var. suffruticosa Makino forma major Makino. J. Chem. Soc. C 1966, 1412. [Google Scholar]
- Atta-ur-Rahman; Ahmed, D.; Choudhary, M.I.; Sener, B.; Turkoz, S. Alkaloids from the Leaves of Buxus sempervirens. J. Nat. Prod. 1988, 51, 783–786. [Google Scholar] [CrossRef]
- Atta-ur-Rahman; Noor-e-ain, F.; Choudhary, M.I.; Parveen, Z.; Türköz, S.; Sener, B. New steroidal alkaloids from Buxus longifolia. J. Nat. Prod. 1997, 60, 976–981. [Google Scholar] [CrossRef]
- Votický, Z.; Tomko, J. Alkaloids from Buxus sempervirens L. V. Configuration of buxtauine and buxpiine. Tetrahedron Lett. 1965, 6, 3579–3584. [Google Scholar] [CrossRef]
- Kuchkova, K.I.; Voticky, Z.; Paulik, V. Buxus alkaloids. XIII. Alkaloids from Buxus sempervirens var. argentea Hort. ex. Steud. Chem. Zvesti 1976, 30, 174–178. [Google Scholar]
- Atta-ur-Rahman; Naz, S.; Noor-e-ain, F.; Ali, R.A.; Choudhary, M.I.; Sener, B.; Turkoz, S. Alkaloids from Buxus species. Phytochemistry 1992, 31, 2933–2935. [Google Scholar] [CrossRef]
- Loru, F.; Duval, D.; Aumelas, A.; Akeb, F.; Guédon, D.; Guedj, R. Four steroidal alkaloids from the leaves of Buxus sempervirens. Phytochemistry 2000, 54, 951–957. [Google Scholar] [CrossRef]
- Döpke, W.; Härtel, R. N-Benzoylbuxodienin-E und N-Benzoyl-O-acetylbuxodienin-E—Zwei neue Alkaloide aus Buxus sempervirens L. Z. Chem. 1973, 13, 135–136. [Google Scholar] [CrossRef]
- Devkota, K.P.; Lenta, B.N.; Fokou, P.A.; Sewald, N. Terpenoid alkaloids of the Buxaceae family with potential biological importance. Nat. Prod. Rep. 2008, 25, 612–630. [Google Scholar] [CrossRef] [PubMed]
- Bienz, S.; Bigler, L.; Fox, T.; Meier, H. Spektroskopische Methoden in der Organischen Chemie; Georg Thieme Verlag: Stuttgart, Germany, 2016. [Google Scholar]
- Meshkatalsadat, M.H.; Mollataghi, A.; Ata, A. New Triterpenoidal Alkaloids from Buxus hyrcana. Z. Naturforsch. B 2006, 61, 201–206. [Google Scholar] [CrossRef]
- Černý, V.; Šorm, F. Chapter 8 Steroid Alkaloids: Alkaloids of Apocynaceae and Buxaceae; The Alkaloids: Chemistry and Physiology; Elsevier: Amsterdam, The Netherlands, 1967; pp. 305–426. [Google Scholar]
- Blaschek, W.; Hager, H. (Eds.) Hagers Enzyklopädie der Arzneistoffe und Drogen. Mit 600 Tabellen; 6., neu bearb. und erg. Aufl.; Wiss. Verl.-Ges: Stuttgart, Germany, 2007. [Google Scholar]
- Xiang, Z.-N.; Su, J.-C.; Liu, Y.-H.; Deng, B.; Zhao, N.; Pan, J.; Hu, Z.-F.; Chen, F.-H.; Cheng, B.-Y.; Chen, J.-C.; et al. Structurally diverse alkaloids from Buxus sempervirens with cardioprotective activity. Bioorg. Chem. 2021, 109, 104753. [Google Scholar] [CrossRef]
