Comparison of Delivery Methods in Phage Therapy against Flavobacterium columnare Infections in Rainbow Trout
Abstract
:1. Introduction
2. Results
2.1. Phage Therapy Experiment I: Individual Phages and Phage Mixes
2.2. Phage Therapy Experiment II: Effect of Phage Dose
2.3. Phage Therapy Experiment III: Phage Delivery in Flow-Through System
2.4. Shelf-Life of Phages in Different Storage Conditions
3. Discussion
4. Materials and Methods
4.1. Bacteria and Phage Isolates
4.2. Bacterial Cultures and Phage Purification
4.3. Fish
4.4. Phage Therapy Experiments I and II: Effect of Phage Dose and Delivery Method in Constant Exposure
4.5. Phage Therapy Experiment III: Phage Delivery in Flow-Through System
4.6. Phage Presence in Tissues Samples
4.7. Statistical Analyses
4.8. Shelf-Life of Phages in Different Storage Conditions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cabello, F.C.; Godfrey, H.P.; Tomova, A.; Ivanova, L.; Dölz, H.; Millanao, A.; Buschmann, A.H. Antimicrobial Use in Aquaculture Re-Examined: Its Relevance to Antimicrobial Resistance and to Animal and Human Health. Environ. Microbiol. 2013, 15, 1917–1942. [Google Scholar] [CrossRef]
- Watts, J.E.M.; Schreier, H.J.; Lanska, L.; Hale, M.S. The Rising Tide of Antimicrobial Resistance in Aquaculture: Sources, Sinks and Solutions. Mar. Drugs 2017, 15, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abedon, S.T. Bacteriophage Ecology; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Wittebole, X.; de Roock, S.; Opal, S.M. A Historical Overview of Bacteriophage Therapy as an Alternative to Antibiotics for the Treatment of Bacterial Pathogens. Virulence 2014, 5, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Gordillo Altamirano, F.L.; Barr, J.J. Phage Therapy in the Postantibiotic Era. Clin. Microbiol. Rev. 2019, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, G.M.d.F.; Sundberg, L.R. The Forgotten Tale of Brazilian Phage Therapy. Lancet Infect. Dis. 2020, 20, e90–e101. [Google Scholar] [CrossRef]
- Culot, A.; Grosset, N.; Gautier, M. Overcoming the Challenges of Phage Therapy for Industrial Aquaculture: A Review. Aquaculture 2019, 513, 734423. [Google Scholar] [CrossRef] [Green Version]
- Imbeault, S.; Parent, S.; Lagacé, M.; Uhland, C.F.; Blais, J.F. Using Bacteriophages to Prevent Furunculosis Caused by Aeromonas salmonicida in Farmed Brook Trout. J. Aquat. Anim. Health 2006, 18, 203–214. [Google Scholar] [CrossRef]
- Silva, Y.J.; Moreirinha, C.; Pereira, C.; Costa, L.; Rocha, R.J.M.; Cunha, Â.; Gomes, N.C.M.; Calado, R.; Almeida, A. Biological Control of Aeromonas salmonicida Infection in Juvenile Senegalese Sole (Solea senegalensis) with Phage AS-A. Aquaculture 2016, 450, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Laanto, E.; Bamford, J.K.H.; Ravantti, J.J.; Sundberg, L.-R. The Use of Phage FCL-2 as an Alternative to Chemotherapy against Columnaris Disease in Aquaculture. Front. Microbiol. 2015, 6, 829. [Google Scholar] [CrossRef] [Green Version]
- Castillo, D.; Higuera, G.; Villa, M.; Middelboe, M.; Dalsgaard, I.; Madsen, L.; Espejo, R.T. Diversity of Flavobacterium psychrophilum and the Potential Use of Its Phages for Protection against Bacterial Cold Water Disease in Salmonids. J. Fish. Dis. 2012, 35, 193–201. [Google Scholar] [CrossRef]
- Park, S.C.; Nakai, T. Bacteriophage Control of Pseudomonas plecoglossicida Infection in Ayu Plecoglossus altivelis. Dis. Aquat. Org. 2003, 53, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Nakai, T.; Park, S.C. Bacteriophage Therapy of Infectious Diseases in Aquaculture. Res. Microbiol. 2002, 153, 13–18. [Google Scholar] [CrossRef]
