Carriage of Multidrug Resistance Staphylococci in Shelter Dogs in Timisoara, Romania
Abstract
:1. Introduction
2. Results
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Sample Collection
5.2. Bacterial Isolation
5.3. Molecular Analyses
Extraction of Template DNA
5.4. Antimicrobials Susceptibility Test
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaspar, U.; von Lützau, A.; Schlattmann, A.; Roesler, U.; Köck, R.; Becker, K. Zoonotic multidrug-resistant microorganisms among small companion animals in Germany. PLoS ONE 2018, 13, e0208364. [Google Scholar] [CrossRef] [Green Version]
- Constança, P.; Rantala, M.; Greko, C.; Baptiste, K.E.; Boudewijn, C.; van Duijkeren, E.; Mateus, A.; Moreno, M.A.; Pyörälä, S.; Ružauskas, M.; et al. Public health risk of antimicrobial resistance transfer from companion animals. J. Antimicrob. Chemother. 2017, 72, 957–968. [Google Scholar] [CrossRef]
- Vincze, S.; Stamm, I.; Monecke, S.; Kopp, P.A.; Semmler, T.; Wieler, L.H.; Lübke-Becker, A.; Walther, B. Molecular analysis of human and canine Staphylococcus aureus strains reveals distinct extended-host-spectrum genotypes independent of their methicillin resistance. Appl. Environ. Microbiol. 2012, 79, 655–662. [Google Scholar] [CrossRef] [Green Version]
- Dégi, J. The antimicrobial sensitivity of the coagulase positive staphylococcal strains isolated from otitis externa in dogs, over the period September 2002–May 2003. Bull. Univ. Agric. Sci. Vet. Med. Cluj Napoca 2005, 62, 639. [Google Scholar]
- Degi, J.; Imre, K.; Ilie, M.; Cristina, R. Stray dogs as reservoirs of the methicillin-resistant zoonotic stafilococi in an urban area from Romania. J. Biotechnol. 2012, 161, 33. [Google Scholar] [CrossRef]
- Cain, C.; Morris, D.; O’Shea, K.; Rankin, S. Genotypic relatedness and phenotypic characterization of Staphylococcus schleiferi subspecies in clinical samples from dogs. Am. J. Vet. Res. 2011, 72, 96–102. [Google Scholar] [CrossRef]
- Lozano, C.; Rezusta, A.; Ferrer, I.; Pérez-Laguna, V.; Zarazaga, M.; Ruiz-Ripa, L.; Revillo, M.J.; Torres, C. Staphylococcus pseudintermedius human infection cases in spain: Dog-to-human transmission. Vector Borne Zoonotic Dis. 2017, 17, 268–270. [Google Scholar] [CrossRef] [PubMed]
- González-Domínguez, M.S.; Carvajal, H.D.; Calle-Echeverri, D.A.; Chinchilla-Cárdenas, D. Molecular detection and characterization of the mecA and nuc genes from Staphylococcus species (S. aureus, S. pseudintermedius, and S. schleiferi) isolated from dogs suffering superficial pyoderma and their antimicrobial resistance profiles. Front. Vet. Sci. 2020, 7, 376. [Google Scholar] [CrossRef] [PubMed]
- Kmieciak, W.; Szewczyk, E.M. Are zoonotic Staphylococcus pseudintermedius strains a growing threat for humans? Folia Microbiol. 2018, 63, 743–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imre, K.; Herman, V.; Morar, A. Scientific achievements in the study of the occurrence and antimicrobial susceptibility profile of major foodborne pathogenic bacteria in foods and food processing environments in Romania: Review of the last decade. BioMed Res. Int. 2020, 2020. [Google Scholar] [CrossRef]
- Moses, V.K.; Kandi, V.; Rao, S. Minimum inhibitory concentrations of vancomycin and daptomycin against methicillin-resistant Staphylococcus Aureus isolated from various clinical specimens: A study from south india. Cureus 2020, 12, e6749. [Google Scholar] [CrossRef] [Green Version]