- Theodorou, V.; Skobridis, K.; Tzakos, A.G.; Ragoussis, V. A simple method for the alkaline hydrolysis of esters. Tetrahedron Lett. 2007, 48, 8230–8233. [Google Scholar] [CrossRef]
- Nnadi, C.O.; Nwodo, N.J.; Kaiser, M.; Brun, R.; Schmidt, T.J. Steroid Alkaloids from Holarrhena africana with Strong Activity against Trypanosoma brucei rhodesiense. Molecules 2017, 22, 1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernal, F.A.; Kaiser, M.; Wünsch, B.; Schmidt, T.J. Structure-Activity Relationships of Cinnamate Ester Analogues as Potent Antiprotozoal Agents. Chem. Med. Chem. 2020, 15, 68–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoud, A.B.; Mäser, P.; Kaiser, M.; Hamburger, M.; Khalid, S. Mining Sudanese Medicinal Plants for Antiprotozoal Agents. Front. Pharmacol. 2020, 11, 865. [Google Scholar] [CrossRef] [PubMed]
Cpd | Structure |
---|---|
Core skeleton A: | |
1 | R1+4: H, R2: N(CH3)2, R3: (CH3)2, Δ6, R5: O-tiglate, R6: NHCH3 |
2 | R1+4: H, R2: N(CH3)2, R3: (CH3)2, Δ6, R5: OH, R6: NHCH3 |
3 | R1+4: H, R2: N(CH3)2, R3: CH3+CH2OH, Δ6, R5: O-tiglate, R6: NHCH3 |
4 | R1+4: H, R2: N(CH3)2, R3: CH3+CH2OH, Δ6, R5: O-tiglate, R6: N(CH3)2 |
5 | R1+4: H, R2: N(CH3)2, R3: CH3+CH2OH, Δ6, R5: OH, R6: N(CH3)2 |
6 | R1+4: H, R2: N(CH3)2, R3: CH3+CH2OH, Δ6, R5: O-benzoate, R6: N(CH3)2 |
7 | R1+4: H, R2: N(CH3)2, R3: CH3+CH2OH, Δ6, R5: O-benzoate, R6: NHCH3 |
8 | R1: O-benzoate, R2: NHCH3, R3: (CH3)2, R4+5: H, R6: NHCH3 |
9 | R1+5: H, R2: benzamide, R3: CH3+CH2OAc, R4: =O, R6: N(CH3)2 |
10 | R1+5: H, R2: benzamide, R3: CH3+CH2OH, R4: =O, R6: N(CH3)2 |
11 | R1+4: H, R2: =O, R3: CH3+CH2OH, R5: OH, R6: N(CH3)2 |
12 | R1+4: H, Δ1,2, R2: =O, R3: (CH3)2, R5: OH, R6: N(CH3)2 |
13 | R1+4+6: H, R2: NHCH3, R3: (CH3)2, R5: =O, Δ17(20) (E) |
14 | R1+4+6: H, R2: NHCH3, R3: (CH3)2, R5: =O, Δ17(20) (Z) |
15 | R1+4+6: H, R2: NHCH3, R3: =CH2, R5: =O, Δ17(20) (E) |
16 | R1+4+6: H, R2: NHCH3, R3: =CH2, R5: =O, Δ17(20) (Z) |
17 | R1+4: H, R2: NHCH3, R3: =CH2, R5: OH, R6: =O |
18 | R1+4: H, R2: N(CH3)2, R3: =CH2, R5: OH, R6: =O |
Core skeleton B: | |
19 | R1: OH, R2: N(CH3)2 |
Core skeleton C: | |
20 | R1: N(CH3)2, R2: OH, R3: H, R4: =O |
21 | R1: N(CH3)2, R2+3: H, R4: NHAc |
22 | R1: N(CH3)2, R2: OAc, R3: H, R4: benzamide |
23 | R1: N(CH3)2, R2: OAc, R3: H, R4: benzamide |
24 | R1: NHCH3, R2+3: H, R4: NHAc |
25 | R1: NHCH3, R2: H, R3+4: OH |
3 | 4 | 7 | 8 | |||||