- Higuera, G.; Bastías, R.; Tsertsvadze, G.; Romero, J.; Espejo, R. Recently Discovered Vibrio anguillarum Phages Can Protect against Experimentally Induced Vibriosis in Atlantic Salmon, Salmo Salar. Aquaculture 2013, 392–395, 128–133. [Google Scholar] [CrossRef]
- Gon Choudhury, T.; Tharabenahalli Nagaraju, V.; Gita, S.; Paria, A.; Parhi, J. Advances in Bacteriophage Research for Bacterial Disease Control in Aquaculture. Rev. Fish. Sci. Aquac. 2017, 25, 113–125. [Google Scholar] [CrossRef]
- Malik, D.J.; Sokolov, I.J.; Vinner, G.K.; Mancuso, F.; Cinquerrui, S.; Vladisavljevic, G.T.; Clokie, M.R.J.; Garton, N.J.; Stapley, A.G.F.; Kirpichnikova, A. Formulation, Stabilisation and Encapsulation of Bacteriophage for Phage Therapy. Adv. Colloid Interface Sci. 2017, 249, 100–133. [Google Scholar] [CrossRef] [Green Version]
- Rintamaki-Kinnunen, P.; Valtonen, E.T. Epizootiology of Protozoans in Farmed Salmonids at Northern Latitudes. Int. J. Parasitol. 1997, 27, 89–99. [Google Scholar] [CrossRef]
- Alizon, S.; de Roode, J.C.; Michalakis, Y. Multiple Infections and the Evolution of Virulence. Ecol. Lett. 2013, 16, 556–567. [Google Scholar] [CrossRef] [Green Version]
- Louhi, K.-R.; Sundberg, L.-R.; Jokela, J.; Karvonen, A. Interactions among Bacterial Strains and Fluke Genotypes Shape Virulence of Co-Infection. Proc. R. Soc. B Biol. Sci. 2015, 282, 20152097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundberg, L.-R.; Ketola, T.; Laanto, E.; Kinnula, H.; Bamford, J.K.H.; Penttinen, R.; Mappes, J. Intensive Aquaculture Selects for Increased Virulence and Interference Competition in Bacteria. Proc. R. Soc. B Biol. Sci. 2016, 283, 20153069. [Google Scholar] [CrossRef]
- Chan, B.K.; Abedon, S.T.; Loc-Carrillo, C. Phage Cocktails and the Future of Phage Therapy. Future Microbiol. 2013, 8, 769–783. [Google Scholar] [CrossRef] [PubMed]
- Rohde, C.; Resch, G.; Pirnay, J.-P.; Blasdel, B.; Debarbieux, L.; Gelman, D.; Gorski, A.; Hazan, R.; Huys, I.; Kakabadze, E.; et al. Expert Opinion on Three Phage Therapy Related Topics: Bacterial Phage Resistance, Phage Training and Prophages in Bacterial Production Strains. Viruses 2018, 10, 178. [Google Scholar] [CrossRef] [Green Version]
- Declercq, A.M.; Haesebrouck, F.; den Broeck, W.; Bossier, P.; Decostere, A. Columnaris Disease in Fish: A Review with Emphasis on Bacterium-Host Interactions. Vet. Res. 2013, 44, 27. [Google Scholar] [CrossRef] [Green Version]
- Shoemaker, C.A.; Olivares-Fuster, O.; Arias, C.R. Flavobacterium columnare Genomovar Influences Mortality in Channel Catfish (Ictalurus punctatus). Vet. Microbiol. 2008, 127, 353–359. [Google Scholar] [CrossRef]
- Pulkkinen, K.; Suomalainen, L.-R.; Read, A.F.; Ebert, D.; Rintamaki, P.; Valtonen, E.T. Intensive Fish Farming and the Evolution of Pathogen Virulence: The Case of Columnaris Disease in Finland. Proc. R. Soc. B Biol. Sci. 2010, 277, 593–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suomalainen, L.-R.; Kunttu, H.; Valtonen, E.T.; Hirvela-Koski, V.; Tiirola, M. Molecular Diversity and Growth Features of Flavobacterium columnare Strains Isolated in Finland. Dis. Aquat. Org. 2006, 70, 55–61. [Google Scholar] [CrossRef]
- Kunttu, H.M.T.; Sundberg, L.-R.; Pulkkinen, K.; Valtonen, E.T. Environment May Be the Source of Flavobacterium columnare Outbreaks at Fish Farms. Environ. Microbiol. Rep. 2012, 4, 398–402. [Google Scholar] [CrossRef]