- Kanagarajah, R.R.; Lee, D.C.W.; Lee, D.Z.F.; Yusoff, K.; Paramasivam, S.J.; Low, W.Y.; Jeevaratnam, K.; Lim, S.H.E. Antibiotic profiling of methicillin resistant Staphylococcus aureus (MRSA) isolates in stray canines and felines. Cogent Biol. 2017, 3. [Google Scholar] [CrossRef]
- Huang, T.M.; Chou, C.C. Methicillin-sensitive and methicillin-resistant Staphylococcus aureus strains and their toxin genes in the nostrils of dogs and workers at an animal shelter. J. Appl. Microbiol. 2019, 126, 1899–1909. [Google Scholar] [CrossRef]
- Palma, E.; Tilocca, B.; Roncada, P. Antimicrobial resistance in veterinary medicine: An overview. Int. J. Mol. Sci. 2020, 21, 1914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weese, J.S. Methicillin-resistant Staphylococcus aureus in animals. ILAR J. 2010, 51, 233–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loeffler, A.; Boag, A.; Sung, J.M.; Lindsay, J.; Guardabassi, L.; Dalsgaard, A.; Smith, H.; Stevens, K.; Lloyd, D. Prevalence of methicillin-resistant staphylococcus aureus among staff and pets in a small animal referral hospital in the UK. J. Antimicrob. Chemother. 2005, 56, 692–697. [Google Scholar] [CrossRef] [PubMed]
- Loeffler, A.; Pfeiffer, D.U.; Lindsay, J.A.; Soares-Magalhaes, R.; Lloyd, D.H. Lack of transmission of methicillin-resistant Staphylococcus aureus (MRSA) between apparently healthy dogs in a rescue kennel. Vet. Microbiol. 2010, 141, 178–181. [Google Scholar] [CrossRef]
- Brown, D.F.; Edwards, D.I.; Hawkey, P.M.; Morrison, D.; Ridgway, G.L.; Towner, K.J.; Wren, M.W. Joint working party of the british society for antimicrobial chemotherapy; hospital infection society; infection control nurses association. guidelines for the laboratory diagnosis and susceptibility testing of methicillin-resistant staphylococcus aureus (MRSA). J. Antimicrob. Chemother. 2005, 56, 1000–1018. [Google Scholar] [CrossRef] [Green Version]
- Morris, D.O.; Loeffler, A.; Davis, M.F.; Guardabassi, L.; Weese, J.S. Recommendations for approaches to meticillin-resistant staphylococcal infections of small animals: Diagnosis, therapeutic considerations and preventative measures. Clinical consensus guidelines of the world association for veterinary dermatology. Vet. Dermatol. 2017, 28, 304-e69. [Google Scholar] [CrossRef]
- Meroni, G.; Soares Filipe, J.F.; Drago, L.; Martino, P.A. Investigation on antibiotic-resistance, biofilm formation and virulence factors in multi drug resistant and non multi drug resistant Staphylococcus pseudintermedius. Microorganisms 2019, 7, 702. [Google Scholar] [CrossRef] [Green Version]
- Little, S.V.; Bryan, L.K.; Hillhouse, A.E.; Cohen, N.D.; Lawhon, S.D. Characterization of agr groups of Staphylococcus pseudintermedius isolates from dogs in texas. mSphere 2019, 27, 4. [Google Scholar] [CrossRef] [Green Version]
- Gagetti, P.; Wattam, A.R.; Giacoboni, G.; De Paulis, A.; Bertona, E.; Corso, A.; Rosato, A.E. Identification and molecular epidemiology of methicillin resistant Staphylococcus pseudintermedius strains isolated from canine clinical samples in argentina. BMC Vet. Res. 2019, 15, 264. [Google Scholar] [CrossRef]