---|---|---|---|---|---|---|---|---|
Pos. | δC [ppm] | δH [ppm], mult., J [Hz] | δC [ppm] | δH [ppm], mult., J [Hz] | δC [ppm] | δH [ppm], mult., J [Hz] | δC [ppm] | δH [ppm], mult., J [Hz] |
1 | 29.82, CH2 | 1.74, d, 12.4 1.69, m | 31.72, CH2 | 1.63, m (2H) | 30.44, CH2 | 1.75, m (2H) | 38.75, CH2 | 1.98, dd, 12.5, 4.9 1.79, m |
2 | 20.01, CH2 | 1.96, m 1.87, m | 19.62, CH2 | 1.82, m 1.68, m | 20.94, CH2 | 2.07, dd, 12.5, 3.5 1.92, m | 74.49, CH | 5.30, td, 10.9, 4.8 |
3 | 72.94, CH | 3.46, dd, 12.8, 3.5 | 73.29, CH | 2.71, dd, 12.3, 3.4 | 75.62, CH | 3.49, m | 73.20, CH | 3.35, d, 11.0 |
4 | 42.69, qC | - | 43.36, qC | - | 43.21, qC | - | 41.53, qC | - |
5 | 43.78, CH | 2.19, m | 45.82, CH | 1.95, s | 45.18, CH | 2.11, br s | 48.78, CH | 1.73, m |
6 | 125.03, CH | 5.54, d, 10.8 | 126.72, CH | 5.49, m | 126.06, CH | 5.52, m | 21.93, CH2 | 1.77, m 0.94, m |
7 | 129.83, CH | 5.50, ddd, 10.8, 5.8, 2.8 | 130.42, CH | 5.45, ddd, 10.6, 5.8, 2.9 | 130.96, CH | 5.56, m | 26.75, CH2 | 1.47, m 1.23, m |
8 | 42.71, CH | 2.65, m | 44.49, CH | 2.63, m | 44.05, CH | 2.74, m | 48.95, CH | 1.66, dd, 12.5, 4.8 |
9 | 20.74, qC | - | 21.72, qC | - | 21.80, qC | - | 20.91, qC | - |
10 | 27.32, qC | - | 29.07, qC | - | 28.55, qC | - | 25.47, qC | - |
11 | 24.83, CH2 | 1.90, dd, 14.6, 4.7 1.46, m | 26.07, CH2 | 1.90, m 1.51, m | 25.74, CH2 | 1.99, m 1.58, m | 27.10, CH2 | 2.11, m 1.22, m |
12 | 31.87, CH2 | 1.84, dd, 13.1, 4.3 1.48, m | 33.43, CH2 | 1.76, dd, 13.5, 5.1 1.46, m | 33.13, CH2 | 1.92, m 1.62, dd, 13.5, 5.0 | 33.11, CH2 | 1.75, m 1.73, m |
13 | 47.53, qC | - | 46.27, qC | - | 47.88, qC | - | 46.89, qC | - |
14 | 49.48, qC | - | 50.79, qC | - | 50.35, qC | - | 50.04, qC | - |
15 | 42.33, CH2 | 2.16, m 1.44, m | 43.28, CH2 | 2.08, m 1.11, d, 13.9 | 43.59, CH2 | 2.39, dd, 14.7, 8.7 1.46, dd, 14.6, 1.2 | 36.46, CH2 | 1.56, m 1.52, m |
16 | 78.68, CH | 5.26, dd, 8.3, 5.5 | 81.26, CH | 5.12, ddd, 8.5, 5.9, 1.0 | 80.89, CH | 5.28, ddd, 8.3, 6.4, 1.3 | 27.01, CH2 | 2.02, m 1.58, m |
17 | 55.41, CH | 2.46, dd, 10.8, 5.5 | 56.84, CH | 2.21, m | 55.65, CH | 2.58, dd, 10.8, 6.3 | 51.04, CH | 2.06, m |
18 | 15.77, CH3 | 1.04, s | 16.28, CH3 | 1.00, s | 15.91, CH3 | 1.13, s | 18.68, CH3 | 1.08, s |
19 | 17.94, CH2 | 0.83, d, 4.4 −0.03, d, 4.4 | 19.09, CH2 | 0.79, d, 4.1 −0.07, d, 4.2 | 18.61, CH2 | 0.85, d, 4.3 0.08, d, 4.5 | 30.11, CH2 | 0.80, d, 4.6 0.71, d, 4.6 |
20 | 57.14, CH | 3.41, m | 61.37, CH | 2.63, m | 58.42, CH | 3.58, m | 60.44, CH | 3.24, m |