- Ashrafi, R.; Pulkkinen, K.; Sundberg, L.-R.; Pekkala, N.; Ketola, T. A Multilocus Sequence Analysis Scheme for Characterization of Flavobacterium columnare Isolates. BMC Microbiol. 2015, 15, 210–243. [Google Scholar] [CrossRef] [Green Version]
- Laanto, E.; Sundberg, L.-R.; Bamford, J.K.H. Phage Specificity of the Freshwater Fish Pathogen Flavobacterium columnare. Appl. Environ. Microbiol. 2011, 77, 7868–7872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, G.M.F.; Laanto, E.; Ashrafi, R.; Sundberg, L.R. Bacteriophage Adherence to Mucus Mediates Preventive Protection against Pathogenic Bacteria. mBio 2019, 10, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Runtuvuori-Salmela, A.; Kunttu, H.; Laanto, E.; Almeida, G.M.d.F.; Mäkelä, K.; Middelboe, M.; Sundberg, L.-R. Prevalence of Genetically Similar Flavobacterium columnare Phages across Aquaculture Environments Reveals a Strong Potential for Pathogen Control. BiorXiv 2020, 1–23. [Google Scholar] [CrossRef]
- Chen, L.; Yuan, S.; Liu, Q.; Mai, G.; Yang, J.; Deng, D.; Zhang, B.; Liu, C.; Ma, Y. In Vitro Design and Evaluation of Phage Cocktails against Aeromonas salmonicida. Front. Microbiol. 2018, 9, 1476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duarte, J.; Pereira, C.; Moreirinha, C.; Salvio, R.; Lopes, A.; Wang, D.; Almeida, A. New Insights on Phage Efficacy to Control Aeromonas salmonicida in Aquaculture Systems: An in Vitro Preliminary Study. Aquaculture 2018, 495, 970–982. [Google Scholar] [CrossRef]
- Mateus, L.; Costa, L.; Silva, Y.J.; Pereira, C.; Cunha, A.; Almeida, A. Efficiency of Phage Cocktails in the Inactivation of Vibrio in Aquaculture. Aquaculture 2014, 424–425, 167–173. [Google Scholar] [CrossRef]
- Barr, J.J.; Auro, R.; Furlan, M.; Whiteson, K.L.; Erb, M.L.; Pogliano, J.; Stotland, A.; Wolkowicz, R.; Cutting, A.S.; Doran, K.S.; et al. Bacteriophage Adhering to Mucus Provide a Non-Host-Derived Immunity. Proc. Natl. Acad. Sci. USA 2013, 110, 10771–10776. [Google Scholar] [CrossRef] [Green Version]
- Fraser, J.S.; Yu, Z.; Maxwell, K.L.; Davidson, A.R. Ig-Like Domains on Bacteriophages: A Tale of Promiscuity and Deceit. J. Mol. Biol. 2006, 359, 496–507. [Google Scholar] [CrossRef]
- Yen, M.; Cairns, L.S.; Camilli, A. A Cocktail of Three Virulent Bacteriophages Prevents Vibrio cholerae Infection in Animal Models. Nat. Commun. 2017, 8, 14187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chanishvili, N. A Literature Review of the Practical Application of Bacteriophage Research; Nova Biomedical Books: New York, NY, USA, 2012; ISBN 9781621008514. [Google Scholar]
- Curtin, J.J.; Donlan, R.M. Using Bacteriophages to Reduce Formation of Catheter-Associated Biofilms by Staphylococcus epidermidis. Antimicrob. Agents Chemother. 2006, 50, 1268–1275. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, F.; Karumidze, N.; Kusradze, I.; Goderdzishvili, M.; Teixeira, P.; Gouveia, I.C. Immobilization of Bacteriophage in Wound-Dressing Nanostructure. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 2475–2484. [Google Scholar] [CrossRef] [Green Version]
- Vonasek, E.L.; Choi, A.H.; Sanchez, J.; Nitin, N. Incorporating Phage Therapy into WPI Dip Coatings for Applications on Fresh Whole and Cut Fruit and Vegetable Surfaces. J. Food Sci. 2018, 83, 1871–1879. [Google Scholar] [CrossRef]
