Polyphenol-Rich Larix decidua Bark Extract with Antimicrobial Activity against Respiratory-Tract Pathogens: A Novel Bioactive Ingredient with Potential Pharmaceutical and Nutraceutical Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction Procedure
2.3. Cytotoxicity Assay
2.4. Acute Toxicity Study
2.5. Evaluation of Antimicrobial Activity against Respiratory-Tract Pathogens
2.6. HPLC-FLD-MS Analysis of Larch Bark Procyanidins
2.7. HPLC-DAD-MSn Analysis of Secondary Metabolites
2.8. Statistical Analysis
3. Results
3.1. Assessment of LBE Cytotoxicity and Acute Toxicity In Vivo
3.2. Antimicrobial Activity of LBE
3.3. HPLC-FLD-MS Analysis of Larch Bark Procyanidins
3.4. HPLC-DAD-MSn Analysis of Secondary Metabolites
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chalupa, V. Larch (Larix decidua Mill.). In Trees III; Bajaj, Y.P.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1991; pp. 446–470. ISBN 9783662132319. [Google Scholar]
- Lust, J. The Herb Book: The Most Complete Catalog of Herbs Ever Published; Courier Corporation: Chelmsford, MA, USA, 1974. [Google Scholar]
- Baldan, V.; Sut, S.; Faggian, M.; Gassa, E.D.; Ferrari, S.; De Nadai, G.; Francescato, S.; Baratto, G.; Dall’Acqua, S. Larix decidua bark as a source of phytoconstituents: An LC-MS study. Molecules 2017, 22, 1974. [Google Scholar] [CrossRef] [Green Version]
- Derbyshire, E.J.; Calder, P.C. Respiratory tract infections and antibiotic resistance: A protective role for vitamin D? Front. Nutr. 2021, 8, 84. [Google Scholar] [CrossRef]
- Man, W.H.; van Houten, M.A.; Mérelle, M.E.; Vlieger, A.M.; Chu, M.L.J.N.; Jansen, N.J.G.; Sanders, E.A.M.; Bogaert, D. Bacterial and viral respiratory tract microbiota and host characteristics in children with lower respiratory tract infections: A matched case-control study. Lancet Respir. Med. 2019, 7, 417–426. [Google Scholar] [CrossRef]
- Kwiyolecha, E.; Groendahl, B.; Okamo, B.; Kayange, N.; Manyama, F.; Kidenya, B.R.; Mahamba, D.C.; Msanga, D.R.; Gehring, S.; Majigo, M.; et al. Patterns of viral pathogens causing upper respiratory tract infections among symptomatic children in Mwanza, Tanzania. Sci. Rep. 2020, 10, 18490. [Google Scholar] [CrossRef] [PubMed]
- Žemličková, H.; Urbášková, P.; Adámková, V.; Motlová, J.; Lebedová, V.; Procházka, B. Characteristics of Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis and Staphylococcus aureus isolated from the nasopharynx of healthy children attending day-care centres in the Czech Republic. Epidemiol. Infect. 2006, 134, 1179–1187. [Google Scholar] [CrossRef] [PubMed]
- Talebi Bezmin Abadi, A.; Rizvanov, A.A.; Haertlé, T.; Blatt, N.L. World health organization report: Current crisis of antibiotic resistance. Bionanoscience 2019, 9, 778–788. [Google Scholar] [CrossRef]
- Nasri, H.; Baradaran, A.; Shirzad, H.; Rafieian-Kopaei, M. New concepts in nutraceuticals as alternative for pharmaceuticals. Int. J. Prev. Med. 2014, 5, 1487–1499. [Google Scholar] [PubMed]