- Grönthal, T.; Eklund, M.; Thomson, K.; Piiparinen, H.; Sironen, T.; Rantala, M. Antimicrobial resistance in Staphylococcus pseudintermedius and the molecular epidemiology of methicillin-resistant S. pseudintermedius in small animals in Finland. J. Antimicrob. Chemother. 2017, 4, 1021–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haenni, M.; El Garch, F.; Miossec, C.; Madec, J.Y.; Hocquet, D.; Valot, B. High genetic diversity among methicillin-susceptible Staphylococcus pseudintermedius in dogs in Europe. J. Glob. Antimicrob. Resist. 2020, 21, 57–59. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.T.; Amador, S.; McGonagle, C.J.; Needle, D.; Gibson, R.; Andam, C.P. Population genomics of Staphylococcus pseudintermedius in companion animals in the United States. Commun. Biol. 2020, 3, 282. [Google Scholar] [CrossRef]
- Dalton, K.R.; Rock, C.; Carroll, K.C.; Davis, M.F. One health in hospitals: How understanding the dynamics of people, animals, and the hospital built-environment can be used to better inform interventions for antimicrobial-resistant gram-positive infections. Antimicrob. Resist. Infect. Control. 2020, 9, 78. [Google Scholar] [CrossRef] [PubMed]
- Kranjec, C.; Morales Angeles, D.; Torrissen Mårli, M.; Fernández, L.; García, P.; Kjos, M.; Diep, D.B. Staphylococcal biofilms: Challenges and novel therapeutic perspectives. Antibiotics 2021, 10, 131. [Google Scholar] [CrossRef]
- Bhooshan, S.; Negi, V.; Khatri, P.K. Staphylococcus pseudintermedius: An undocumented, emerging pathogen in humans. GMS Hyg. Infect. Control 2020, 15, 32. [Google Scholar] [CrossRef]
- Boost, M.V.; O’Donoghue, M.M.; James, A. Prevalence of Staphylococcus aureus carriage among dogs and their owners. Epidemiol. Infect. 2008, 136, 953–964. [Google Scholar] [CrossRef] [Green Version]
- Jung, W.K.; Shin, S.; Park, Y.K.; Noh, S.M.; Shin, S.R.; Yoo, H.S.; Park, S.C.; Park, Y.H.; Park, K.T. Distribution and antimicrobial resistance profiles of bacterial species in stray dogs, hospital-admitted dogs, and veterinary staff in South Korea. BMC Vet. Res. 2020, 184. [Google Scholar] [CrossRef]
- Mackenzie, J.S.; Jeggo, M. The one health approach-why is it so important? Trop. Med. Infect. Dis. 2019, 4, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McEwen, S.A.; Collignon, P.J. Antimicrobial resistance: A one health perspective. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collignon, P.J.; McEwen, S.A. One health-its importance in helping to better control antimicrobial resistance. Trop. Med. Infect. Dis. 2019, 4, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gingrich, E.N.; Kurt, T.; Hyatt, D.R.; Lappin, M.R.; Ruch-Gallie, R. Prevalence of methicillin-resistant staphylococci in northern Colorado shelter animals. J. Vet. Diagn. Investig. 2011, 23, 947–950. [Google Scholar] [CrossRef] [Green Version]
- Hanselman, B.A.; Anderson, M.; Kruth, S. Prevalence of methicillin-resistant Staphylococcus aureus colonization in dogs entering a veterinary teaching hospital. J. Vet. Intern. Med. 2005, 19, 464. [Google Scholar]
- Abbott, Y.; Leggett, B. Rossney, Isolation rates of methicillin-resistant Staphylococcus aureus in dogs, cats, and horses in Ireland. Vet. Rec. 2010, 166, 451–455. [Google Scholar] [CrossRef] [Green Version]
- Biosafety Manual of the University Veterinary Clinics of Timisoara. 2019. Available online: https://www.usab-tm.ro/utilizatori/medicinaveterinara/file/Manual%20Biosecuritate%20CVU%202019.pdf (accessed on 18 February 2021).