21 | 15.45, CH3 | 1.41, d, 6.5 | 10.53, CH3 | 0.89, d, 6.4 | 15.54, CH3 | 1.41, d, 6.5 | 15.45, CH3 | 1.31, d, 6.4 |
28 | 17.45, CH3 | 0.98, s | 18.16, CH3 | 0.98, s | 18.46, CH3 | 1.04, s | 19.71, CH3 | 1.01, s |
29 | 67.80, CH2 | 4.05, d, 11.6 3.79, d, 11.5 | 72.91, CH2 | 3.81, d, 10.4 3.52, d, 10.3 | 70.91, CH2 | 3.92, m 3.65, m | 25.16, CH3 | 1.20, s |
30 | 12.89, CH3 | 1.10, s | 12.78, CH3 | 1.05, s | 12.31, CH3 | 1.14, s | 15.76, CH3 | 1.06, s |
31/32 | 45.64, CH3 | 2.96, s (3H) | 42.94, CH3 | 2.37, s (6H) | 45.40, CH3 | 2.94, s (3H) | 37.69, CH3 | 2.96, s (3H) |
39.09, CH3 | 2.77, s (3H) | 39.31, CH3 | 2.78, s (3H) | |||||
33/34 | 29.06, CH3 | 2.66, s (3H) | 40.71, CH3 | 2.14, s (6H) | 30.01, CH3 | 2.69, s (3H) | 29.88, CH3 | 2.67, s (3H) |
OCO | 167.54, qC | - | 166.74, qC | - | ||||
1′ | 169.61, qC | - | 169.27, qC | - | 131.45, qC | - | 130.97, qC | - |
2′ | 127.74, qC | - | 130.20, qC | - | 130.48, CH | 8.03, m | 130.53, CH | 8.06, m |
3′ | 141.17, CH | 6.91, qq, 7.0, 1.4 | 137.75, CH | 6.80, qq, 7.0, 1.3 | 129.76, CH | 7.50, m | 129.95, CH | 7.53, m |
4′ | 14.81, CH3 | 1.81, m | 14.31, CH3 | 1.79, m | 134.55, CH | 7.63, m | 134.86, CH | 7.66, m |
5′ | 11.90, CH3 | 1.80, m | 12.16, CH3 | 1.81, m | 129.76, CH | 7.50, m | 129.95, CH | 7.53, m |
6′ | 130.48, CH | 8.03, m | 130.53, CH | 8.06, m |
11 | 23 | 24 | 25 | |||||
---|---|---|---|---|---|---|---|---|
Pos. | δC [ppm] | δH [ppm], mult., J [Hz] | δC [ppm] | δH [ppm], mult., J [Hz] | δC [ppm] | δH [ppm], mult., J [Hz] | δC [ppm] | δH [ppm], mult., J [Hz] |
1 | 33.21, CH2 | 1.91, m 1.57, m | 121.95, CH | 5.42, br s | 117.16, CH | 5.39, s | 116.85, CH | 5.39, br s |
2 | 38.83, CH2 | 2.68, m 2.29, m | 22.98, CH2 | 2.19, m (2H) | 24.92, CH2 | 2.43, m 2.28, m | 24.91, CH2 | 2.46, m 2.33, m |
3 | 217.33, qC | - | 68.30, CH | 2.19, m | 65.73, CH | 2.80, m | 65.87, CH | 2.78, m |
4 | 56.13, qC | - | 39.17, qC | - | 36.60, qC | - | 36.46, qC | - |
5 | 42.14, CH | 2.33, m | 52.91, CH | 1.73, m | 50.90, CH | 1.87, m | 50.51, CH | 1.87, m |
6 | 22.08, CH2 | 1.62, m 1.01, dd, 12.6, 2.4 | 31.54, CH2 | 1.97, m 1.73, m | 29.98, CH2 | 2.04, m 1.30, m | 31.38, CH2 | 2.10, m 1.26, m |
7 | 26.98, CH2 | 1.38, m (2H) | 28.41, CH2 | 1.54, dd, 14.0, 5.7 1.44, m | 27.79, CH2 | 1.69, m 1.44, m | 27.47, CH2 | 1.64, m 1.48, m |
8 | 49.18, CH | 1.61, m | 48.47, CH | 2.03, m | 47.44, CH | 2.03, m | 48.46, CH | 2.04, d, 10.2 |
9 | 21.31, qC | - | 141.29, qC | - | 138.47, qC | - | 138.16, qC | - |