- Parisi, G.F.; Carota, G.; Castruccio Castracani, C.; Spampinato, M.; Manti, S.; Papale, M.; Di Rosa, M.; Barbagallo, I.; Leonardi, S. Nutraceuticals in the prevention of viral infections, including COVID-19, among the pediatric population: A review of the literature. Int. J. Mol. Sci. 2021, 22, 2465. [Google Scholar] [CrossRef] [PubMed]
- Coppo, E.; Marchese, A. Antibacterial activity of polyphenols. Curr. Pharm. Biotechnol. 2014. [Google Scholar] [CrossRef] [PubMed]
- Daglia, M. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 2012, 23, 174–181. [Google Scholar] [CrossRef]
- Slobodníková, L.; Fialová, S.; Rendeková, K.; Kováč, J.; Mučaji, P. Antibiofilm activity of plant polyphenols. Molecules 2016, 21, 1717. [Google Scholar] [CrossRef] [PubMed]
- Buzzini, P.; Turchetti, B.; Ieri, F.; Goretti, M.; Branda, E.; Mulinacci, N.; Romani, A. Catechins and proanthocyanidins: Naturally occurring o-heterocycles with antimicrobial activity. Top. Heterocycl. Chem. 2007, 10, 239–263. [Google Scholar]
- Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Proanthocyanidins and hydrolysable tannins: Occurrence, dietary intake and pharmacological effects. Br. J. Pharmacol. 2017, 174, 1244–1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marín, L.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Bioavailability of dietary polyphenols and gut microbiota metabolism: Antimicrobial properties. Biomed. Res. Int. 2015, 2015, 905215. [Google Scholar] [CrossRef] [Green Version]
- Rauf, A.; Imran, M.; Abu-Izneid, T.; Ul-Haq, I.; Patel, S.; Pan, X.; Naz, S.; Sanches Silva, A.; Saeed, F.; Rasul Suleria, H.A. Proanthocyanidins: A comprehensive review. Biomed. Pharmacother. 2019, 116, 108999. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; He, C.; Song, L.; Li, T.; Cui, S.; Zhang, L.; Jia, Y. Antimicrobial activity and mechanism of Larch bark procyanidins against Staphylococcus aureus. Acta Biochim. Biophys. Sin. 2017, 49, 1058–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev. 2019, 18, 241–272. [Google Scholar] [CrossRef] [Green Version]
- Righi, D.; Huber, R.; Koval, A.; Marcourt, L.; Schnee, S.; Le Floch, A.; Ducret, V.; Perozzo, R.; de Ruvo, C.C.; Lecoultre, N.; et al. Generation of stilbene antimicrobials against multiresistant strains of Staphylococcus aureus through biotransformation by the enzymatic secretome of Botrytis cinerea. J. Nat. Prod. 2020, 83, 2347–2356. [Google Scholar] [CrossRef]
- Wagner, K.; Roth, C.; Willför, S.; Musso, M.; Petutschnigg, A.; Oostingh, G.J.; Sclmabel, T. Identification of antimicrobial compounds in different hydrophilic larch bark extracts. BioResources 2019. [Google Scholar] [CrossRef]
- Ćurković-Perica, M.; Hrenović, J.; Kugler, N.; Goić-Barišić, I.; Tkalec, M. Antibacterial activity of Pinus pinaster bark extract and its components against multidrug-resistant clinical isolates of Acinetobacter baumannii. Croat. Chem. Acta 2015. [Google Scholar] [CrossRef]
- Laireiter, C.M.; Schnabel, T.; Köck, A.; Stalzer, P.; Petutschnigg, A.; Oostingh, G.J.; Hell, M. Active anti-microbial effects of larch and pine wood on four bacterial strains. BioResources 2014, 9, 273–281. [Google Scholar] [CrossRef]