- Donati, V.L.; Dalsgaard, I.; Sundell, K.; Castillo, D.; Er-Rafik, M.; Clark, J.; Wiklund, T.; Middelboe, M.; Madsen, L. Phage-Mediated Control of Flavobacterium psychrophilum in Aquaculture: In Vivo Experiments to Compare Delivery Methods. Front. Microbiol. 2021, 12, 628309. [Google Scholar] [CrossRef]
- Park, S.C.; Shimamura, I.; Fukunaga, M.; Mori, K.I.; Nakai, T. Isolation of Bacteriophages Specific to a Fish Pathogen, Pseudomonas Plecoglossicida, as a Candidate for Disease Control. Appl. Environ. Microbiol. 2000, 66, 1416–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakai, T.; Sugimoto, R.; Park, K.H.; Matsuoka, S.; Mori, K.; Nishioka, T.; Maruyama, K. Protective Effects of Bacteriophage on Experimental Lactococcus garvieae Infection in Yellowtail. Dis. Aquat. Org. 1999, 37, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Kunttu, H.M.T.; Valtonen, E.T.; Suomalainen, L.R.; Vielma, J.; Jokinen, I.E. The Efficacy of Two Immunostimulants against Flavobacterium columnare Infection in Juvenile Rainbow Trout (Oncorhynchus mykiss). Fish. Shellfish Immunol. 2009, 26, 850–857. [Google Scholar] [CrossRef]
- Christiansen, R.H.; Dalsgaard, I.; Middelboe, M.; Lauritsen, A.H.; Madsen, L. Detection and Quantification of Flavobacterium psychrophilum Specific Bacteriophages In Vivo in Rainbow Trout upon Oral Administration: Implications for Disease Control in Aquaculture. Appl. Environ. Microbiol. 2014, 80, 7683–7693. [Google Scholar] [CrossRef] [Green Version]
- Madsen, L.; Bertelsen, S.K.; Dalsgaard, I.; Middelboe, M. Dispersal and Survival of Flavobacterium psychrophilum Phages in Vivo in Rainbow Trout and in Vitro under Laboratory Conditions: Implications for Their Use in Phage Therapy. Appl. Environ. Microbiol. 2013, 79, 4853–4861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanji, Y.; Shimada, T.; Yoichi, M.; Miyanaga, K.; Hori, K.; Unno, H. Toward Rational Control of Escherichia coli O157:H7 by a Phage Cocktail. Appl. Microbiol. Biotechnol. 2004, 64, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Lewis, C.; Zheng, W.; Fu, Z.Q. Phage Cocktail Therapy: Multiple Ways to Suppress Pathogenicity. Trends Plant. Sci. 2020, 25, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Gomez, D.K.; Nakai, T.; Park, S.C. Isolation and Identification of Bacteriophages Infecting Ayu Plecoglossus altivelis Altivelis Specific Flavobacterium psychrophilum. Vet. Microbiol. 2010, 140, 109–115. [Google Scholar] [CrossRef]
- Song, Y.L.; Fryer, J.L.; Rohovec, J.S. Comparison of Six Media for the Cultivation of Flexibacter Columnaris. Fish. Pathol. 1988, 23, 81–94. [Google Scholar] [CrossRef] [Green Version]
- Adams, M.H. Bacteriophages; John Wiley & Sons, Ltd.: New York, NY, USA, 1959. [Google Scholar]
- Sambrook, J.; Russell, D.W. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2001. [Google Scholar]
- Decostere, A.; Haesebrouck, F.; Devriese, L.A. Shieh Medium Supplemented with Tobramycin for Selective Isolation of Flavobacterium columnare (Flexibacter columnaris) from Diseased Fish. J. Clin. Microbiol. 1997, 35, 322–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Bacterial Strain and Genetic Group | Phage Isolate and Genetic Group of the Host | Isolation Farm | Isolation Year | Experiment |
---|---|---|---|---|
FCO-S1 (A) | 1 | 2017 | I, II | |
FCO-F2 (C) | 2 | 2017 | I–III | |
B185 (G) | 3 | 2008 | I–III | |
FCOV-S1 (A) | 1 | 2017 | I, II | |
FCOV-F27 (C) | 2 | 2017 | I–III | |
FCL-2 (G) | 3 | 2008 | I–III |
Bacterial Isolate/mix | Phage Isolate/Mix | Fish n:o. | |
---|---|---|---|
FCO-S1 | FCOV-S1 | 15 | |
FCO-S1 | FCOV-F27 | 15 | |