10 | 26.69, qC | - | 141.10, qC | - | 140.39, qC | - | 140.55, qC | - |
11 | 27.24, CH2 | 2.21, m 1.26, m | 119.37, CH | 5.31, br m | 120.81, CH | 5.29, s | 120.60, CH | 5.35, br s |
12 | 32.60, CH2 | 1.86, m 1.66, m | 37.85, CH2 | 2.19, m 1.99, m | 36.97, CH2 | 1.97, m 1.90, m | 30.87, CH2 | 2.40, m 1.64, m |
13 | 47.36, qC | - | 45.34, qC | - | 44.02, qC | - | 48.06, qC | - |
14 | 48.90, qC | - | 48.45, qC | - | 48.81, qC | - | 48.53, qC | - |
15 | 48.01, CH2 | 2.06, m 1.48, dd, 13.9, 2.3 | 43.83, CH2 | 2.01, m 1.32, dd, 14.3, 1.4 | 32.93, CH2 | 1.43, m 1.34, m | 33.30, CH2 | 1.55, m 1.48, m |
16 | 77.20, CH | 4.31, m | 80.73, CH | 5.02, ddd, 8.9, 6.6, 1.4 | 26.47, CH2 | 1.83, m 1.46, m | 38.63, CH2 | 2.14, m 1.90, m |
17 | 56.12, CH | 2.23, m | 58.04, CH | 2.34, dd, 10.8, 6.6 | 51.73, CH | 1.76, m | 85.50, qC | - |
18 | 19.65, CH3 | 1.13, s | 16.62, CH3 | 0.84, s | 15.57, CH3 | 0.73, s | 17.64, CH3 | 0.73, s |
19 | 30.56, CH2 | 0.83, d, 4.1 0.68, d, 4.4 | 47.16, CH2 | 2.93, d, 14.2 2.78, d, 14.3 | 45.87, CH2 | 2.93, m 2.82, m | 46.11, CH2 | 2.96, d, 14.6 2.82, m |
20 | 68.22, CH | 3.59, m | 48.17, CH | 4.40, dq, 13.2, 6.5 | 49.31, CH | 3.99, m | 73.74, CH | 3.84, q, 6.1 |
21 | 11.36, CH3 | 1.32, d, 6.6 | 20.74, CH3 | 1.27, d, 6.6 | 21.30, CH3 | 1.14, d, 6.3 | 18.21, CH3 | 1.18, d, 6.1 |
28 | 21.28, CH3 | 1.23, s | 17.89, CH3 | 0.92, s | 17.49, CH3 | 0.72, s | 18.56, CH3 | 1.03, s |
29 | 64.35, CH2 | 3.86, d, 11.2 3.32, m | 29.41, CH3 | 0.93, s | 26.31, CH3 | 1.15, s | 27.32, CH3 | 1.14, s |
30 | 16.98, CH3 | 0.97, s | 22.83, CH3 | 1.00, s | 18.22, CH3 | 1.01, s | 19.97, CH3 | 1.09, s |
31/32 | 45.32, CH3 | 2.30, s (6H) | 33.38, CH3 | 2.72, s (3H) | 34.09, CH3 | 2.75, s (3H) | ||
33/34 | 43.67, CH3 | 2.96, s (3H) | ||||||
36.65, CH3 | 2.81, s (3H) | |||||||
Ac-CH3 | 20.97, CH3 | 1.62, s | 23.35, CH3 | 1.99, s | ||||
Ac-CO | 172.40, qC | - | 170.18, qC | - | ||||
OCNH | 168.61, qC | - | - | 5.46, d (1H), 9.0 | ||||
1′ | 135.84, qC | - | ||||||
2′ | 128.28, CH | 7.78, m | ||||||
3′ | 129.45, CH | 7.44, m | ||||||
4′ | 132.54, CH | 7.51, m | ||||||
5′ | 129.45, CH | 7.44, m | ||||||
6′ | 128.28, CH | 7.78, m |
Cpd | Pf | Tbr | Cytotox. | SI Pf | SI Tbr |
---|---|---|---|---|---|
1 | 0.52 ± 0.14 (1.05 µM) | 1.6 ± 0.55 * (3.2 µM) | 9.4 ± 3.8 (19 µM) | 18 | 6 |
2 | 1.07 ± 0.11 (2.6 µM) | 0.6 ± 0.03 (1.5 µM) | 14.7 ± 3.1 (35.5 µM) | 14 | 25 |
3 | 0.5 ± 0.06 (0.98 µM) | 4.6 ± 0.005 (9 µM) | 35.8 ± 13.6 (69.9 µM) | 72 | 8 |
4 | 0.35 ± 0.08 (0.7 µM) | 1.5 ± 0.76 * (2.9 µM) | 12 ± 1.4 (22.8 µM) | 34 | 8 |