- Salem, M.Z.M.; Elansary, H.O.; Elkelish, A.A.; Zeidler, A.; Ali, H.M.; Hefny, M.E.L.; Yessoufou, K. In vitro bioactivity and antimicrobial activity of picea abies and Larix decidua wood and bark extracts. BioResources 2016. [Google Scholar] [CrossRef] [Green Version]
- Hubert, J.; Angelis, A.; Aligiannis, N.; Rosalia, M.; Abedini, A.; Bakiri, A.; Reynaud, R.; Nuzillard, J.M.; Gangloff, S.C.; Skaltsounis, A.L.; et al. In vitro dermo-cosmetic evaluation of bark extracts from common temperate trees. Planta Med. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.; Kim, J.-H.; Oh, S.-W. Grapefruit seed extract as a natural food antimicrobial: A review. Food Bioprocess. Technol. 2021, 14, 626–633. [Google Scholar] [CrossRef]
- Brun, P.; Bernabè, G.; Filippini, R.; Piovan, A. In vitro antimicrobial activities of commercially available tea tree (Melaleuca alternifolia) essential oils. Curr. Microbiol. 2019, 76, 108–116. [Google Scholar] [CrossRef]
- Peron, G.; Pellizzaro, A.; Brun, P.; Schievano, E.; Mammi, S.; Sut, S.; Castagliuolo, I.; Dall’Acqua, S. Antiadhesive activity and metabolomics analysis of rat urine after cranberry (Vaccinium macrocarpon aiton) administration. J. Agric. Food Chem. 2017. [Google Scholar] [CrossRef]
- Lin, L.-Z.; Sun, J.; Chen, P.; Monagas, M.J.; Harnly, J.M. UHPLC-PDA-ESI/HRMSn profiling method to identify and quantify oligomeric proanthocyanidins in plant products. J. Agric. Food Chem. 2014, 62, 9387–9400. [Google Scholar] [CrossRef] [Green Version]
- Friščić, M.; Bucar, F.; Hazler Pilepić, K. LC-PDA-ESI-MSn analysis of phenolic and iridoid compounds from Globularia spp. J. Mass Spectrom. 2016. [Google Scholar] [CrossRef]
- Kakumu, Y.; Yamauchi, K.; Mitsunaga, T. Identification of chemical constituents from the bark of Larix kaempferi and their tyrosinase inhibitory effect. Holzforschung 2019. [Google Scholar] [CrossRef]
- Kang, J.; Price, W.E.; Ashton, J.; Tapsell, L.C.; Johnson, S. Identification and characterization of phenolic compounds in hydromethanolic extracts of sorghum wholegrains by LC-ESI-MSn. Food Chem. 2016. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xiong, H.; Xu, X.; Xue, X.; Liu, M.; Xu, S.; Liu, H.; Gao, Y.; Zhang, H.; Li, X. Compounds identification in semen cuscutae by ultra-high-performance liquid chromatography (uplcs) coupled to electrospray ionization mass spectrometry. Molecules 2018, 35, 1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira-Santos, P.; Genisheva, Z.; Botelho, C.; Santos, J.; Ramos, C.; Teixeira, J.A.; Rocha, C.M.R. Unravelling the biological potential of pinus pinaster bark extracts. Antioxidants 2020, 9, 334. [Google Scholar] [CrossRef] [Green Version]
- Reagor, L.; Gusman, J.; McCoy, L.; Carino, E.; Heggers, J.P. The effectiveness of processed grapefruit-seed extract as an antibacterial agent: I. an in vitro agar assay. J. Altern. Complement. Med. 2002, 8, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Komura, M.; Suzuki, M.; Sangsriratanakul, N.; Ito, M.; Takahashi, S.; Alam, M.S.; Ono, M.; Daio, C.; Shoham, D.; Takehara, K. Inhibitory effect of grapefruit seed extract (GSE) on avian pathogens. J. Vet. Med. Sci. 2019, 81, 466–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, H.-W.; Kwak, J.-H.; Jang, T.-S.; Knowles, J.C.; Kim, H.-W.; Lee, H.-H.; Lee, J.-H. Grapefruit seed extract as a natural derived antibacterial substance against multidrug-resistant bacteria. Antibiotics 2021, 10, 85. [Google Scholar] [CrossRef]