FCO-S1 | FCL-2 | 15 | |
FCO-F2 | FCOV-S1 | 15 | |
FCO-F2 | FCOV-F27 | 15 | |
FCO-F2 | FCL-2 | 15 | |
B185 | FCOV-S1 | 15 | |
B185 | FCOV-F27 | 15 | |
B185 | FCL-2 | 15 | |
Mix | FCOV-S1 | 15 | |
Mix | FCOV-F27 | 15 | |
Mix | FCL-2 | 15 | |
FCO-S1 | Mix | 15 | |
FCO-F2 | Mix | 15 | |
B185 | Mix | 15 | |
Mix | Mix | 15 | |
FCO-F2 | FCOV-F27-coated sheet | 10 | |
B185 | B185-coated sheet | 10 | |
FCO-S1 | − | 10 | No phage control |
FCO-F2 | − | 10 | No phage control |
B185 | − | 10 | No phage control |
Mix | − | 10 | No phage control |
− | FCOV-S1 | 10 | No bacteria control |
− | FCOV-F27 | 10 | No bacteria control |
− | FCL-2 | 10 | No bacteria control |
− | Control sheet | 10 | No bacteria control |
− | Mix | 10 | No bacteria control |
− | − | 10 | No treatment control |
Total number of fish | 360 |
Bacterial Infection | Phage Treatment | Fish n:o |
---|---|---|
FCO-S1 | MOI 1 0 h | 15 |
FCO-S1 | MOI 0.1 0 h | 15 |
FCO-S1 | MOI 10 0 h | 15 |
FCO-S1 | MOI 1 bath | 15 |
FCO-S1 | MOI 1 2 h | 15 |
FCO-F2 | MOI 1 0 h | 15 |
FCO-F2 | MOI 0.1 0 h | 15 |
FCO-F2 | MOI 10 0 h | 15 |
FCO-F2 | MOI 1 bath | 15 |
FCO-F2 | MOI 1 2 h | 15 |
B185 | MOI 1 0 h | 15 |
B185 | MOI 0.1 0 h | 15 |
B185 | MOI 10 0 h | 15 |
B185 | MOI 1 bath | 15 |
B185 | MOI 1 2 h | 15 |
Mix | MOI 1 0 h | 15 |
Mix | MOI 0.1 0 h | 15 |
Mix | MOI 10 0 h | 15 |
Mix | MOI 1 bath | 15 |
Mix | MOI 1 2 h | 15 |
FCO-S1 | − | 10 |
FCO-F2 | − | 10 |
B185 | − | 10 |
Mix | − | 10 |
− | MOI 1 0 h | 10 |
− | MOI 0.1 0 h | 10 |
− | MOI 10 0 h | 10 |
− | MOI 1-bath | 10 |
− | MOI 1 2 h | 10 |
− | − | 10 |
Total number of fish | 400 |
Delivery of Phage Mix | Bacterial Infection | Replicate | Fish n:o | Phage Sample |
---|---|---|---|---|
Feed | + | 1 | 48 | + |
Feed | + | 2 | 48 | + |
Feed | + | 3 | 48 | + |
Feed | − | 4 | 48 | − |
Sheet | + | 1 | 48 | + |
Sheet | + | 2 | 48 | + |
Sheet | + | 3 | 48 | + |
Control sheet | + | 4 | 48 | − |
Pre-infection bath | + | 1 | 48 | + |
Pre-infection bath | + | 2 | 48 | + |
Pre-infection bath | + | 3 | 48 | + |
Pre-infection bath | − | 4 | 48 | − |
Post-infection bath | + | 1 | 48 | + |
Post-infection bath | + | 2 | 48 | + |
Post-infection bath | + | 3 | 48 | + |
Post-infection bath | − | 4 | 48 | + a |
Control | + | 1 | 48 | + |
Control | + | 2 | 48 | + |
Control | + | 3 | 48 | + |
Control | − | 4 | 48 | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kunttu, H.M.T.; Runtuvuori-Salmela, A.; Middelboe, M.; Clark, J.; Sundberg, L.-R. Comparison of Delivery Methods in Phage Therapy against Flavobacterium columnare Infections in Rainbow Trout. Antibiotics 2021, 10, 914. https://doi.org/10.3390/antibiotics10080914
Kunttu HMT, Runtuvuori-Salmela A, Middelboe M, Clark J, Sundberg L-R. Comparison of Delivery Methods in Phage Therapy against Flavobacterium columnare Infections in Rainbow Trout. Antibiotics. 2021; 10(8):914. https://doi.org/10.3390/antibiotics10080914
Chicago/Turabian StyleKunttu, Heidi M. T., Anniina Runtuvuori-Salmela, Mathias Middelboe, Jason Clark, and Lotta-Riina Sundberg. 2021. "Comparison of Delivery Methods in Phage Therapy against Flavobacterium columnare Infections in Rainbow Trout" Antibiotics 10, no. 8: 914. https://doi.org/10.3390/antibiotics10080914
APA StyleKunttu, H. M. T., Runtuvuori-Salmela, A., Middelboe, M., Clark, J., & Sundberg, L. -R. (2021). Comparison of Delivery Methods in Phage Therapy against Flavobacterium columnare Infections in Rainbow Trout. Antibiotics, 10(8), 914. https://doi.org/10.3390/antibiotics10080914