5 | 0.78 ± 0.08 (1.76 µM) | 1.04 ± 0.27 * (2.34 µM) | 44 ± 2.3 (99 µM) | 56 | 42 |
6 | 0.4 ± 0.02 (0.7 µM) | 0.69 ± 0.06 (1.3 µM) | 9.3 ± 3 (17 µM) | 23 | 14 |
7 | 0.11 ± 0.01 (0.2 µM) | 1.9 ± 0.3 (3.6 µM) | 16 ± 0.2 (29.9 µM) | 145 | 8 |
8 | 0.09 ± 0.03 * (0.18 µM) | 0.55 ± 0.18 (1.1 µM) | 6.65 ± 0.38 (13.1 µM) | 74 | 12 |
9 | 2.15 ± 0.29 (3.8 µM) | 1.35 ± 0.45 * (2.4 µM) | 41 ± 0.7 (73 µM) | 19 | 30 |
11 | 0.9 ± 0.13 (2.2 µM) | 2.9 ± 1 (7 µM) | 44 ± 1.3 (105.4 µM) | 49 | 15 |
12 | 1.4 ± 0.44 * (3.5 µM) | 2.5 ± 0.1 (6.3 µM) | 19 ± 1.2 (47.6 µM) | 14 | 8 |
13 + 14 | 1.6 ± 0.18 * (4.3 µM) | 0.8 ± 0.06 (2.2 µM) | 5.3 ± 0.05 (14.4 µM) | 3 | 7 |
15 + 16 | 1.1 ± 0.01 (3.1 µM) | 0.75 ± 0.001 (2.1 µM) | 10.4 ± 4.17 (29.4 µM) | 9 | 14 |
17 | 4.1 ± 0.8 (10.9 µM) | 48 ± 0.2 (129.3 µM) | 30.5 ± 9.6 (82 µM) | 7 | 0.6 |
18 | 2.6 ± 0.005 (6.8 µM) | 16.9 ± 2.3 (44 µM) | 26.8 ± 8.8 (69.6 µM) | 10 | 2 |
19 | 1.3 ± 0.35 * (3.8 µM) | 2.2 ± 0.07 (6.4 µM) | 13.4 ± 0.5 (38.8 µM) | 10 | 6 |
20 | 1.6 ± 0.57 * (4 µM) | 5.26 ± 0.3 (13.2 µM) | 45 ± 1 (112.7 µM) | 28 | 9 |
21 | 3.1 ± 0.24 * (7.3 µM) | 53 ± 1 (124 µM) | 54.8 ± 1.1 (129 µM) | 18 | 1 |
22 | 3 ± 0.3 (6.2 µM) | 3.4 ± 1 (6.2 µM) | 8.5 ± 0.1 (15.6 µM) | 3 | 3 |
23 | 4.2 ± 0.4 (7.7 µM) | 3.1 ± 0.6 (5.7 µM) | 27.5 ± 16 (50.4 µM) | 7 | 9 |
24 | 2.3 ± 0.27 (5.6 µM) | 0.52 ± 0.27 * (1.3 µM) | 16.9 ± 1.1 (41 µM) | 7 | 33 |
25 | 3.6 ± 0.05 (9.3 µM) | 6.7 ± 0.49 (17.3 µM) | 44.5 ± 5.5 (114.9 µM) | 12 | 7 |
Chloroquine | 0.006 ± 0.001 (0.019 µM) | ||||
Melarsoprol | 0.005 ± 0.001 (0.013 µM) | ||||
Podophyllotoxin | 0.006 ± 0.001 (0.014 µM) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szabó, L.U.; Kaiser, M.; Mäser, P.; Schmidt, T.J. Antiprotozoal Nor-Triterpene Alkaloids from Buxus sempervirens L. Antibiotics 2021, 10, 696. https://doi.org/10.3390/antibiotics10060696
Szabó LU, Kaiser M, Mäser P, Schmidt TJ. Antiprotozoal Nor-Triterpene Alkaloids from Buxus sempervirens L. Antibiotics. 2021; 10(6):696. https://doi.org/10.3390/antibiotics10060696
Chicago/Turabian StyleSzabó, Lara U., Marcel Kaiser, Pascal Mäser, and Thomas J. Schmidt. 2021. "Antiprotozoal Nor-Triterpene Alkaloids from Buxus sempervirens L." Antibiotics 10, no. 6: 696. https://doi.org/10.3390/antibiotics10060696
APA StyleSzabó, L. U., Kaiser, M., Mäser, P., & Schmidt, T. J. (2021). Antiprotozoal Nor-Triterpene Alkaloids from Buxus sempervirens L. Antibiotics, 10(6), 696. https://doi.org/10.3390/antibiotics10060696