- Takeoka, G.; Dao, L.; Wong, R.Y.; Lundin, R.; Mahoney, N. Identification of benzethonium chloride in commercial grapefruit seed extracts. J. Agric. Food Chem. 2001, 49, 3316–3320. [Google Scholar] [CrossRef] [PubMed]
- Avula, B.; Dentali, S.; Khan, I.A.; Khan, I.A. Simultaneous identification and quantification by liquid chromatography of benzethonium chloride, methyl paraben and triclosan in commercial products labeled as grapefruit seed extract. Pharm. An. Int. J. Pharm. Sci. 2007, 62, 593–596. [Google Scholar]
- Bekiroglu, S.; Myrberg, O.; Östman, K.; Ek, M.; Arvidsson, T.; Rundlöf, T.; Hakkarainen, B. Validation of a quantitative NMR method for suspected counterfeit products exemplified on determination of benzethonium chloride in grapefruit seed extracts. J. Pharm. Biomed. Anal. 2008, 47, 958–961. [Google Scholar] [CrossRef]
- Takeoka, G.R.; Dao, L.T.; Wong, R.Y.; Harden, L.A. Identification of benzalkonium chloride in commercial grapefruit seed extracts. J. Agric. Food Chem. 2005, 53, 7630–7636. [Google Scholar] [CrossRef] [PubMed]
- Van der Waal, J.W.H. Grapefruit seed extracts as organic post-harvest agents: Precious lessons on efficacy and compliance. Org. Agric. 2015, 5, 53–62. [Google Scholar] [CrossRef]
- Navarro-Hoyos, M.; Lebrón-Aguilar, R.; Quintanilla-López, J.E.; Cueva, C.; Hevia, D.; Quesada, S.; Azofeifa, G.; Moreno-Arribas, M.V.; Monagas, M.; Bartolomé, B. Proanthocyanidin characterization and bioactivity of extracts from different parts of Uncaria tomentosa L. (cat’s claw). Antioxidants 2017, 6, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cueva, C.; Mingo, S.; Muñoz-González, I.; Bustos, I.; Requena, T.; del Campo, R.; Martín-Álvarez, P.J.; Bartolomé, B.; Moreno-Arribas, M.V. Antibacterial activity of wine phenolic compounds and oenological extracts against potential respiratory pathogens. Lett. Appl. Microbiol. 2012. [Google Scholar] [CrossRef] [Green Version]
- Mayer, R.; Stecher, G.; Wuerzner, R.; Silva, R.C.; Sultana, T.; Trojer, L.; Feuerstein, I.; Krieg, C.; Abel, G.; Popp, M.; et al. Proanthocyanidins: Target compounds as antibacterial agents. J. Agric. Food Chem. 2008. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.A.; Al-Mahdy, D.A.; Salaheldine, R.; Fahmy, S.; Yassin, A.; Porzel, A.; Brandt, W. Structure-activity relationships of antimicrobial gallic acid derivatives from pomegranate and acacia fruit extracts against potato bacterial wilt pathogen. Chem. Biodivers. 2015. [Google Scholar] [CrossRef]
- Liu, J.; Du, C.; Beaman, H.T.; Monroe, M.B.B. Characterization of phenolic acid antimicrobial and antioxidant structure–property relationships. Pharmaceutics 2020, 12, 419. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Curr. Med. Chem. 2014. [Google Scholar] [CrossRef]