- Miller, L. Dog and cat care in the animal shelter. In Shelter Medicine for Veterinarians and Staff; Miller, L., Zawistowski, S., Eds.; Blackwell: Ames, IA, USA, 2004; pp. 95–123. [Google Scholar]
- Buommino, E.; Vollaro, A.; Nocera, F.P.; Lembo, F.; DellaGreca, M.; De Martino, L.; Catania, M.R. Synergistic effect of abietic acid with oxacillin against methicillin-resistant Staphylococcus pseudintermedius. Antibiotics 2021, 10, 80. [Google Scholar] [CrossRef]
- Bellavita, R.; Vollaro, A.; Catania, M.R.; Merlino, F.; De Martino, L.; Nocera, F.P.; DellaGreca, M.; Lembo, F.; Grieco, P.; Buommino, E. Novel antimicrobial peptide from Temporin L in the treatment of Staphylococcus pseudintermedius and Malassezia pachydermatis in polymicrobial inter-kingdom infection. Antibiotics 2020, 9, 530. [Google Scholar] [CrossRef]
- Funke, G.; Funke-Kissling, P. Performance of the new VITEK 2 GP card for identification of medically relevant gram-positive cocci in a routine clinical laboratory. J. Clin. Microbiol. 2005, 43, 84–88. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, P.; Alexandersson, H.; Ripa, T. Use of broth enrichment and real-time PCR to exclude the presence of methicillin-resistant Staphylococcus aureus in clinical samples: A sensitive screening approach. Clin. Microbiol. Infect. 2005, 11, 1027–1034. [Google Scholar] [CrossRef] [Green Version]
- Vingataramin, L.; Frost, E.H. A single protocol for extraction of gDNA from bacteria and yeast. Biotechniques 2015, 58, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, A.B.; Skov, R.; Pallesen, L.V. Detection of methicillin resistance in coagulase-negative staphylococci and in staphylococci directly from simulated blood cultures using the EVIGENE MRSA detection kit. J. Antimicrob. Chemother. 2003, 51, 419–421. [Google Scholar] [CrossRef] [Green Version]
- Adwan, K. Fast DNA isolation and PCR protocols for detection of methicillin-resistant staphylococci. Folia Microbiol. 2014, 59, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.Y.; Costumbrado, J.; Hsu, C.Y.; Kim, Y.H. Agarose gel electrophoresis for the separation of DNA fragments. J. Vis. Exp. 2012, 20, 62–3923. [Google Scholar] [CrossRef] [PubMed]
- Rantakokko-Jalava, K.; Jalava, J. Optimal DNA isolation method for detection of bacteria in clinical specimens by broad-range PCR. J. Clin. Microbiol. 2002, 40, 4211–4217. [Google Scholar] [CrossRef] [Green Version]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 8.0. 2008. Available online: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_8.0_Breakpoint_Tables.pdf (accessed on 18 February 2021).
- Clinical Laboratory Standards Institute. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Approved Standard, 4th ed.; CLSI M31-A4/VET01-A4; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2013; Volume 33. [Google Scholar]
- Humphries, R.M.; Abbott, A.N.; Hindler, J.A. Understanding and addressing CLSI breakpoint revisions: A primer for clinical laboratories. J. Clin. Microbiol. 2019, 57. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, M.T.; Lubbers, B.V.; Schwarz, S.; Watts, J.L. Applying definitions for multidrug resistance, extensive drug resistance and pandrug resistance to clinically significant livestock and companion animal bacterial pathogens. J. Antimicrob. Chemother. 2018, 73, 1460–1463. [Google Scholar] [CrossRef] [PubMed]
Gender | No. of Positive Samples/No. of Investigated (%) |
---|---|
Female | 27/49 (55.10) |
Male | 16/29 (55.17) |
Total | 43/78 (55.12) |
Identified Strains | No. (%) of Strains Identified According to the Vitek 2® ID-GP Indicators | |||||||
---|---|---|---|---|---|---|---|---|