- Somerville, V.S.; Braakhuis, A.J.; Hopkins, W.G. Effect of flavonoids on upper respiratory tract infections and immune function: A systematic review and meta-analysis. Adv. Nutr. 2016, 7, 488–497. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Luan, Y.; Yang, P.; Wang, L.; Zhang, H.; Jing, S.; Wang, L.; Wang, T.; Wang, D. Targeting staphylocoagulase with isoquercitrin protects mice from Staphylococcus aureus–induced pneumonia. Appl. Microbiol. Biotechnol. 2020. [Google Scholar] [CrossRef]
- Ganeshpurkar, A.; Bansal, D.; Dubey, S.; Dubey, N. Experimental studies on bioactive potential of rutin. Chron. Young Sci. 2013. [Google Scholar] [CrossRef]
- Ogungbamila, F.O.; Onawunmi, G.O.; Ibewuike, J.C.; Funmilayo, K.A. Antibacterial constituents of Ficus barteri fruits. Pharm. Biol. 1997. [Google Scholar] [CrossRef]
Larch Sample | PACs % w/w | ||||
---|---|---|---|---|---|
Mon | Dim | Tri/Tetr | Pent/Hex | Total | |
Dry larch bark powder | 0.93 ± 0.07 | 0.36 ± 0.03 | 0.38 ± 0.06 | 0.91 ± 0.01 | 2.58 |
Larch bark extract | 5.12 ± 0.10 | 3.21 ± 0.06 | 2.32 ± 0.18 | 5.28 ± 0.24 | 15.92 |
Sample | Polymerization Degree | Relative% | PAC-A/PAC-B Ratio | ||
---|---|---|---|---|---|
PAC-A | PAC-B | PAC-A + PAC-B | |||
Dry larch bark powder | Dimers | 10.29 ± 0.23 | 33.55 ± 0.63 | 43.83 ± 0.86 | 0.31 ± 0.00 |
Trimers | 3.38 ± 0.09 | 32.69 ± 0.11 | 36.07 ± 0.21 | 0.10 ± 0.00 | |
Tetramers | 0.88 ± 0.05 | 9.14 ± 0.06 | 10.02 ± 0.01 | 0.09 ± 0.01 | |
Pentamers | - | 4.81 ± 0.08 | 4.81 ± 0.08 | - | |
Hexamers | - | 4.68 ± 0.08 | 4.68 ± 0.08 | - | |
Total % | 14.60 | 85.40 | 100.00 | 0.17 | |
Larch bark extract | Dimers | 5.03 ± 0.10 | 49.00 ± 0.02 | 54.02 ± 0.08 | 0.10 ± 0.00 |
Trimers | 3.72 ± 0.10 | 23.19 ± 0.10 | 26.92 ± 0.21 | 0.16 ± 0.00 | |
Tetramers | 0.52 ± 0.01 | 8.89 ± 0.04 | 9.41 ± 0.03 | 0.06 ± 0.00 | |
Pentamers | - | 4.79 ± 0.02 | 4.79 ±0.02 | - | |
Hexamers | - | 4.76 ± 0.02 | 4.76 ± 0.02 | - | |
Total % | 9.28 | 90.72 | 100.00 | 0.10 |
Sample | % w/w (±SD) | |||
---|---|---|---|---|
Gallic Acid Derivatives (GAE) | Phenolic Acids (CAE) | Flavonoids (RE) | Total PolyPhenols | |
Dry larch bark powder | 0.22 ± 0.01 | 0.29 ± 0.01 | 0.05 ± 0.01 | 0.56 |
Larch bark extract | 1.57 ± 0.04 | 1.66 ± 0.06 | 0.61 ± 0.02 | 3.84 |
Molecular Ion (m/z) | MS2 Main Fragments * | MS3 Main Fragments | R.T. (min) | Tentative Identification | Larch Bark Powder ** | Larch Bark Extract ** | Chemical Class | Refs. |
---|---|---|---|---|---|---|---|---|
301 | 179 151 | 11.7 | Quercetin | D | ND | Flavonoid | [30] | |
447 | 285 | 10.7 | Kaempferol 3-β-D-glucopyranoside | D | D | Flavonoid | [31] | |
449 | 287 | 11.8 | Unknown flavonoid glucoside | D | ND | Flavonoid | [32] | |
463 | 301 | 179 151 | 10.3 | Isoquercitrin | D | D | Flavonoid | [32] |
505 | 301 | 179 151 | 10.4 | Quercetin 3-(2″-acetylgalactoside) | D | D | Flavonoid | [33] |
609 | 301 | 10.0 | Rutin # | D | D | Flavonoid | - | |