N (%) | Excellent | Verry Good | Acceptable | Good | Low | Unidentified | Error | |
Staphylococcus pseudintermedius | 21(48.83%) | 18 | 3 | - | - | - | - | - |
Staphylococcus intermedius | 12 (27.90%) | 8 | 4 | |||||
Staphylococcus aureus | 5 (11.62%) | 3 | 2 | |||||
Staphylococcus epidermidis | 3 (9.01%) | 3 | - | |||||
Staphylococcus haemolyticus | 1 (2.32%) | 1 | - | |||||
Staphylococcus hyicus | 1 (2.32%) | 1 | ||||||
Total | 43 (100%) | 34 | 9 | - | - | - | - | - |
Clinical Result | Samples from Stray Dogs with Skin Lesions | Samples from Stray Dogs without Skin Lesions | ||||||
---|---|---|---|---|---|---|---|---|
Erythema | Peeling | Alopecia | Pruritus | Scabs | Pustules | Hyperkeratosis | Without Clinical Signs | |
21 (26.92%) | 2 (2.56%) | 9 (11.53%) | 3 (3.84%) | 2 (2.56%) | 6 (7.69%) | 3 (3.84%) | 32 (41.02%) | |
Total collected samples | 46 (58.97%) | 32 (41.02%) | ||||||
78 (100%) | ||||||||
Positive Staphylococcus spp. samples | 11 (25.58%) | 1 (2.32%) | 2 (4.65%) | 1 (2.32%) | 1 (2.32%) | 6 (13.05%) | 3 (6.97%) | 18 (41.87%) |
Total samples | 25 (58.13%) | 18 (41.87%) | ||||||
43 (100%) |
No. | Staphylococcus spp. | No. of Isolates | Resistance to Antimicrobial Profile | No. of Antimicrobials Resistant |
---|---|---|---|---|
1. | Staphylococcus pseudintermedius | 6 | AM, PCG, CHL, ERY, K, GM, RIF *, TE, STX | 9 |
2. | Staphylococcus pseudintermedius | 4 | AM, PCG, CHL, ERY, CLI, K, GM, OXA, TE, STX | 10 |
3. | Staphylococcus pseudintermedius | 3 | AM, PCG, CHL, ERY, K, GM, TE, VAN *, FT, STX | 10 |
4. | Staphylococcus pseudintermedius | 3 | AM, PCG, IPM, ERY, K, RIF *, TE, FUS, | 8 |
5. | Staphylococcus pseudintermedius | 3 | PCG, CHL, ERY, K, RIF *, TE, IPM * | 7 |
6. | Staphylococcus pseudintermedius | 2 | PCG, CHL, ERY, K, GM, RIF *, TE, FT | 8 |
7. | Staphylococcus intermedius | 4 | AM, PCG, CHL, ERY, K, GM, TE, STX | 8 |
8. | Staphylococcus intermedius | 4 | PCG, ERY, K, GM, RIF *, TE, STX | 7 |
9. | Staphylococcus intermedius | 3 | AM, IPM *, GM, RIF, FT, VAN * | 6 |
10. | Staphylococcus intermedius | 1 | PCG, CHL, CLI, ERY, K, OXA, STX | 7 |
11. | Staphylococcus aureus | 3 | PCG, CHL, ERY, K, OXA, GM, TE, STX | 8 |
12. | Staphylococcus aureus | 1 | AM, CHL, K, TE, STX, VAN * | 6 |
13. | Staphylococcus aureus | 1 | PCG, CLI, GM, IPM *, FT, RIF * | 6 |
14. | Staphylococcus epidermidis | 2 | PCG, CHL, IPM *, ERY, K, RIF *, TE | 7 |
15. | Staphylococcus epidermidis | 1 | AM, PCG, FT, ERY, K, IPM *, CLI, TE | 8 |
16. | Staphylococcus haemolyticus | 1 | AM, PCG, IPM *, ERY, FT, STX | 6 |
17. | Staphylococcus hyicus | 1 | PCG, ERY, K, RIF *, TE | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
János, D.; Viorel, H.; Ionica, I.; Corina, P.; Tiana, F.; Roxana, D. Carriage of Multidrug Resistance Staphylococci in Shelter Dogs in Timisoara, Romania. Antibiotics 2021, 10, 801. https://doi.org/10.3390/antibiotics10070801
János D, Viorel H, Ionica I, Corina P, Tiana F, Roxana D. Carriage of Multidrug Resistance Staphylococci in Shelter Dogs in Timisoara, Romania. Antibiotics. 2021; 10(7):801. https://doi.org/10.3390/antibiotics10070801
Chicago/Turabian StyleJános, Dégi, Herman Viorel, Iancu Ionica, Pascu Corina, Florea Tiana, and Dascălu Roxana. 2021. "Carriage of Multidrug Resistance Staphylococci in Shelter Dogs in Timisoara, Romania" Antibiotics 10, no. 7: 801. https://doi.org/10.3390/antibiotics10070801
APA StyleJános, D., Viorel, H., Ionica, I., Corina, P., Tiana, F., & Roxana, D. (2021). Carriage of Multidrug Resistance Staphylococci in Shelter Dogs in Timisoara, Romania. Antibiotics, 10(7), 801. https://doi.org/10.3390/antibiotics10070801