511 | 483 385 267 | 11.2 | 4,4′,6′-trihydroxy-2,2′-bis(4-hydroxyphenyl)-2H,2′H-spiro(benzo(1,2-b:3,4-b′)difuran-8,3′-benzofuran)-7(3H)-one | ND | D | Spiro-polyphenol | [3] | |
541 | 513 497 415 | 309 281 | 10.4 | Larixinol | D | D | Spiro-polyphenol | [3] |
541 | 513 497 415 | 309 281 | 10.8 | Epilarixinol | D | D | Spiro-polyphenol | [3] |
673 | 511 | 483 385 267 | 10.7 | 2′-Caffeoyl-4,4′,6′-trihydroxy-2-bis(4-hydroxyphenyl)-2H,2′H-spiro[benzo[1,2-b:3,4-b′]difuran-8,3′-benzofuran]-7(3H)-one | ND | D | Spiro-polyphenol | [3] |
353 | 191 179 173 | 4.4 | Caffeoylqunic acid isomer | D | ND | Phenolic acid | [30] | |
353 | 191 179 173 | 6.6 | Chlorogenic acid # | D | ND | Phenolic acid | [30] | |
353 | 191 179 173 | 7.9 | Caffeoylqunic acid isomer | D | ND | Phenolic acid | [30] | |
863 | 739 713 695 577 | 7.7 | Procyanidin trimer B | D | D | Procyanidin | [3] | |
863 | 739 713 695 577 | 8.1 | Procyanidin trimer B | D | D | Procyanidin | [3] | |
863 | 739 713 695 577 | 8.6 | Procyanidin trimer B | D | D | Procyanidin | [3] | |
289 | 245 205 179 | 6.9 | Catechin # | D | D | Catechin | - | |
289 | 245 205 179 | 8.1 | Epicatechin # | D | D | Catechin | - | |
405 | 243 | 225 201 175 | 9.7 | trans-Piceatannol 3′-O-glucoside | D | D | Stilbene | [31] |
405 | 243 | 225 201 175 | 10.4 | cis-Piceatannol 3′-O-glucoside | ND | D | Stilbene | [31] |
191 | 111 | 2.4 | Quinic acid | D | D | Others | [3] | |
327 | 291 229 211 183 171 | 12.3 | Oxo-dihydroxyoctadecenoic acid | D | ND | Others | [30] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faggian, M.; Bernabè, G.; Ferrari, S.; Francescato, S.; Baratto, G.; Castagliuolo, I.; Dall’Acqua, S.; Peron, G. Polyphenol-Rich Larix decidua Bark Extract with Antimicrobial Activity against Respiratory-Tract Pathogens: A Novel Bioactive Ingredient with Potential Pharmaceutical and Nutraceutical Applications. Antibiotics 2021, 10, 789. https://doi.org/10.3390/antibiotics10070789
Faggian M, Bernabè G, Ferrari S, Francescato S, Baratto G, Castagliuolo I, Dall’Acqua S, Peron G. Polyphenol-Rich Larix decidua Bark Extract with Antimicrobial Activity against Respiratory-Tract Pathogens: A Novel Bioactive Ingredient with Potential Pharmaceutical and Nutraceutical Applications. Antibiotics. 2021; 10(7):789. https://doi.org/10.3390/antibiotics10070789
Chicago/Turabian StyleFaggian, Marta, Giulia Bernabè, Sara Ferrari, Stefano Francescato, Gianni Baratto, Ignazio Castagliuolo, Stefano Dall’Acqua, and Gregorio Peron. 2021. "Polyphenol-Rich Larix decidua Bark Extract with Antimicrobial Activity against Respiratory-Tract Pathogens: A Novel Bioactive Ingredient with Potential Pharmaceutical and Nutraceutical Applications" Antibiotics 10, no. 7: 789. https://doi.org/10.3390/antibiotics10070789
APA StyleFaggian, M., Bernabè, G., Ferrari, S., Francescato, S., Baratto, G., Castagliuolo, I., Dall’Acqua, S., & Peron, G. (2021). Polyphenol-Rich Larix decidua Bark Extract with Antimicrobial Activity against Respiratory-Tract Pathogens: A Novel Bioactive Ingredient with Potential Pharmaceutical and Nutraceutical Applications. Antibiotics, 10(7), 789. https://doi.org/10.3390/antibiotics10070789